diff options
Diffstat (limited to 'Engineering_Physics_by_A_Marikani')
11 files changed, 3366 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/1-Ultrasonics.ipynb b/Engineering_Physics_by_A_Marikani/1-Ultrasonics.ipynb new file mode 100644 index 0000000..43a13f9 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/1-Ultrasonics.ipynb @@ -0,0 +1,178 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Ultrasonics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Fundamental_frequency_of_vibration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Example No.1.1.\n", +"// Page No.28.\n", +"clc;clear;\n", +"t = 0.15*10^(-2);//Thickness of the quartz crystal -[m].\n", +"Y = 7.9* 10^(10);//Young's modulus of quartz -[N/m^2].\n", +"d = 2650;//Density of quartz -[kg/m^3].\n", +"f = (1/(2*t))*(sqrt(Y/d));//'f' is fndamental frequency of vibration.\n", +"f = f*10^(-6);//fundamental frequency of vibration.\n", +"printf('\nThe fundamental frequency of vibration of the crystal is %.4f MHz',f);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Fundamental_frequency_and_first_overtone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Example No.1.2.\n", +"// Page No. 28.\n", +"clc;clear;\n", +"t = 1*10^(-3);//Thickness of the quartz crystal -[m].\n", +"Y = 7.9* 10^(10);//Young's modulus of quartz -[N/m^2].\n", +"d = 2650;//Density of quartz -[kg/m^3].\n", +"p = 1;\n", +"f1 = (p/(2*t))*(sqroot(Y/d));//For fundamental frequency p=1.\n", +"printf('\nThe fundamental frequency of vibration of the crystal is %3.3e Hz',f1);\n", +"p = 2;\n", +"f2 = (p/(2*t))*(sqroot(Y/d));// f2 is frequency of first overtone and for the first overtone P=2.\n", +"printf('\nThe frequency of the first overtone of the crystal is %3.3e Hz',f2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Velocity_of_ultrasonic_wave.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Example No.1.3.\n", +"// Page No.29.\n", +"clc;clear;\n", +"w = 5.893*10^(-7);//Wavelength of the light -[m].\n", +"f = 1*10^(8);//Frequency of the ultrasonic transducer -[Hz].\n", +"n = 1;//Order of diffraction.\n", +"d = 7.505*10^(-6);\n", +"w = 2*d;//wavelength of the ultrasonic wave.\n", +"printf('\nThe wavelength of the ultrasonic wave is %3.3e m',w);\n", +"v = f*w;//Velocity of the ultrasonic wave.\n", +"printf('\nThe velocity of ultrasonic wave is %.f m/s',v);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Doppler_shifted_frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.1.4.\n", +"// Page No.29.\n", +"clc;clear;\n", +"f = 2*10^(6);//frequency of transducer -[Hz].\n", +"cosq = cosd(30);//Angle of inclination of the probe -[degree].\n", +"c = 800;//Velocity of ultrasonic wave -[m/s].\n", +"v = 3;//Speed of blood -[m/s].\n", +"delf = ((2*f*v*cosq)/c);//Doppler shifted frequency.\n", +"printf('\nThe Doppler shifted frequency is %3.3e Hz',delf);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Velocity_of_ultrasonic_waves.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.1.5.\n", +"// Page No.30.\n", +"clc;clear;\n", +"Y = 7.9*10^(10);//Young's modulus of quartz -[N/m^2].\n", +"d = 2650;//Density of quartz -[kg/m^3].\n", +"v = sqroot(Y/d);//Velocity of ultrasonic wave.\n", +"printf('\nThe velocity of the ultrasonic waves is %.2f m/s',v);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb b/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb new file mode 100644 index 0000000..b9f1c73 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/10-Magnetic_materials.ipynb @@ -0,0 +1,210 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Magnetic materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Magnetization_and_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.10.1\n", +"//Page No.305\n", +"//To find magnetization & flux density.\n", +"clc;clear;\n", +"H = (10^6);//Magnetic field strength -[A/m].\n", +"x = (0.5*10^-5);//Magnetic suceptibility.\n", +"M = (x*H);//Magnetization.\n", +"printf('\nMagnetization of the material is %.0f A/m',M);\n", +"u0 = (4*%pi*10^-7);\n", +"B = (u0*(M+H));//Flux density.\n", +"printf('\nFlux density of the material is %.3f Wb/m^2',B);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Magnetic_moment_of_nickel_atom.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example NO.10.2\n", +"//Page No.306\n", +"clc;clear;\n", +"B = 0.65;//Saturation magnetic induction -[Wb/m^2].\n", +"p = 8906;//Density -[kg/m^3].\n", +"Mat = 58.7;//Atomic weight of Ni\n", +"A = (6.022*10^26);//Avagadro's constant.\n", +"N = ((p*A)/Mat);//Number of atoms per m^-3.\n", +"printf('\nNumber of atoms per m^-3 are %3.3e m^-3',N);\n", +"u0 = (4*%pi*10^-7);\n", +"um = (B/(N*u0));\n", +"printf('\nMagnetic moment is %3.3e ',um);\n", +"Mni = (um/(9.27*10^-24));\n", +"printf('\nMagnetic moment of nickel atom is %.2f uB',Mni);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Relative_permiability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.10.3\n", +"//Page No.306\n", +"clc;clear;\n", +"H = 1800;//Magnetic field -[A/m].\n", +"F = (3*10^-5);//Magnetic flux -[Wb].\n", +"A = 0.2*10^-4;//Area of cross section -[m].