summaryrefslogtreecommitdiff
path: root/Power_System_Engineering_by_S_Chakraborthy/42-ILLUMINATION.ipynb
blob: ad4e7653c245e9bf38c77fdb6ee7b6d2ae47fec7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 42: ILLUMINATION"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.2: EX42_2.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.2 :\n",
"// Page number 753\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"lumens = 800.0        // Flux emitted by a lamp(lumens)\n",
"cp = 100.0            // cp of a lamp\n",
"d = 2.0               // Distance b/w plane surface & lamp(m)\n",
"theta_ii = 45.0       // Inclined surface(°)\n",
"theta_iii = 90.0      // Parallel rays(°)\n",
"\n",
"// Calculations\n",
"// Case(a)\n",
"mscp = lumens/(4.0*%pi)            // mscp of lamp\n",
"// Case(b)\n",
"I_i = cp/d**2                      // Illumination on the surface when it is normal(lux)\n",
"I_ii = cp/d**2*cosd(theta_ii)      // Illumination on the surface when it is inclined to 45°(lux)\n",
"I_iii = cp/d**2*cosd(theta_iii)    // Illumination on the surface when it is parallel to rays(lux)\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.2 : SOLUTION :-')\n",
"printf('\nCase(a): mscp of the lamp, mscp = %.f ', mscp)\n",
"printf('\nCase(b): Case(i)  : Illumination on the surface when it is normal, I = %.f lux', I_i)\n",
"printf('\n         Case(ii) : Illumination on the surface when it is inclined to 45°, I = %.3f lux', I_ii)\n",
"printf('\n         Case(iii): Illumination on the surface when it is parallel to rays, I = %.f lux\n', abs(I_iii))\n",
"printf('\nNOTE: ERROR: Calculation mistake in case(a) in textbook solution')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.3: EX42_3.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.3 :\n",
"// Page number 753-754\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"cp = 200.0        // cp of a lamp\n",
"per = 0.6         // Reflector directing light\n",
"D = 10.0          // Diameter(m)\n",
"h = 6.0           // Height at which lamp is hung(m)\n",
"\n",
"// Calculations\n",
"flux = cp*4*%pi                             // Flux(lumens)\n",
"I_i = cp/h**2                               // Illumination at the centre without reflector(lux)\n",
"d = (h**2+(D/2)**2)**0.5                    // (m)\n",
"I_without = (cp/h**2)*(h/d)                 // Illumination at the edge without reflector(lux)\n",
"I_with = cp*4*%pi*per/(25*%pi)              // Illumination at the edge with reflector(lux)\n",
"theta = acosd(h/d)                          // θ(°)\n",
"w = 2.0*%pi*(1-cosd(theta/2))               // ω(steradian)\n",
"phi = cp*w                                  // Φ(lumens)\n",
"I_avg = phi/(25*%pi)                        // Average illumination over the area without reflector(lux)\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.3 : SOLUTION :-')\n",
"printf('\nCase(i) : Illumination at the centre without reflector = %.2f lux', I_i)\n",
"printf('\n          Illumination at the centre with reflector = %.1f lux', I_with)\n",
"printf('\nCase(ii): Illumination at the edge of the surface without reflector = %.2f lux', I_without)\n",
"printf('\n          Illumination at the edge of the surface with reflector = %.1f lux', I_with)\n",
"printf('\nAverage illumination over the area without the reflector, I  = %.3f lux\n', I_avg)\n",
"printf('\nNOTE: ERROR: Slight calculation mistake & more approximation in textbook solution')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.5: EX42_5.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.5 :\n",
"// Page number 754\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"flux = 900.0       // Lamp emitting light(lumens)\n",
"D = 30.5           // Diameter of globe(cm)\n",
"B = 250.0*10**-3   // Uniform brightness(Ambert)\n",
"\n",
"// Calculations\n",
"cp = %pi/4*D**2*(B/%pi)            // Candle power\n",
"flux_emit = cp*4*%pi               // Flux emitted by globe(lumens)\n",
"flux_abs = flux-flux_emit          // Flux absorbed by globe(lumens)\n",
"light_abs_per = flux_abs/flux*100  // Light absorbed(%)\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.5 : SOLUTION :-')\n",
"printf('\ncp of the globe = %.f ', cp)\n",
