1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 9: DIELECTRICS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.1: Calculation_of_Polarization_vector_and_Displacement_vector.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"E = 10^6 // electric field inside the plates in V/m\n",
"d = 0.02 // distance between the plates in meter\n",
"k = 3 // dielectric constant of slab\n",
"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
"// Sample Problem 1 on page no. 9.11\n",
"printf('\n # PROBLEM 1 # \n')\n",
"printf(' Standard formula used \n')\n",
"printf(' D = e_*E+p. \n D=e_*k*E.\n\n ')\n",
"D = e_*k*E\n",
"P = D-e_*E\n",
"printf('Polarization vector is %e C/m^2. \n Displacement vector is %e C/m^2',P,D)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.2: Calculation_of_The_included_charge_density_on_the_surface_of_the_dielectric.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"E1 = 3*10^5 // electric intensity when space between plates evacuated in V/m\n",
"E2 = 1*10^5 // electric intensity when space between plates is filled with dielectric in V/m\n",
"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
"// Sample Problem 2 on page no. 9.11\n",
"printf('\n # PROBLEM 2 # \n')\n",
"printf(' Standard formula used \n')\n",
"printf(' E = E_-P/e_.\n\n ')\n",
"sigma = e_*(E1 - E2)\n",
"printf('The included charge density on the surface of the dielectric is %e C/m^2',sigma )"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.3: Calculation_of_Polarization_vector_and_Displacement_vector_and_Energy_density.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"E = 1*10^5 // electric field strength inside the plates in V/m\n",
"d = 6 // distance between the plates in mm\n",
"k = 2.8 // dielectric constant of slab\n",
"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
"// Sample Problem 3 on page no. 9.11\n",
"printf('\n # PROBLEM 3 # \n')\n",
"printf(' Standard formula used \n')\n",
"printf(' P = e_*(k-1)*E.\n\n ')\n",
"P = e_*(k-1)*E\n",
"D = e_*k*E\n",
"energy_density = 1/2 * k*e_*E^2\n",
"printf('Polarization vector is %e C/m^2. \n Displacement vector is %eC/m^2. \n Energy density is %f J/m^3.',P,D,energy_density )"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.4: EX9_4.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"D = 5e-4 // electric displacement vector in C/m^2\n",
"P = 4e-4 // electric polarization vector in C/m^2\n",
"v = 0.5 // volume of the slab in m^3\n",
"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
"// Sample Problem 4 on page no. 9.12\n",
"printf('\n # PROBLEM 4 # \n')\n",
"printf(' Standard formula used \n')\n",
"printf(' D= e_*E.\n\n ')\n",
"E= (D-P)/ e_\n",
"k = D/(e_*E)\n",
"p = P*v\n",
"energy_density = 1/2 * k*e_*E^2\n",
"printf('Value of relative permittivity is %d. \n Total dipole moment of the slab is %e C-m.',k,p )"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.5: Calculation_of_Induce_dipole_moment_of_each.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"E = 3e4 // external field in V/m\n",
"k = 1.00074 // dielectric constant of gas at N.T.P.\n",
"e_ = 8.85e-12 // electric permittivity of air in C^2/Nm^2\n",
"// Sample Problem 5 on page no. 9.12\n",
"printf('\n # PROBLEM 5 # \n')\n",
"printf(' Standard formula used \n')\n",
"printf(' P=x*e_*E.\n\n ')\n",
"x = k-1\n",
"P = x*e_*E\n",
"N = 6.023e23/22.4e-3\n",
"p = P/N\n",
"printf('Induce dipole moment of each is %e C-m',p)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 9.6: Calculation_of_Electric_susceptibility_at_0_degree_centigrade.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc \n",
"// Given that\n",
"E = 3e4 // external field in V/m\n",
"k = 1.000041 // dielectric constant of gas at 0 degree centigrate\n",
"// Sample Problem 6 on page no. 9.1\n",
"printf('\n # PROBLEM 6 # \n')\n",
"printf(' Standard formula used \n')\n",
"printf(' P=x*e_*E.\n\n ')\n",
"x = k-1\n",
"printf('Electric susceptibility at 0 degree centigrate is %e.',x)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|