\n", +"u0 = (4*%pi*10^-7);\n", +"B = (F/A);//Magnetic flux density.\n", +"printf('\nMagnetic flux density is %.1f Wb/m^2',B);\n", +"ur = (B/(u0*H));//Relative permeability.\n", +"printf('\nRelative permeability of the material is %.2f',ur);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Saturation_magnetization.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.10.4\n", +"//Page No.307\n", +"clc;clear;\n", +"u = 18.4;//Magnetic moment -[uB].\n", +"uB = (9.27*10^-24);\n", +"a = (0.835*10^-9);//Lattice parameter-[m].\n", +"M = (u*uB/a^3);//Magnetization.\n", +"printf('\nSaturation magnetization for Ni ferrite is %3.3e A/m',M);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Magnetization_and_magnetic_flux_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.10.5\n", +"//Page No.307\n", +"clc;clear;\n", +"H = (2*10^5);//Magnetic field strength -[A/m].\n", +"ur = 1.01;//Relative permeability.\n", +"u0 = (4*%pi*10^-7);\n", +"B = (u0*ur*H);//Magnetic flux density.\n", +"printf('\nMagnetic flux density is %.4f Wb/m^2',B);\n", +"M = ((0.2538/u0)-(H));//Magnetization\n", +"printf('\nMagnetization of the material is %.2f A/m',M);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: Succeptibility_and_magnetic_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.10.6\n", +"//Page No.307\n", +"clc;clear;\n", +"H = (500);//Magnetic field strength -[A/m].\n", +"x = (1.2);//Suceptibility.\n", +"M = (x*H);//Magnetization.\n", +"printf('\nMagnetization of the material is %.0f A/m',M);\n", +"u0 = (4*%pi*10^-7);\n", +"B = (u0*(M+H));//Magnetic flux density.\n", +"printf('\nMagnetic flux density inside the material is %3.3e Wb/m^2',B);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/11-Dielectric_materials.ipynb b/Engineering_Physics_by_A_Marikani/11-Dielectric_materials.ipynb new file mode 100644 index 0000000..343c861 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/11-Dielectric_materials.ipynb @@ -0,0 +1,229 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Dielectric materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Dielectric_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.11.1\n", +"//Page No.335\n", +"//To find dielectric constant of the material \n", +"clc;clear;\n", +"C = (10^-9);//Capacitance -[F].\n", +"d = (2*10^-3);//Distance of separation -[m].\n", +"E0 = (8.854*10^-12);\n", +"A = (10^-4);//Area of capacitor -[m^2]\n", +"Er = ((C*d)/(E0*A));//Dielectric constant.\n", +"printf('\nThe dielectric constant of the material is %.2f',Er);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Electronic_polarizability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.11.2\n", +"//Page No.335\n", +"//To find electronic polarizability of He gas.\n", +"clc;clear;\n", +"E0 = (8.854*10^-12);\n", +"Er = (1.0000684);//Dielectric constant of He-gas\n", +"N = (2.7*10^25);//Concentration of dipoles -[per m^3].\n", +"P = (E0*(Er-1));\n", +"a = (P/(N));\n", +"a = (P/(2.7*10^25));//Electronic polarizability.\n", +"printf('\nElectronic polarizability of He gas is %3.3e F m^2',a);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3: Polarizatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example NO.11.3\n", +"//Page No.336\n", +"clc;clear;\n", +"E0 = (8.854*10^-12);\n", +"Er = (6);//Dielectric constant.\n", +"E = 100;//Electric field intensity -[V/m].\n", +"P = (E0*(Er-1)*E);//Polarization.\n", +"printf('\nPolarization produced in a dielectric medium is %3.3e C/m^2',P);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.4: Electronic_polarizability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example NO.11.4\n", +"//Page No.336\n", +"clc;clear;\n", +"E0 = (8.854*10^-12);\n", +"R = (0.158*10^-9);//Radius of neon -[m].\n", +"a = (4*%pi*E0*R^3);//Electronic polarizability.\n", +"printf('\nElectronic polarizability of neon is %3.3e F m^2',a);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.5: Area_of_metal_sheet_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.11.5\n", +"//Page No.336\n", +"clc;clear;\n", +"E0 = (8.854*10^-12);// [C^2/N.m^2].\n", +"Er = 6;//Dielectric constant.\n", +"C = (0.02*10^-6);//Capacitance -[F].\n", +"d = (0.002*10^-2);//Thickness of mica -[m].\n", +"A = ((C*d)/(E0*Er));//Area of the metal sheet.\n", +"printf('\nArea of the metal sheet required is %3.3e m^2',A);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: Relative_permittivity_of_the_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.11.6\n", +"//Page No.337\n", +"clc;clear;\n", +"E0 = (8.854*10^-12);\n", +"P = (4.3*10^-8);//polarization -[C/m^2].\n", +"E = 1000;//Electric field -[V/m].\n", +"Er = ((P/(E0*E))+1);//Relative permittivity of the crystal.\n", +"printf('\nRelative permittivity of the crystal is %.3f',Er);\n", +"\n", +"//Last statement of this numerical is wrong in the textbook.Here we have to find relative permittivity of the crystal and not the dielectric constant.//" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.7: Polarizability_of_the_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.11.7\n", +"//Page No.337\n", +"clc;clear;\n", +"E0 = (8.854*10^-12);\n", +"x = (4.94);//Relative suceptibility.