diff options
Diffstat (limited to 'Power_System_Engineering_by_S_Chakraborthy/42-ILLUMINATION.ipynb')
-rw-r--r-- | Power_System_Engineering_by_S_Chakraborthy/42-ILLUMINATION.ipynb | 428 |
1 files changed, 428 insertions, 0 deletions
diff --git a/Power_System_Engineering_by_S_Chakraborthy/42-ILLUMINATION.ipynb b/Power_System_Engineering_by_S_Chakraborthy/42-ILLUMINATION.ipynb new file mode 100644 index 0000000..ad4e765 --- /dev/null +++ b/Power_System_Engineering_by_S_Chakraborthy/42-ILLUMINATION.ipynb @@ -0,0 +1,428 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 42: ILLUMINATION" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.2: EX42_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.2 :\n", +"// Page number 753\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"lumens = 800.0 // Flux emitted by a lamp(lumens)\n", +"cp = 100.0 // cp of a lamp\n", +"d = 2.0 // Distance b/w plane surface & lamp(m)\n", +"theta_ii = 45.0 // Inclined surface(°)\n", +"theta_iii = 90.0 // Parallel rays(°)\n", +"\n", +"// Calculations\n", +"// Case(a)\n", +"mscp = lumens/(4.0*%pi) // mscp of lamp\n", +"// Case(b)\n", +"I_i = cp/d**2 // Illumination on the surface when it is normal(lux)\n", +"I_ii = cp/d**2*cosd(theta_ii) // Illumination on the surface when it is inclined to 45°(lux)\n", +"I_iii = cp/d**2*cosd(theta_iii) // Illumination on the surface when it is parallel to rays(lux)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.2 : SOLUTION :-')\n", +"printf('\nCase(a): mscp of the lamp, mscp = %.f ', mscp)\n", +"printf('\nCase(b): Case(i) : Illumination on the surface when it is normal, I = %.f lux', I_i)\n", +"printf('\n Case(ii) : Illumination on the surface when it is inclined to 45°, I = %.3f lux', I_ii)\n", +"printf('\n Case(iii): Illumination on the surface when it is parallel to rays, I = %.f lux\n', abs(I_iii))\n", +"printf('\nNOTE: ERROR: Calculation mistake in case(a) in textbook solution')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.3: EX42_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.3 :\n", +"// Page number 753-754\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"cp = 200.0 // cp of a lamp\n", +"per = 0.6 // Reflector directing light\n", +"D = 10.0 // Diameter(m)\n", +"h = 6.0 // Height at which lamp is hung(m)\n", +"\n", +"// Calculations\n", +"flux = cp*4*%pi // Flux(lumens)\n", +"I_i = cp/h**2 // Illumination at the centre without reflector(lux)\n", +"d = (h**2+(D/2)**2)**0.5 // (m)\n", +"I_without = (cp/h**2)*(h/d) // Illumination at the edge without reflector(lux)\n", +"I_with = cp*4*%pi*per/(25*%pi) // Illumination at the edge with reflector(lux)\n", +"theta = acosd(h/d) // θ(°)\n", +"w = 2.0*%pi*(1-cosd(theta/2)) // ω(steradian)\n", +"phi = cp*w // Φ(lumens)\n", +"I_avg = phi/(25*%pi) // Average illumination over the area without reflector(lux)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.3 : SOLUTION :-')\n", +"printf('\nCase(i) : Illumination at the centre without reflector = %.2f lux', I_i)\n", +"printf('\n Illumination at the centre with reflector = %.1f lux', I_with)\n", +"printf('\nCase(ii): Illumination at the edge of the surface without reflector = %.2f lux', I_without)\n", +"printf('\n Illumination at the edge of the surface with reflector = %.1f lux', I_with)\n", +"printf('\nAverage illumination over the area without the reflector, I = %.3f lux\n', I_avg)\n", +"printf('\nNOTE: ERROR: Slight calculation mistake & more approximation in textbook solution')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.5: EX42_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.5 :\n", +"// Page number 754\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"flux = 900.0 // Lamp emitting light(lumens)\n", +"D = 30.5 // Diameter of globe(cm)\n", +"B = 250.0*10**-3 // Uniform