{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Chapter 4: Reactions in aqueous solutions" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.10: Acid_Base_Titrations.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Acid Base Titrations\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.10\n');\n", "\n", "mKHP=0.5468;//mass of KHP, g\n", "KHP=204.2;//mol mass of KHP, g\n", "\n", "nKHP=mKHP/KHP;//moles of KHP\n", "\n", "VNaOH=23.48;//volume of NaOH, mL\n", "MNaOH=nKHP/VNaOH*1000;//molarity of NaOH sol, M\n", "\n", "\n", "printf('\t the molarity of NaOH solution is : %4.3f M\n',MNaOH);\n", "\n", "//End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.11: Acid_Base_Titrations.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Acid Base Titrations\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.11\n');\n", "\n", "MNaOH=0.610;//molarity of NaOH, M\n", "VH2SO4=20;//volume of H2SO4, mL\n", "MH2SO4=0.245;//molarity of H2SO4, M\n", "nH2SO4=MH2SO4*VH2SO4/1000;//moles of H2SO4\n", "\n", "VNaOH=2*nH2SO4/MNaOH;//Volume of NaOH, L\n", "\n", "printf('\t the volume of NaOH solution is : %4.1f mL\n',VNaOH*1000);\n", "\n", "//End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.12: Redox_Titrations.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Redox Titrations\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.12\n');\n", "\n", "MKMnO4=0.1327;//molarity of KMnO4, M\n", "VKMnO4=16.42;//volume of KMnO4, mL\n", "nKMnO4=MKMnO4*VKMnO4/1000;\n", "\n", "nFeSO4=5*nKMnO4;\n", "VFeSO4=25;//volume of FeSO4, mL\n", "\n", "MFeSO4=nFeSO4/VFeSO4*1000;\n", "\n", "printf('\t the molarity of FeSO4 solution is : %4.4f M\n',MFeSO4);\n", "\n", "//End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.6: Computation_of_mass_from_concentration_and_volume.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Computation of mass from concentration and volume\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.6\n');\n", "\n", "K2Cr2O7=294.2;//mol mass of K2Cr2O7, g\n", "\n", "M=2.16;//Concentration of K2Cr2O7, M\n", "\n", "V=0.250;//volume of K2Cr2O7, L\n", "\n", "moles=M*V;//moles of K2Cr2O7\n", "\n", "mass=moles*K2Cr2O7;\n", "\n", "printf('\t the mass of the K2Cr2O7 needed is : %4.0f g\n',mass);\n", "\n", "//End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.7: Computation_of_volume_from_concentration_and_mass.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Computation of volume from concentration and mass\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.7\n');\n", "\n", "mGlucose=3.81;//mass of Glucose, g\n", "\n", "Glucose=180.2;//mol mass of Glucose, g\n", "\n", "M=2.53;//Concentration of Glucose, M\n", "\n", "moles=mGlucose/Glucose;//moles of Glucose\n", "\n", "V=moles/M;//volume of Glucose, L\n", "\n", "\n", "printf('\t the volume of the Glucose needed is : %4.2f mL\n',V*1000);\n", "\n", "//End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.8: Dilution_of_solution.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Dilution of solution\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.8\n');\n", "\n", "M2=1.75;//final Concentration of H2SO4, M\n", "\n", "V2=500;//final volume of H2SO4, mL\n", "\n", "M1=8.61;//initial Concentration of H2SO4, M\n", "\n", "V1=M2*V2/M1;//initail volume of H2SO4, mL\n", "\n", "printf('\t the volume of the H2SO4 needed to dilute the solution is : %4.0f mL\n',V1);\n", "\n", "//End" ] } , { "cell_type": "markdown", "metadata": {}, "source": [ "## Example 4.9: Gravimetric_Analysis.sce" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [ "// Gravimetric Analysis\n", "\n", "clear;\n", "clc;\n", "\n", "printf('\t Example 4.9\n');\n", "\n", "mSample=0.5662;//mass of sample, g\n", "\n", "Cl=35.5;//mol mass of Cl, g\n", "AgCl=143.4;//mol mass of AgCl, g\n", "\n", "mAgCl=1.0882;//mass of AgCl formed, g\n", "\n", "%Cl(AgCl)=Cl/AgCl*100;//percent Cl in AgCl\n", "mCl=%Cl(AgCl)*mAgCl/100;//mass of Cl in AgCl, g\n", "\n", "//the same amount of Cl is present in initial sample\n", "\n", "%Cl=mCl/mSample*100;//percent Cl in initial sample\n", "\n", "printf('\t the percentage of Cl in sample is : %4.2f percent\n',%Cl);\n", "\n", "//End" ] } ], "metadata": { "kernelspec": { "display_name": "Scilab", "language": "scilab", "name": "scilab" }, "language_info": { "file_extension": ".sce", "help_links": [ { "text": "MetaKernel Magics", "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" } ], "mimetype": "text/x-octave", "name": "scilab", "version": "0.7.1" } }, "nbformat": 4, "nbformat_minor": 0 }