\n", +"N = (10^28);//Number of dipoles per unit volume [per m^3].\n", +"a = ((E0*x)/N);//Polarizability of the material\n", +"printf('\nPolarizability of the material is %3.3e F m^-2',a);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb new file mode 100644 index 0000000..a2cfa70 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/12-Superconducting_materials.ipynb @@ -0,0 +1,211 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Superconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Critical_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.1\n", +"//Page No.356\n", +"//To find critical field.\n", +"clc;clear;\n", +"Tc = 3.7;//Critical temperature of tin -[K].\n", +"Ho = 0.0306;//Magnetic field -[T].\n", +"T = 2;//Temperature -[K].\n", +"Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field\n", +"printf('\nCritical field at 2K is %.4f T',Hc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Critical_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example NO.12.2\n", +"//Page No.356\n", +"//To find critical field.\n", +"clc;clear;\n", +"Tc = 7.26;//Critical temperature of lead -[K].\n", +"Ho = 6.4*10^3;//Magnetic field -[A/m^3].\n", +"T = 5;//Temperature -[K].\n", +"Hc = Ho*(1-((T^(2))/(Tc^(2))));//Critical magnetic field\n", +"printf('\nCritical field at 5K is %.2f T',Hc);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: value_of_Tc.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.3\n", +"//Page No.357\n", +"//To find the value of Tc.\n", +"clc;clear;\n", +"M1 = (199.5^(1/2));//Atomic mass. \n", +"M2 = (203.4^(1/2));//Atomic mass.\n", +"Tc1 = (4.185);//Critical temperature of Hg -[K].\n", +"Tc = (Tc1*M1/M2);//Critical temperature\n", +"printf('\nCritical temperature of Hg with atomic mass,203.4 is %.5f K',Tc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: critical_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.4\n", +"//Page No.357\n", +"//To find critical current density.\n", +"clc;clear;\n", +"D=1*10^(-3);//Diameter of the wire -[m].\n", +"Tc = 7.18;//Critical temperature -[K].\n", +"Ho = 6.5*10^4;//Critical field -[A/m].\n", +"T = 4.2;//Temperature -[K].\n", +"R = 0.5*10^-3;//Radius.\n", +"I = 134.33;//Current.\n", +"Hc = Ho*(1-((T^(2))/(Tc^(2))));\n", +"printf('\nCritical magnetic field is %3.3e A/m',Hc);\n", +"ic = (2*%pi*R*Hc);\n", +"printf('\nCritical current is %.2f A',ic);\n", +"J = (I/(%pi*R^2));\n", +"printf('\nCritical current density is %3.3e A/m^2',J);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: frequency_of_radiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.5\n", +"//Page No.358\n", +"//To find frequency.\n", +"clc;clear;\n", +"e = (1.6*10^-19);//value of electron.\n", +"V = (6*10^-6);//Voltage applied across the junction -[V]\n", +"h = (6.626*10^-34);//Planck's constant\n", +"v = ((2*e*V)/h);//Frequency of ac signal\n", +"printf('\nFrequency of ac signal is %3.3e Hz',v);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example NO.12.6\n", +"//Page No.358\n", +"//To find band gap of superconducting lead \n", +"clc;clear;\n", +"KB = (1.38*10^-23);//Boltzman's constant.\n", +"Tc = (7.19);//Critical temperature of lead -[K].\n", +"Eg = (3.5*KB*Tc);//Energy gap of semiconductor.\n", +"printf('\nBand gap of superconducting lead is %3.3e J',Eg);\n", +"Eg = (Eg/(1.6*10^-19*10^(-3)));\n", +"printf('\nBand gap of superconducting lead is %.2f meV',Eg);\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/2-Laser.ipynb b/Engineering_Physics_by_A_Marikani/2-Laser.ipynb new file mode 100644 index 0000000..b663583 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/2-Laser.ipynb @@ -0,0 +1,332 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Laser" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: angular_spread_and_divergence.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.10.\n", +"// Page No.62.\n", +"clc;clear;\n", +"w = 632.8*10^(-9);//wavelength -[m]\n", +"D = 5;//Distance -[m].\n", +"d = 1*10^(-3);//Diameter -[m].\n", +"deltheta = (w/d);//Angular Spread.\n", +"printf('\nThe angular spread is %3.3e radian',deltheta);\n", +"r = (D*(deltheta));\n", +"r = (5*(deltheta));//Radius of the spread\n", +"printf('\nThe radius of the spread is %3.3e m',r); //Radius of the spread.\n", +"As = ((%pi)*r^(2));//Area of the spread\n", +"printf('\nThe area of the spread is %3.3e m^2',As);//Area of the spread.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: number_of_photons_emitted_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.1.\n", +"// Page No.59.\n", +"clc;clear;\n", +"p = 5*10^(-3);// output power -[W].\n", +"w = 632.8*10^(-9);//wavelength -[m].\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = (3*10^(8));//Velocity of light.\n", +"hv = ((h*c)/(w));// Energy of one photon\n", +"printf('\nThe energy of one photon in joules is %3.3e J', hv);\n", +"hv = hv/(1.6*10^(-19));\n", +"printf('\nThe energy of one photon in eV is %.2f eV',hv);\n", +"Np = (p/(3.14*10^(-19)));//Number of photons emitted\n", +"printf('\nThe number of photons emitted per second by He-Ne laser are %3.3e photons per second',Np);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Energy_of_the_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.2.\n", +"// Page No.60.\n", +"clc;clear;\n", +"w = 632.8*10^(-9);//wavelength -[m].\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = (3*10^(8));//Velocity of light.\n", +"E = ((h*c)/(w));// Energy of one photon\n", +"printf('\nThe energy of emitted photon in joules is %3.3e J',E);\n", +"E = E/(1.6*10^(-19));\n", +"printf('\nThe energy of emitted photon in eV is %.2f eV',E);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Energy_of_E3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.3.\n", +"// Page No.60.\n", +"clc;clear;\n", +"w = 1.15*10^(-6);//wavelength -[m].\n", +"h = 6.626*10^(-34);\n", +"c = (3*10^(8));\n", +"hv = ((h*c)/(w));// Energy of one photon\n", +"printf('\n The energy of emitted photon is %3.3e J',hv);\n", +"E = ((hv)/(1.6*10^(-19)));\n", +"printf('\n The energy of emitted photon is %.3f eV',E);\n", +"E1 = 0,'eV';//Value of first energy level.\n", +"E2 = 1.4,'eV';//Value of second energy level.\n", +"E3 = (E2+E);//Energy value of 'E3'.\n", +"E3 = ((1.4)+E);\n", +"printf('\n The value of E3 energy level is %.3f eV',E3);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: wavelength_of_the_photon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.4;\n", +"//Page No.60;\n", +"clc;clear;\n", +"E1 = 3.2;//Value of higher energy level E1 -[eV].\n", +"E2 = 1.6;//Value of lower energy level E2 -[eV].\n", +"E = (E1-E2);//Energy difference.\n", +"printf('\nThe energy difference is %.1f eV', E);\n", +"h = 6.626*10^(-34);//Planck's constant\n", +"c = 3*10^(8);//Velocity of light.\n", +"E = 1.6*1.6*10^(-19);\n", +"w = ((h*c)/(E));\n", +"printf('\nThe wavelength of the photon is %3.3e m', w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: wavelength_of_the_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.5.\n", +"// Page No.60.\n", +"clc;clear;\n", +"E = 1.42;//Bandgap of Ga-As -[eV]\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = 3*10^(8);//Velocity of light.\n", +"w = ((h*c)/(E*1.6*10^(-19)));\n", +"printf('\nThe wavelength of the laser emitted by GaAs is %3.3e m',w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Relative_population_between.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.6.\n", +"// Page No.61.\n", +"clc;clear;\n", +"T = 300;//Temperature -[K]\n", +"K = 1.38*10^(-23);//Boltzman's constant.\n", +"w = 500*10^(-9);//wavelength -[m].\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"c = (3*10^(8));//velocity of light.\n", +"//By Maxwell's and Boltzman's law.\n", +"N = exp((h*c)/(w*K*T)); //Relative population.\n", +"printf('\nThe relative population between energy levels N1 and N2 is %3.3e',N);//(Relative population between N1 & N2)." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Ratio_between_stimulated_and_spontaneous_emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.7.\n", +"// Page No.61.\n", +"clc;clear;\n", +"T = 300;//Temperature -[K]\n", +"K = 1.38*10^(-23);//Boltzman's constant\n", +"w = 600*10^(-9);//wavelength-[m]\n", +"h = 6.626*10^(-34);\n", +"v = (3*10^(8));//velocity.\n", +"S = (1/((exp((h*v)/(w*K*T)))-1));//Se=stimulated emission & SPe= spontaneous emission\n", +"printf('\nThe ratio between stimulated emission and spontaneous emission is %3.3e.\nTherefore, the stimulated emission is not possible in this condition.',S);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Efficiency_of_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.8.\n", +"// Page No.62.\n", +"clc;clear;\n", +"Op = 5*10^(-3);//Output power -[W].\n", +"I = 10*10^(-3);//Current -[A].\n", +"V = 3*10^(3);//Voltage -[V].\n", +"Ip = (10*10^(-3)*3*10^(3));//Input power.\n", +"Eff = (((Op)/(Ip))*(100));//Efficiency of the laser.\n", +"printf('\nThe efficiency of the laser is %.6f percent',Eff);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Intensity_of_the_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.2.9.\n", +"// Page No.62.\n", +"clc;clear;\n", +"P = 1*10^(-3);//Output power -[W].\n", +"D = 1*10^(-6);//Diameter -[m].\n", +"r = 0.5*10^(-6);//Radius -[m]\n", +"I = (P/(%pi*r^(2)));// Intensity of laser.\n", +"printf('\nThe intensity of the laser is %3.3e W/m^2',I);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/3-Fibre_optics.ipynb b/Engineering_Physics_by_A_Marikani/3-Fibre_optics.ipynb new file mode 100644 index 0000000..f8f7a5c --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/3-Fibre_optics.ipynb @@ -0,0 +1,207 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Fibre optics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Numerical_aperture_of_the_fibre.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No. 3.1.\n", +"//Page No.98.\n", +"//To find numerical aperture.\n", +"clc;clear;\n", +"n1 = 1.6;//Refractive index of core.\n", +"n2 = 1.5;// Refractive index of cladding.\n", +"NA = sqroot((n1^(2))-(n2^(2)));//Numerical Aperture.