brightness(Ambert)\n", +"\n", +"// Calculations\n", +"cp = %pi/4*D**2*(B/%pi) // Candle power\n", +"flux_emit = cp*4*%pi // Flux emitted by globe(lumens)\n", +"flux_abs = flux-flux_emit // Flux absorbed by globe(lumens)\n", +"light_abs_per = flux_abs/flux*100 // Light absorbed(%)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.5 : SOLUTION :-')\n", +"printf('\ncp of the globe = %.f ', cp)\n", +"printf('\nPercentage of light emitted by lamp that is absorbed by the globe = %.1f percent\n', light_abs_per)\n", +"printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook solution')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.6: Curve_showing_illumination_on_a_horizontal_line_below_lamp.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.6 :\n", +"// Page number 754-755\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"cp_0 = 500.0 // Candle power\n", +"theta_0 = 0.0 // θ(°)\n", +"cp_1 = 560.0 // Candle power\n", +"theta_1 = 10.0 // θ(°)\n", +"cp_2 = 600.0 // Candle power\n", +"theta_2 = 20.0 // θ(°)\n", +"cp_3 = 520.0 // Candle power\n", +"theta_3 = 30.0 // θ(°)\n", +"cp_4 = 400.0 // Candle power\n", +"theta_4 = 40.0 // θ(°)\n", +"cp_5 = 300.0 // Candle power\n", +"theta_5 = 50.0 // θ(°)\n", +"cp_6 = 150.0 // Candle power\n", +"theta_6 = 60.0 // θ(°)\n", +"cp_7 = 50.0 // Candle power\n", +"theta_7 = 70.0 // θ(°)\n", +"h = 6.0 // Height of lamp(m)\n", +"\n", +"// Calculations\n", +"I_0 = cp_0/h**2*(cosd(theta_0))**3 // Illumination(lux)\n", +"l_0 = h*tand(theta_0) // Distance(m)\n", +"I_1 = cp_1/h**2*(cosd(theta_1))**3 // Illumination(lux)\n", +"l_1 = h*tand(theta_1) // Distance(m)\n", +"I_2 = cp_2/h**2*(cosd(theta_2))**3 // Illumination(lux)\n", +"l_2 = h*tand(theta_2) // Distance(m)\n", +"I_3 = cp_3/h**2*(cosd(theta_3))**3 // Illumination(lux)\n", +"l_3 = h*tand(theta_3) // Distance(m)\n", +"I_4 = cp_4/h**2*(cosd(theta_4))**3 // Illumination(lux)\n", +"l_4 = h*tand(theta_4) // Distance(m)\n", +"I_5 = cp_5/h**2*(cosd(theta_5))**3 // Illumination(lux)\n", +"l_5 = h*tand(theta_5) // Distance(m)\n", +"I_6 = cp_6/h**2*(cosd(theta_6))**3 // Illumination(lux)\n", +"l_6 = h*tand(theta_6) // Distance(m)\n", +"I_7 = cp_7/h**2*(cosd(theta_7))**3 // Illumination(lux)\n", +"l_7 = h*tand(theta_7) // Distance(m)\n", +"l = [-l_7,-l_6,-l_5,-l_4,-l_3,-l_2,-l_1,l_0,l_0,l_1,l_2,l_3,l_4,l_5,l_6,l_7]\n", +"I = [I_7,I_6,I_5,I_4,I_3,I_2,I_1,I_0,I_0,I_1,I_2,I_3,I_4,I_5,I_6,I_7]\n", +"a = gca() ;\n", +"a.thickness = 2 // sets thickness of plot\n", +"plot(l,I,'ro-') // Plot of illumination curve\n", +"x = [0,0,0,0,0,0]\n", +"y = [0,5,10,11,14,16]\n", +"plot(x,y) // Plot of straight line\n", +"a.x_label.text = 'Distance(metres)' // labels x-axis\n", +"a.y_label.text = 'Illumination(flux)' // labels y-axis\n", +"xtitle('Fig E4.4 . Illumination on a horizontal line below the lamp') \n", +"xset('thickness',2) // sets thickness of axes\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.6 : SOLUTION :-')\n", +"printf('\nThe curve showing illumination on a horizontal line below lamp is represented in Figure E4.4')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.7: Maximum_and_Minimum_illumination_on_the_floor_along_the_centre_line.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.7 :\n", +"// Page number 755\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"d = 9.15 // Lamp space(m)\n", +"h = 4.575 // Height(m)\n", +"P = 100.0 // Power(candle)\n", +"\n", +"// Calculations\n", +"theta_3_max = 0 // θ(°)\n", +"cos_theta_3_max_cubic = cosd(theta_3_max)**3\n", +"theta_4_max = atand(2) // θ(°)\n", +"cos_theta_4_max_cubic = cosd(theta_4_max)**3\n", +"theta_5_max = atand(4) // θ(°)\n", +"cos_theta_5_max_cubic = cosd(theta_5_max)**3\n", +"theta_6_max = atand(6) // θ(°)\n", +"cos_theta_6_max_cubic = cosd(theta_6_max)**3\n", +"I_max = P/h**2*(cos_theta_3_max_cubic+2*cos_theta_4_max_cubic+2*cos_theta_5_max_cubic+2*cos_theta_6_max_cubic) // Max illumination(lux)\n", +"theta_4_min = atand(1) // θ(°)\n", +"cos_theta_4_min_cubic = cosd(theta_4_min)**3\n", +"theta_5_min = atand(3) // θ(°)\n", +"cos_theta_5_min_cubic = cosd(theta_5_min)**3\n", +"theta_6_min = atand(5) // θ(°)\n", +"cos_theta_6_min_cubic = cosd(theta_6_min)**3\n", +"I_min = P/h**2*2*(cos_theta_4_min_cubic+cos_theta_5_min_cubic+cos_theta_6_min_cubic) // Minimum illumination(lux)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.7 : SOLUTION :-')\n", +"printf('\nMaximum illumination on the floor along the centre line = %.2f lux', I_max)\n", +"printf('\nMinimum illumination on the floor along the centre line = %.2f lux', I_min)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.8: Illumination_on_the_working_plane.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.8 :\n", +"// Page number 758\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"b = 15.25 // Breadth of workshop(m)\n", +"l = 36.6 // Length of workshop(m)\n", +"no = 20.0 // Number of lamps\n", +"P = 500.0 // Power of each lamp(W)\n", +"n = 15.0 // Luminous efficiency of each lamp(lumens/watt)\n", +"df = 0.7 // Depreciation factor\n", +"cou = 0.5 // Co-efficient of utilization\n", +"\n", +"// Calculations\n", +"lumen_lamp = no*P*n // Lamp lumens\n", +"lumen_plane = lumen_lamp*df*cou // Lumens on the working plane\n", +"I = lumen_plane/(l*b) // Illumination(lm/sq.m)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.8 : SOLUTION :-')\n", +"printf('\nIllumination on the working plane = %.1f lm per sq.m\n', I)\n", +"printf('\nNOTE: ERROR: The breadth should be 15.25m but mentioned as 5.25m in textbook statement')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 42.9: Suitable_scheme_of_illumination_and_Saving_in_power_consumption.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// A Texbook on POWER SYSTEM ENGINEERING\n", +"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n", +"// DHANPAT RAI & Co.\n", +"// SECOND EDITION \n", +"\n", +"// PART IV : UTILIZATION AND TRACTION\n", +"// CHAPTER 4: ILLUMINATION\n", +"\n", +"// EXAMPLE : 4.9 :\n", +"// Page number 758-759\n", +"clear ; clc ; close ; // Clear the work space and console\n", +"\n", +"// Given data\n", +"b = 27.45 // Breadth of hall(m)\n", +"l = 45.75 // Length of hall(m)\n", +"I_avg = 108.0 // Average illumination(lumens/sq.m)\n", +"h = 0.75 // Height(m)\n", +"cou = 0.35 // Co-efficient of utilization\n", +"pf = 0.9 // Pereciation factor\n", +"P_fl = 80.0 // Fluorescent lamp power(W)\n", +"n_100 = 13.4 // Luminous efficiency for 100W filament lamp(lumens/watt)\n", +"n_200 = 14.4 // Luminous efficiency for 200W filament lamp(lumens/watt)\n", +"n_80 = 30.0 // Luminous efficiency for 80W fluorescent lamp(lumens/watt)\n", +"\n", +"// Calculations\n", +"area = b*l // Area to be illuminated(Sq.m)\n", +"I_total = area*I_avg // Total illumination on working plane(lumens)\n", +"gross_lumen = I_total/(cou*pf) // Gross lumens required\n", +"P_required = gross_lumen/n_200 // Power required for illumination(W)\n", +"P_required_kW = P_required/1000 // Power required for illumination(kW)\n", +"no_lamp = P_required/200 // Number of lamps\n", +"P_required_new = gross_lumen/n_80 // Power required when fluorescent lamp used(W)\n", +"P_required_new_kW = P_required_new/1000 // Power required when fluorescent lamp used(kW)\n", +"P_saving = P_required_kW-P_required_new_kW // Saving in power(kW)\n", +"\n", +"// Results\n", +"disp('PART IV - EXAMPLE : 4.9 : SOLUTION :-')\n", +"printf('\nSuitable scheme: Whole area divided into %.f rectangles & 200-watt fitting is suspended at centre of each rectangle', no_lamp)\n", +"printf('\nSaving in power consumption = %.1f kW', P_saving)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |