summaryrefslogtreecommitdiff
path: root/Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb')
-rw-r--r--Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb150
1 files changed, 150 insertions, 0 deletions
diff --git a/Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb b/Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb
new file mode 100644
index 0000000..fa53edd
--- /dev/null
+++ b/Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb
@@ -0,0 +1,150 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Measurement"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Sample_Problem_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"velocityP = 23 //rides per h\n",
+"c1 = 4 //from ride to stadia\n",
+"c2 = 6 //from stadia to plethra\n",
+"c3 = 30.8 //from plethra to meter\n",
+"c4 = 10^-3 //from meter to kilometer\n",
+"c5 = 60 * 60 //from h to sec\n",
+"\n",
+"//Sample Problem 1-1\n",
+"printf('**Sample Problem 1-1**\n')\n",
+"velocityC = velocityP * c1 * c2 * c3 * c4 / c5\n",
+"printf('The speed is %e km/s', velocityC)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Sample_Problem_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"conv1 = 170.474 //conversion from crans to liters\n",
+"conv2 = 48.26 //from covido to cm\n",
+"V1 = 1255 //in crans\n",
+"\n",
+"//Sample Problem 1-2\n",
+"printf('**Sample Problem 1-2**\n')\n",
+"VC = V1 * conv1 * 10^3 / (conv2^3)\n",
+"printf('The required declaration is %e cubic covidos', VC)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Sample_Problem_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"//the crossection to be approximately squre\n",
+"Radius = 2 //in meter\n",
+"side = 4 * 10^-3 //converted from mm to meter\n",
+"\n",
+"//Sample Problem 1-3\n",
+"printf('**Sample Problem 1-3**\n')\n",
+"//making the volume equal\n",
+"Length = 4/3 * %pi * Radius^3 / side^2\n",
+"L_km = Length/10^3\n",
+"order = round(log(L_km)/log(10)) //will give us order of magnitude\n",
+"printf('The order of length of string is 10^%d km', order)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Sample_Problem_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Given that\n",
+"height = 1.70 //in meter\n",
+"elapsed_time = 11.1 //in sec\n",
+"\n",
+"//Sample Problem 1-4\n",
+"printf('**Sample Problem 1-4**\n')\n",
+"//the angle between the two radius is\n",
+"theta = elapsed_time / (24 * 3600) * %pi*2 //in radians\n",
+"//we also have d^2 = 2 * r *h\n",
+"//as d is very small hence can be considered as a arc\n",
+"//d = r * theta\n",
+"//=> r * theta^2 = 2 * h\n",
+"radius = 2 * height /theta^2\n",
+"printf('The radius of earth is %e m', radius)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}