\n", +"printf('\nThe numerical aperture of the fibre is %.4f',NA);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Numerical_aperture_and_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.3.2.\n", +"// Page No.98.\n", +"//To calculate numerical aperture and acceptance angle.\n", +"clc;clear;\n", +"n1 = 1.54;//Refractive index of core.\n", +"n2 = 1.5;// Refractive index of cladding.\n", +"no = 1;\n", +"NA = sqroot((n1^(2))-(n2^(2)));//Numerical Aperture.\n", +"printf('\nThe numerical aperture of the fibre is %.4f',NA);\n", +"t = asind(NA/no);// Acceptance angle.\n", +"printf('\nThe acceptance angle of the fibre is %.4f degree',t);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: critical_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.3.3.\n", +"//Page No. 99.\n", +"//To find critical angle.\n", +"clc;clear;\n", +"n1 = 1.6;//Refractive index of core.\n", +"n2 = 1.49;// Refractive index of cladding.\n", +"Qc = asind((n2)/(n1));//Critical angle.\n", +"printf('\nThe critical angle of the fibre is %.2f degree',Qc);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Refractive_index_and_acceptance_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"\n", +"//Example No.3.4.\n", +"//Page No. 99.\n", +"//To find refractive index of core and acceptance angle.\n", +"clc;clear;\n", +"NA = 0.15;//Numerical aperture.\n", +"n2 = 1.55;//Refractive index of cladding.\n", +"n0 = 1.33;//Refractive index of water.\n", +"n1 = sqroot((NA^(2))+(n2^(2)));// Refractive index of core.\n", +"printf('\nThe refractive index of the core is %.4f',n1);\n", +"t = asind(NA/n0);// Acceptance angle.\n", +"mprintf('\nThe acceptance angle of the fibre is %.3f degree',t);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Refractive_index_of_the_core.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.3.5.\n", +"//Page No. 100.\n", +"//To find refractive index of cladding.\n", +"clc;clear;\n", +"d = 100;//Core diameter.\n", +"NA = 0.26;//Numerical aperture.\n", +"n1 = 1.5;//Refractive index of core.\n", +"n2 = sqroot((n1^(2))-(NA^(2)));// Refractive index of cladding.\n", +"printf('\nThe refractive index of the cladding is %.3f',n2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Refractive_indices_of_core_and_cladding.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.3.6.\n", +"// Page No.100.\n", +"//To find refractive idex.\n", +"clc;clear;\n", +"NA = 0.26;//Numerical aperture.\n", +"del = 0.015;//Refractive index difference of the fibre.\n", +"n1 = sqroot((((NA)^(2))/(2*del)));//Refractive index of the core\n", +"printf('\nThe refractive index of the core is %.2f',n1);\n", +"n2 = sqroot((n1^(2))-(NA^(2)));// Refractive index of cladding.\n", +"printf('\nThe refractive index of cladding is %.3f',n2);\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb b/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb new file mode 100644 index 0000000..a73738c --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb @@ -0,0 +1,535 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Quantum physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Probability_of_finding_the_practicle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.10\n", +"// Page No.138.\n", +"//To find the probability.\n", +"clc;clear;\n", +"L = 25*10^(-10);//Width of the potential well -[m].\n", +"delx = 0.05*10^(-10);//Interval -[m].\n", +"x = int(1);\n", +"P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .\n", +"printf('\nThe probability of finding the particle is %.3f',P);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Lowest_energy_of_the_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.4.11.\n", +"//Page No.138.\n", +"clc;clear;\n", +"n = 1;//For the lowest energy value n=1.\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 1*10^(-10);//Width of the potential well -[m].\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"E = ((n^(2)*h^(2))/(8*m*L^(2)));\n", +"E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.\n", +"printf('\nThe lowest energy of the electron in joules is %3.3e J',E);;// Lowest energy of the electron in joules.\n", +"E = (E/(1.6*10^(-19)));\n", +"printf('\nThe lowest energy of the electron in eV is %.2f eV',E);// Lowest energy of the electron in eV.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: Lowest_energy_of_the_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.12.\n", +"//Page No.139.\n", +"//To find lowest energy of the electron.\n", +"clc;clear;\n", +"n = 1;//For the lowest energy value n=1.\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 1*10^(-10);//Width of the potential well -[m].\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"E = (2*(n^(2)*h^(2))/(8*m*L^(2)));\n", +"//'E' is the Lowest energy of the system.\n", +"printf('\nThe lowest energy of the system in joules is %3.3e J',E);\n", +"E = (E/(1.6*10^(-19)));\n", +"printf('\nThe lowest energy of the system in eV is %.2f eV',E);// Lowest energy of the electron in eV." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: Lowest_energy_of_the_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.13.\n", +"//Page No.139.\n", +"clc;clear;\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 1*10^(-10);//Width of the potential well -[m].