"printf('\nPercentage of light emitted by lamp that is absorbed by the globe = %.1f percent\n', light_abs_per)\n",
"printf('\nNOTE: Changes in the obtained answer from that of textbook is due to more precision here & approximation in textbook solution')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.6: Curve_showing_illumination_on_a_horizontal_line_below_lamp.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.6 :\n",
"// Page number 754-755\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"cp_0 = 500.0      // Candle power\n",
"theta_0 = 0.0     // θ(°)\n",
"cp_1 = 560.0      // Candle power\n",
"theta_1 = 10.0    // θ(°)\n",
"cp_2 = 600.0      // Candle power\n",
"theta_2 = 20.0    // θ(°)\n",
"cp_3 = 520.0      // Candle power\n",
"theta_3 = 30.0    // θ(°)\n",
"cp_4 = 400.0      // Candle power\n",
"theta_4 = 40.0    // θ(°)\n",
"cp_5 = 300.0      // Candle power\n",
"theta_5 = 50.0    // θ(°)\n",
"cp_6 = 150.0      // Candle power\n",
"theta_6 = 60.0    // θ(°)\n",
"cp_7 = 50.0       // Candle power\n",
"theta_7 = 70.0    // θ(°)\n",
"h = 6.0           // Height of lamp(m)\n",
"\n",
"// Calculations\n",
"I_0 = cp_0/h**2*(cosd(theta_0))**3    // Illumination(lux)\n",
"l_0 = h*tand(theta_0)                 // Distance(m)\n",
"I_1 = cp_1/h**2*(cosd(theta_1))**3    // Illumination(lux)\n",
"l_1 = h*tand(theta_1)                 // Distance(m)\n",
"I_2 = cp_2/h**2*(cosd(theta_2))**3    // Illumination(lux)\n",
"l_2 = h*tand(theta_2)                 // Distance(m)\n",
"I_3 = cp_3/h**2*(cosd(theta_3))**3    // Illumination(lux)\n",
"l_3 = h*tand(theta_3)                 // Distance(m)\n",
"I_4 = cp_4/h**2*(cosd(theta_4))**3    // Illumination(lux)\n",
"l_4 = h*tand(theta_4)                 // Distance(m)\n",
"I_5 = cp_5/h**2*(cosd(theta_5))**3    // Illumination(lux)\n",
"l_5 = h*tand(theta_5)                 // Distance(m)\n",
"I_6 = cp_6/h**2*(cosd(theta_6))**3    // Illumination(lux)\n",
"l_6 = h*tand(theta_6)                 // Distance(m)\n",
"I_7 = cp_7/h**2*(cosd(theta_7))**3    // Illumination(lux)\n",
"l_7 = h*tand(theta_7)                 // Distance(m)\n",
"l = [-l_7,-l_6,-l_5,-l_4,-l_3,-l_2,-l_1,l_0,l_0,l_1,l_2,l_3,l_4,l_5,l_6,l_7]\n",
"I = [I_7,I_6,I_5,I_4,I_3,I_2,I_1,I_0,I_0,I_1,I_2,I_3,I_4,I_5,I_6,I_7]\n",
"a = gca() ;\n",
"a.thickness = 2                                       // sets thickness of plot\n",
"plot(l,I,'ro-')                                       // Plot of illumination curve\n",
"x = [0,0,0,0,0,0]\n",
"y = [0,5,10,11,14,16]\n",
"plot(x,y)                                             // Plot of straight line\n",
"a.x_label.text = 'Distance(metres)'                   // labels x-axis\n",
"a.y_label.text = 'Illumination(flux)'                 // labels y-axis\n",
"xtitle('Fig E4.4 . Illumination on a horizontal line below the lamp') \n",
"xset('thickness',2)                                   // sets thickness of axes\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.6 : SOLUTION :-')\n",
"printf('\nThe curve showing illumination on a horizontal line below lamp is represented in Figure E4.4')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.7: Maximum_and_Minimum_illumination_on_the_floor_along_the_centre_line.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.7 :\n",
"// Page number 755\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"d = 9.15       // Lamp space(m)\n",
"h = 4.575      // Height(m)\n",
"P = 100.0      // Power(candle)\n",
"\n",
"// Calculations\n",
"theta_3_max = 0                                                                          // θ(°)\n",
"cos_theta_3_max_cubic = cosd(theta_3_max)**3\n",
"theta_4_max = atand(2)                                                                   // θ(°)\n",
"cos_theta_4_max_cubic = cosd(theta_4_max)**3\n",
"theta_5_max = atand(4)                                                                   // θ(°)\n",
"cos_theta_5_max_cubic = cosd(theta_5_max)**3\n",
"theta_6_max = atand(6)                                                                   // θ(°)\n",
"cos_theta_6_max_cubic = cosd(theta_6_max)**3\n",
