summaryrefslogtreecommitdiff
path: root/Chemistry_by_R_Chang/4-Reactions_in_aqueous_solutions.ipynb
blob: a337875ceda3d6111a06de6d69081d4316af9909 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 4: Reactions in aqueous solutions"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.10: Acid_Base_Titrations.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Acid Base Titrations\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.10\n');\n",
"\n",
"mKHP=0.5468;//mass of KHP, g\n",
"KHP=204.2;//mol mass of KHP, g\n",
"\n",
"nKHP=mKHP/KHP;//moles of KHP\n",
"\n",
"VNaOH=23.48;//volume of NaOH, mL\n",
"MNaOH=nKHP/VNaOH*1000;//molarity of NaOH sol, M\n",
"\n",
"\n",
"printf('\t the molarity of NaOH solution is : %4.3f M\n',MNaOH);\n",
"\n",
"//End"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.11: Acid_Base_Titrations.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Acid Base Titrations\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.11\n');\n",
"\n",
"MNaOH=0.610;//molarity of NaOH, M\n",
"VH2SO4=20;//volume of H2SO4, mL\n",
"MH2SO4=0.245;//molarity of H2SO4, M\n",
"nH2SO4=MH2SO4*VH2SO4/1000;//moles of H2SO4\n",
"\n",
"VNaOH=2*nH2SO4/MNaOH;//Volume of NaOH, L\n",
"\n",
"printf('\t the volume of NaOH solution is : %4.1f mL\n',VNaOH*1000);\n",
"\n",
"//End"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.12: Redox_Titrations.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Redox Titrations\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.12\n');\n",
"\n",
"MKMnO4=0.1327;//molarity of KMnO4, M\n",
"VKMnO4=16.42;//volume of KMnO4, mL\n",
"nKMnO4=MKMnO4*VKMnO4/1000;\n",
"\n",
"nFeSO4=5*nKMnO4;\n",
"VFeSO4=25;//volume of FeSO4, mL\n",
"\n",
"MFeSO4=nFeSO4/VFeSO4*1000;\n",
"\n",
"printf('\t the molarity of FeSO4 solution is : %4.4f M\n',MFeSO4);\n",
"\n",
"//End"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.6: Computation_of_mass_from_concentration_and_volume.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Computation of mass from concentration and volume\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.6\n');\n",
"\n",
"K2Cr2O7=294.2;//mol mass of K2Cr2O7, g\n",
"\n",
"M=2.16;//Concentration of K2Cr2O7, M\n",
"\n",
"V=0.250;//volume of K2Cr2O7, L\n",
"\n",
"moles=M*V;//moles of K2Cr2O7\n",
"\n",
"mass=moles*K2Cr2O7;\n",
"\n",
"printf('\t the mass of the K2Cr2O7 needed is : %4.0f g\n',mass);\n",
"\n",
"//End"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.7: Computation_of_volume_from_concentration_and_mass.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Computation of volume from concentration and mass\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.7\n');\n",
"\n",
"mGlucose=3.81;//mass of Glucose, g\n",
"\n",
"Glucose=180.2;//mol mass of Glucose, g\n",
"\n",
"M=2.53;//Concentration of Glucose, M\n",
"\n",
"moles=mGlucose/Glucose;//moles of Glucose\n",
"\n",
"V=moles/M;//volume of Glucose, L\n",
"\n",
"\n",
"printf('\t the volume of the Glucose needed is : %4.2f mL\n',V*1000);\n",
"\n",
"//End"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.8: Dilution_of_solution.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Dilution of solution\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.8\n');\n",
"\n",
"M2=1.75;//final Concentration of H2SO4, M\n",
"\n",
"V2=500;//final volume of H2SO4, mL\n",
"\n",
"M1=8.61;//initial Concentration of H2SO4, M\n",
"\n",
"V1=M2*V2/M1;//initail volume of H2SO4, mL\n",
"\n",
"printf('\t the volume of the H2SO4 needed to dilute the solution is : %4.0f mL\n',V1);\n",
"\n",
"//End"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 4.9: Gravimetric_Analysis.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// Gravimetric Analysis\n",
"\n",
"clear;\n",
"clc;\n",
"\n",
"printf('\t Example 4.9\n');\n",
"\n",
"mSample=0.5662;//mass of sample, g\n",
"\n",
"Cl=35.5;//mol mass of Cl, g\n",
"AgCl=143.4;//mol mass of AgCl, g\n",
"\n",
"mAgCl=1.0882;//mass of AgCl formed, g\n",
"\n",
"%Cl(AgCl)=Cl/AgCl*100;//percent Cl in AgCl\n",
"mCl=%Cl(AgCl)*mAgCl/100;//mass of Cl in AgCl, g\n",
"\n",
"//the same amount of Cl is present in initial sample\n",
"\n",
"%Cl=mCl/mSample*100;//percent Cl in initial sample\n",
"\n",
"printf('\t the percentage of Cl in sample is : %4.2f percent\n',%Cl);\n",
"\n",
"//End"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}