\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"E = ((6*h^(2))/(8*m*L^(2)));\n", +"printf('\n 1) The lowest energy of the system in joules is %3.3e eV',E);\n", +"E = (E/(1.6*10^(-19)));\n", +"printf('\n 2) The lowest energy of the system is %.2f eV',E);\n", +"disp('3) Quantum numbers are,');\n", +"n = 1;\n", +"l = 0;\n", +"ml = 0;\n", +"ms = 0.5;\n", +"ms1 = -0.5;\n", +"printf('\ni)n = %.0f',n);\n", +"printf(' , l = %.0f',l);\n", +"printf(' , ml = %.0f',ml);\n", +"printf(' , ms = %.1f',ms);\n", +"printf('\nii)n = %.0f',n);\n", +"printf(' , l = %.0f',l);\n", +"printf(' , ml = %.0f',ml);\n", +"printf(' , ms1 = %.1f',ms1);\n", +"n=2;\n", +"printf('\niii)n = %.0f',n);\n", +"printf(' , l = %.0f',l);\n", +"printf(' , ml = %.0f',ml);\n", +"printf(' , ms = %.1f',ms);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: mass_of_the_alpha_practical.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.14.\n", +"//Page No.140.\n", +"//The mass of the particle.\n", +"clc;clear;\n", +"E = 0.025*1.6*10^(-19);//Lowest energy.\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"L = 100*10^(-10);//Width of the well -[m].\n", +"m = ((h^(2))/(8*E*L^(2)));\n", +"printf('\nThe mass of the particle is %3.3e kg',m);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: Energy_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.15.\n", +"//Page No.141.\n", +"//To find energy density.\n", +"clc;clear;\n", +"T = 6000;//Temperature -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"w1 = 450*10^(-9);//wavelength -[m].\n", +"w2 = 460*10^(-9);//wavelength -[m].\n", +"c = 3*10^(8);//Velcity of light.\n", +"v1=(c/w1);\n", +"printf('\nThe velocity for wavelength 450 nm is %3.3e Hz',v1);\n", +"v2 = (c/w2);\n", +"printf('\nThe velocity for wavelength 460 nm is %3.3e Hz',v2);\n", +"v = ((v1+v2)/2);\n", +"printf('\nThe average value of v is %3.3e Hz',v);\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"d = (8*%pi*h*v^(3))/(c^(3));\n", +"dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.\n", +"printf('\nThe energy density of the black body is %3.3e J/m^3',dv);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: change_in_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 133.\n", +"//Page No 4.1.\n", +"//To find change in wavelength.\n", +"clc;clear;\n", +"h = 6.63*10^(-34);//Planck's constant -[J-s].\n", +"m0 = 9.1*10^(-31);//mass of electron -[kg].\n", +"c = 3*10^(8);//Velocity of ligth -[m/s].\n", +"cosq = cosd(135);//Angle of scattering -[degree].\n", +"delW = (h/(m0*c))*(1-cosq);//change in wavelength.\n", +"printf('\nThe change in wavelength is %3.3e m',delW);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: comptom_shift_and_w_and_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.2.\n", +"//Page No.134.\n", +"clc;clear;\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"m0 = 9.1*10^(-31);//mass of electron.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"cosq = cosd(90);//Scattering angle -[degree].\n", +"delW = (h/(m0*c))*(1-cosq);//Compton's shift\n", +"delW = delW*10^(10);\n", +"printf('\na)The Comptons shift is %.5f A',delW);\n", +"w = 2;//Wavelength -[A]\n", +"W = (delW+w);// Wavelength of the scattered photon.\n", +"printf('\nb)The wavelength of the scattered photon is % 5f A',W);\n", +"E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.\n", +"printf('\nc)The energy of the recoiling electron in joules is %3.3e J',E);\n", +"E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.\n", +"printf('\nc)The energy of the recoiling electron in eV is %3.3e eV',E);\n", +"sinq = sind(90);\n", +"Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);\n", +"theta = atand(Q);\n", +"printf('\ne)The angle at which the recoiling electron appears is %.0f degree',theta); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: comptom_shift_and_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.3.\n", +"//Page NO.135.\n", +"clc;clear;\n", +"h = 6.626*10^(-34);//Planck's constant.\n", +"mo = 9.1*10^(-31);//mass of electron.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"w = (1*1.6*10^(-19)*10^(6));//wavelength.\n", +"cosq = cosd(60);\n", +"delw = ((h/(mo*c))*(1-cosq));//Compton shift\n", +"delw = delw*10^(10);\n", +"printf('\n1)The Comptons shift = %.3f A',delw);\n", +"E = ((h*c)/w);//energy of the incident photon.\n", +"W = (delw+E);//Wavelength of the scattered photon.\n", +"W = (0.012)+(1.242);\n", +"printf('\n3)The wavelength of the scattered photon = %.3f A',W);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Number_of_photons_emitted.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 135.\n", +"//Page No 4.4.\n", +"//To find number of photons.\n", +"clc;clear;\n", +"h = 6.63*10^(-34);//Planck's constant.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"w = 5893*10^(-10);//wavelength.\n", +"Op = 60;//output power -[W].\n", +"E =((h*c)/w);\n", +"printf('\nEnergy of photon in joules is %3.3e J',E);//Energy of photon in joules.\n", +"hv = (E/(1.6*10^(-19)));//Energy of photon in eV.