"I_max = P/h**2*(cos_theta_3_max_cubic+2*cos_theta_4_max_cubic+2*cos_theta_5_max_cubic+2*cos_theta_6_max_cubic)   // Max illumination(lux)\n",
"theta_4_min = atand(1)                                                                   // θ(°)\n",
"cos_theta_4_min_cubic = cosd(theta_4_min)**3\n",
"theta_5_min = atand(3)                                                                   // θ(°)\n",
"cos_theta_5_min_cubic = cosd(theta_5_min)**3\n",
"theta_6_min = atand(5)                                                                   // θ(°)\n",
"cos_theta_6_min_cubic = cosd(theta_6_min)**3\n",
"I_min = P/h**2*2*(cos_theta_4_min_cubic+cos_theta_5_min_cubic+cos_theta_6_min_cubic)     // Minimum illumination(lux)\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.7 : SOLUTION :-')\n",
"printf('\nMaximum illumination on the floor along the centre line = %.2f lux', I_max)\n",
"printf('\nMinimum illumination on the floor along the centre line = %.2f lux', I_min)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.8: Illumination_on_the_working_plane.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.8 :\n",
"// Page number 758\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"b = 15.25     // Breadth of workshop(m)\n",
"l = 36.6      // Length of workshop(m)\n",
"no = 20.0     // Number of lamps\n",
"P = 500.0     // Power of each lamp(W)\n",
"n = 15.0      // Luminous efficiency of each lamp(lumens/watt)\n",
"df = 0.7      // Depreciation factor\n",
"cou = 0.5     // Co-efficient of utilization\n",
"\n",
"// Calculations\n",
"lumen_lamp = no*P*n                // Lamp lumens\n",
"lumen_plane = lumen_lamp*df*cou    // Lumens on the working plane\n",
"I = lumen_plane/(l*b)              // Illumination(lm/sq.m)\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.8 : SOLUTION :-')\n",
"printf('\nIllumination on the working plane = %.1f lm per sq.m\n', I)\n",
"printf('\nNOTE: ERROR: The breadth should be 15.25m but mentioned as 5.25m in textbook statement')"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 42.9: Suitable_scheme_of_illumination_and_Saving_in_power_consumption.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"// A Texbook on POWER SYSTEM ENGINEERING\n",
"// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar\n",
"// DHANPAT RAI & Co.\n",
"// SECOND EDITION \n",
"\n",
"// PART IV : UTILIZATION AND TRACTION\n",
"// CHAPTER 4: ILLUMINATION\n",
"\n",
"// EXAMPLE : 4.9 :\n",
"// Page number 758-759\n",
"clear ; clc ; close ; // Clear the work space and console\n",
"\n",
"// Given data\n",
"b = 27.45      // Breadth of hall(m)\n",
"l = 45.75      // Length of hall(m)\n",
"I_avg = 108.0  // Average illumination(lumens/sq.m)\n",
"h = 0.75       // Height(m)\n",
"cou = 0.35     // Co-efficient of utilization\n",
"pf = 0.9       // Pereciation factor\n",
"P_fl = 80.0    // Fluorescent lamp power(W)\n",
"n_100 = 13.4   // Luminous efficiency for 100W filament lamp(lumens/watt)\n",
"n_200 = 14.4   // Luminous efficiency for 200W filament lamp(lumens/watt)\n",
"n_80 = 30.0    // Luminous efficiency for 80W fluorescent lamp(lumens/watt)\n",
"\n",
"// Calculations\n",
"area = b*l                                   // Area to be illuminated(Sq.m)\n",
"I_total = area*I_avg                         // Total illumination on working plane(lumens)\n",
"gross_lumen = I_total/(cou*pf)               // Gross lumens required\n",
"P_required = gross_lumen/n_200               // Power required for illumination(W)\n",
"P_required_kW = P_required/1000              // Power required for illumination(kW)\n",
"no_lamp = P_required/200                     // Number of lamps\n",
"P_required_new = gross_lumen/n_80            // Power required when fluorescent lamp used(W)\n",
"P_required_new_kW = P_required_new/1000      // Power required when fluorescent lamp used(kW)\n",
"P_saving = P_required_kW-P_required_new_kW   // Saving in power(kW)\n",
"\n",
"// Results\n",
"disp('PART IV - EXAMPLE : 4.9 : SOLUTION :-')\n",
"printf('\nSuitable scheme: Whole area divided into %.f rectangles & 200-watt fitting is suspended at centre of each rectangle', no_lamp)\n",
"printf('\nSaving in power consumption = %.1f kW', P_saving)"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}