summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_H_K_Malik/9-DIELECTRICS.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_H_K_Malik/9-DIELECTRICS.ipynb')
-rw-r--r--Engineering_Physics_by_H_K_Malik/9-DIELECTRICS.ipynb216
1 files changed, 216 insertions, 0 deletions
diff --git a/Engineering_Physics_by_H_K_Malik/9-DIELECTRICS.ipynb b/Engineering_Physics_by_H_K_Malik/9-DIELECTRICS.ipynb
new file mode 100644
index 0000000..8b98e21
--- /dev/null
+++ b/Engineering_Physics_by_H_K_Malik/9-DIELECTRICS.ipynb
@@ -0,0 +1,216 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: DIELECTRICS"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Calculation_of_Polarization_vector_and_Displacement_vector.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"E = 10^6 // electric field inside the plates in V/m\n",
+"d = 0.02 // distance between the plates in meter\n",
+"k = 3 // dielectric constant of slab\n",
+"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
+"// Sample Problem 1 on page no. 9.11\n",
+"printf('\n # PROBLEM 1 # \n')\n",
+"printf(' Standard formula used \n')\n",
+"printf(' D = e_*E+p. \n D=e_*k*E.\n\n ')\n",
+"D = e_*k*E\n",
+"P = D-e_*E\n",
+"printf('Polarization vector is %e C/m^2. \n Displacement vector is %e C/m^2',P,D)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Calculation_of_The_included_charge_density_on_the_surface_of_the_dielectric.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"E1 = 3*10^5 // electric intensity when space between plates evacuated in V/m\n",
+"E2 = 1*10^5 // electric intensity when space between plates is filled with dielectric in V/m\n",
+"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
+"// Sample Problem 2 on page no. 9.11\n",
+"printf('\n # PROBLEM 2 # \n')\n",
+"printf(' Standard formula used \n')\n",
+"printf(' E = E_-P/e_.\n\n ')\n",
+"sigma = e_*(E1 - E2)\n",
+"printf('The included charge density on the surface of the dielectric is %e C/m^2',sigma )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: Calculation_of_Polarization_vector_and_Displacement_vector_and_Energy_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"E = 1*10^5 // electric field strength inside the plates in V/m\n",
+"d = 6 // distance between the plates in mm\n",
+"k = 2.8 // dielectric constant of slab\n",
+"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
+"// Sample Problem 3 on page no. 9.11\n",
+"printf('\n # PROBLEM 3 # \n')\n",
+"printf(' Standard formula used \n')\n",
+"printf(' P = e_*(k-1)*E.\n\n ')\n",
+"P = e_*(k-1)*E\n",
+"D = e_*k*E\n",
+"energy_density = 1/2 * k*e_*E^2\n",
+"printf('Polarization vector is %e C/m^2. \n Displacement vector is %eC/m^2. \n Energy density is %f J/m^3.',P,D,energy_density )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: EX9_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"D = 5e-4 // electric displacement vector in C/m^2\n",
+"P = 4e-4 // electric polarization vector in C/m^2\n",
+"v = 0.5 // volume of the slab in m^3\n",
+"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
+"// Sample Problem 4 on page no. 9.12\n",
+"printf('\n # PROBLEM 4 # \n')\n",
+"printf(' Standard formula used \n')\n",
+"printf(' D= e_*E.\n\n ')\n",
+"E= (D-P)/ e_\n",
+"k = D/(e_*E)\n",
+"p = P*v\n",
+"energy_density = 1/2 * k*e_*E^2\n",
+"printf('Value of relative permittivity is %d. \n Total dipole moment of the slab is %e C-m.',k,p )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.5: Calculation_of_Induce_dipole_moment_of_each.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"E = 3e4 // external field in V/m\n",
+"k = 1.00074 // dielectric constant of gas at N.T.P.\n",
+"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
+"// Sample Problem 5 on page no. 9.12\n",
+"printf('\n # PROBLEM 5 # \n')\n",
+"printf(' Standard formula used \n')\n",
+"printf(' P=x*e_*E.\n\n ')\n",
+"x = k-1\n",
+"P = x*e_*E\n",
+"N = 6.023e23/22.4e-3\n",
+"p = P/N\n",
+"printf('Induce dipole moment of each is %e C-m',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Calculation_of_Electric_susceptibility_at_0_degree_centigrade.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc \n",
+"// Given that\n",
+"E = 3e4 // external field in V/m\n",
+"k = 1.000041 // dielectric constant of gas at 0 degree centigrate\n",
+"// Sample Problem 6 on page no. 9.1\n",
+"printf('\n # PROBLEM 6 # \n')\n",
+"printf(' Standard formula used \n')\n",
+"printf(' P=x*e_*E.\n\n ')\n",
+"x = k-1\n",
+"printf('Electric susceptibility at 0 degree centigrate is %e.',x)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}