\n", +"printf('\nEnergy of photon in eV is %.3f eV',hv);\n", +"Ps = ((Op)/(E));\n", +"Ps = ((60)/(E));// Number of photons emitted per second.\n", +"printf('\nThe number of photons emitted per second is %3.3e photons per second',Ps);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Mass_and_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 136.\n", +"//Page No 4.5.\n", +"//To find mass,momentum & energy of photon.\n", +"clc;clear;\n", +"h = 6.63*10^(-34);//Planck's constant.\n", +"c = 3*10^(8);//Velocity of ligth.\n", +"w = 10*10^(-10);//wavelength.\n", +"E = ((h*c)/w);//Energy.\n", +"printf('\n1)The energy of photon in joules is %3.3e J',E);\n", +"E = E/(1.6*10^(-19)*10^(3));\n", +"printf('\n2)The energy of photon in eV is %.3f Kev',E);\n", +"p = (h/w);//Momentum.\n", +"p = ((6.63*10^(-34))/(10*10^(-10)));\n", +"printf('\n3)The momentum of the photon is %3.3e kg.m/s',p)\n", +"m = (h/(w*c));\n", +"printf('\n4)The mass of the photon is %3.3e kg',m);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: DeBroglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 136.\n", +"//Page No 4.6.\n", +"//To find de-Broglie wavelength.\n", +"clc;clear;\n", +"V=1.25*10^(3);//Potential difference applied -[V].\n", +"w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.\n", +"printf('\nThe de-Broglie wavelength of electron is %.3f A',w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.136 .\n", +"//Page No. 4.7.\n", +"//To find de-Broglie wavelength.\n", +"clc;clear;\n", +"E = 45*1.6*10^(-19);//Energy of the electron.\n", +"h = 6.63*10^(-34);//Planck's constant\n", +"m = 9.1*10^(-31);//Mass of the electron.\n", +"w = h/(sqrt(2*m*E));//de-Broglie wavelength.\n", +"printf('\nThe de-Broglie wavelength of the photon is %3.3e m',w);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: De_Broglie_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.4.8.\n", +"//Page No.137.\n", +"//To find de-Broglie wavelength.\n", +"clc;clear;\n", +"h=6.626*10^(-34);//Planck's constant.\n", +"v=10^(7);//Velocity of the electron -[m/s].\n", +"m=9.1*10^(-31);//Mass of the electron.\n", +"w=(h/(m*v));//de-Broglie wavelength\n", +"printf('\nThe de-Broglie wavelength is %3.3e m',w);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Wavelength_of_alpha_practical.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No 137.\n", +"//Page No 4.9.\n", +"//The de-Broglie wavelength of alpha particle.\n", +"clc;clear;\n", +"V = 1000;//Potential difference applied -[V].\n", +"h = (6.626*10^(-34));//Planck's constant -[J-s].\n", +"m = (1.67*10^(-27));//Mass of a proton -[kg].\n", +"e = (1.6*10^(-19));//charge of electron -[J].\n", +"w = h/sqrt(2*m*e*V);//de-Broglie wavelength\n", +"printf('\nThe de-Broglie wavelength of alpha particle = %3.3e m',w);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/6-Crystallography.ipynb b/Engineering_Physics_by_A_Marikani/6-Crystallography.ipynb new file mode 100644 index 0000000..5a729e8 --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/6-Crystallography.ipynb @@ -0,0 +1,609 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Crystallography" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: Ratio_of_cubic_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Example No.6.10.\n", +"// Page No.189.\n", +"clc;clear;\n", +"h=1;k=0;l=0;\n", +"d100=1/sqrt(h^2+k^2+l^2);\n", +"disp('Interplanar spacing for d100 plane = a');\n", +"h=1;k=1;l=0;\n", +"d110=1/sqrt(h^2+k^2+l^2);\n", +"disp('Interplanar spacing for d110 plane = a/1.414');\n", +"h=1;k=1;l=1;\n", +"d111=1/sqrt(h^2+k^2+l^2);\n", +"disp('Interplanar spacing for d111 plane = a/1.732');\n", +"x = sqrt(6);\n", +"y = sqrt(3);\n", +"z = sqrt(2);\n", +"printf('\nx = %.3f',x);\n", +"printf('\ny = %.3f',y);\n", +"printf('\nz = %.3f',z);\n", +"printf('\nd100:d110:d111 = %.3f:%.3f:%.3f',x,y,z);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: Ratio_of_intercepts.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.6.11.\n", +"// Page No.190.\n", +"clc;clear;\n", +"l1 = 6*(1/2);\n", +"l2 = 6*(1/3);\n", +"l3 = (6*1/6);\n", +"disp('For the plane (231) the intercepts are (a/2),(b/3),(c/1)');\n", +"disp('Ratio of the intercepts made by (231) plane in simple cubic crystal is as follows :');\n", +"disp('l1:l2:l3 = 3:2:6');\n", +"\n", +"//As there are no numerical steps and hence the display statement has been typed directly." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: Length_of_the_intercepts.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"// Example No.6.12.\n", +"// Page No.190.\n", +"//To find the lengths of the intercepts.\n", +"clc;clear;\n", +"a = 0.8;\n", +"b = 1.2;\n", +"c = 1.5;\n", +"disp('Ratio of the intercepts are as follows : ');\n", +"disp('I1:I2:I3 = a:b/2:c/3');\n", +"I1 = 0.8;\n", +"disp('0.8:I2:I3 = a:b/2:c/3');\n", +"disp('By substituting values');\n", +"I2=(1.2/2);\n", +"printf('\nI2 = %.1f A',I2);\n", +"I3=(1.5/3);\n", +"printf('\nI3 = %.1f A',I3);\n", +"\n", +"\n", +"\n", +"//As there are no numerical steps and hence the display statement has been typed directly." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: Nearest_neighbour_distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.6.13.