summaryrefslogtreecommitdiff
path: root/Fundamental_Of_Physics_by_D_Haliday/1-Measurement.ipynb
blob: fa53eddfadd1d375ff24c5afc4efb0c1ffc9bd30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
{
"cells": [
 {
		   "cell_type": "markdown",
	   "metadata": {},
	   "source": [
       "# Chapter 1: Measurement"
	   ]
	},
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 1.1: Sample_Problem_1.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Given that\n",
"velocityP = 23 //rides per h\n",
"c1 = 4  //from ride to stadia\n",
"c2 = 6  //from stadia to plethra\n",
"c3 = 30.8 //from plethra to meter\n",
"c4 = 10^-3  //from meter to kilometer\n",
"c5 = 60 * 60  //from h to sec\n",
"\n",
"//Sample Problem 1-1\n",
"printf('**Sample Problem 1-1**\n')\n",
"velocityC = velocityP * c1 * c2 * c3 * c4 / c5\n",
"printf('The speed is %e km/s', velocityC)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 1.2: Sample_Problem_2.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Given that\n",
"conv1 = 170.474  //conversion from crans to liters\n",
"conv2 = 48.26  //from covido to cm\n",
"V1 = 1255  //in crans\n",
"\n",
"//Sample Problem 1-2\n",
"printf('**Sample Problem 1-2**\n')\n",
"VC = V1 * conv1 * 10^3 / (conv2^3)\n",
"printf('The required declaration is %e cubic covidos', VC)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 1.3: Sample_Problem_3.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Given that\n",
"//the crossection to be approximately squre\n",
"Radius = 2 //in meter\n",
"side = 4 * 10^-3  //converted from mm to meter\n",
"\n",
"//Sample Problem 1-3\n",
"printf('**Sample Problem 1-3**\n')\n",
"//making the volume equal\n",
"Length = 4/3 * %pi * Radius^3 / side^2\n",
"L_km = Length/10^3\n",
"order = round(log(L_km)/log(10)) //will give us order of magnitude\n",
"printf('The order of length of string is 10^%d km', order)"
   ]
   }
,
{
		   "cell_type": "markdown",
		   "metadata": {},
		   "source": [
			"## Example 1.4: Sample_Problem_4.sce"
		   ]
		  },
  {
"cell_type": "code",
	   "execution_count": null,
	   "metadata": {
	    "collapsed": true
	   },
	   "outputs": [],
"source": [
"//Given that\n",
"height = 1.70  //in meter\n",
"elapsed_time = 11.1  //in sec\n",
"\n",
"//Sample Problem 1-4\n",
"printf('**Sample Problem 1-4**\n')\n",
"//the angle between the two radius is\n",
"theta = elapsed_time / (24 * 3600) * %pi*2  //in radians\n",
"//we also have d^2 = 2 * r *h\n",
"//as d is very small hence can be considered as a arc\n",
"//d = r * theta\n",
"//=> r * theta^2 = 2 * h\n",
"radius = 2 * height /theta^2\n",
"printf('The radius of earth is %e m', radius)"
   ]
   }
],
"metadata": {
		  "kernelspec": {
		   "display_name": "Scilab",
		   "language": "scilab",
		   "name": "scilab"
		  },
		  "language_info": {
		   "file_extension": ".sce",
		   "help_links": [
			{
			 "text": "MetaKernel Magics",
			 "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
			}
		   ],
		   "mimetype": "text/x-octave",
		   "name": "scilab",
		   "version": "0.7.1"
		  }
		 },
		 "nbformat": 4,
		 "nbformat_minor": 0
}