\n", +"// Page No.191.\n", +"//To find the nearest neighbour distance.\n", +"clc;clear;\n", +"disp('i)Simple cubic unit cell');\n", +"disp('The nearest neighbour distance is a');//nearest neighbour distance.\n", +"disp('ii)Body-centered cubic unit cell');\n", +"disp('2r = (0.866)a');\n", +"disp('iii)Face-centered cubic unit cell');\n", +"disp('2r = (0.7071)a');\n", +"\n", +"//As there are no numerical steps and hence the display statement has been typed directly." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: Interplanar_distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.14.\n", +"//Page No.191.\n", +"//To find interplanar distance.\n", +"clc;clear;\n", +"// (h,k,l) are the miller indices of the given lattice plane (212).\n", +"h = 2;\n", +"k = 1;\n", +"l = 2;\n", +"a = 2.04;//Lattice constant -[A].\n", +"d = (a/sqrt(h^2+k^2+l^2));\n", +"printf('\nThe interplanar distance is %.2f A',d);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: Number_of_atoms_per_unit_cell.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.6.15.\n", +"//Page No.191.\n", +"clc;clear;\n", +"r = 1.278*10^(-10),'m';\n", +"M = 63.54;//Atomic weight of copper.\n", +"Na = 6.022*10^(26);\n", +"d = 8980;//density\n", +"a = r*sqrt(8);//Interatomic distance.\n", +"printf('\n The interatomic distance is %3.3e m',a);\n", +"n = ((d*a^(3)*Na)/(M));//The number of atoms per unit cell.\n", +"printf('\n Number of atoms per Cu unit cell is %.f',n);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: Miller_indices_of_the_faces.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.6.16.\n", +"// Page No.192.\n", +"//To find the miller indices.\n", +"clc;clear;\n", +"disp('i)Ratio of the intercepts are 0.214 : 1 : 0.188');\n", +"disp('Miller indices for the given plane is (212)');\n", +"disp('ii)Ratio of the intercepts are 0.858 : 1 : 0.754');\n", +"disp('Miller indices for the given plane is (121)');\n", +"disp('iii)Ratio of the intercepts are 0.429 : infinity : 0.126');\n", +"disp('Miller indices for the given plane is (103)');\n", +"\n", +"//There are no numerical computations involved in this example and hence the display statement has been typed directly." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.17: Number_of_atoms_present.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.6.13.\n", +"// Page No.191.\n", +"//To find the number neighbour distance.\n", +"clc;clear;\n", +"disp('i)For (100) plane');\n", +"disp('Number of atoms per m^2 = 1/4r^2');\n", +"disp('i)For (110) plane');\n", +"c1 = 1/(8*sqrt(2));\n", +"printf('\nc1= %.4f',c1);\n", +"disp('Number of atoms per m^2 = (0.084/r^2)');\n", +"disp('i)For (111) plane');\n", +"c2 = 1/(2*sqrt(3));\n", +"printf('\nc2= %.4f',c2);\n", +"disp('Number of atoms per m^2 = (0.2887/r^2)');\n", +"\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.18: Ionic_packing_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.18\n", +"//Page No.194.\n", +"clc;clear;\n", +"r = 0.97*10^(-10);\n", +"R = 1.81*10^(-10);\n", +"Pd = ((%pi)/(3*sqrt(2)));\n", +"printf('\nThe packing density is %.2f',Pd);\n", +"//Ionic factor of NaCl//\n", +"IPF = (4*(4/3)*%pi*(r^(3)+R^(3)))/((2*(r+R))^(3));//Ionic packing factor of NaCl crystal.\n", +"printf('\nThe ionic packing factor of NaCl crystal is %.3f',IPF);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Density_of_diamond.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.1\n", +"//Page No.185.\n", +"clc;clear;\n", +"Mc = 12;// Mc is the mass of one carbon atom.\n", +"r = 0.071*10^(-9);//radius -[m].\n", +"D = ((8*Mc)/(6.022*10^(26)*((8*r)/(sqrt(3)))^(3)));//density of the diamond.\n", +"printf('\nThe density of diamond is %.1f kg/m^3',D);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: percentage_volume.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.2.\n", +"//Page No.185.\n", +"clc;clear;\n", +"a1 = 0.332*10^(-9);//Lattice parameter for BCC structure -[m].\n", +"a2 = 0.296*10^(-9);//Lattice parameter for HCP structure -[m].\n", +"c = 0.468*10^(-9);// -[m]\n", +"disp('BCCv is the volume of BCC unit cell');\n", +"BCCv = a1^(3);//Volume of BCC unit cell.\n", +"printf('\nThe volume of BCC unit cell is %3.3e m^-3',BCCv);\n", +"disp('HCPv is the volume of HCP unit cell');\n", +"HCPv = (6*(sqrt(3)/4)*a2^(2)*c);//Volume of HCP unit cell.\n", +"printf('\nThe volume of HCP unit cell is %3.3e m^3',HCPv);\n", +"Cv = (HCPv-BCCv);\n", +"printf('\nThe change in volume is %3.3e',Cv);\n", +"Vp = (Cv/BCCv)*100;\n", +"printf('\nThe volume change in percentage is %.1f percent',Vp);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Atomic_structure_and_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.3\n", +"//Page No.186.\n", +"clc;clear;\n", +"r = 1.278*10^(-10);//Atomic radius of copper -[m].\n", +"A = 63.54;//Atomic weight of copper.\n", +"n = 4;\n", +"Na = 6.022*10^(26);\n", +"a = (2*sqrt(2)*r);\n", +"printf('\nThe lattice constant for FCC is %3.3e',a); \n", +"d = ((n*A)/(Na*a^(3)));//for FCCn=4.\n", +"d = ((n*A)/(Na*(3.61*10^(-10))^(3)));\n", +"printf('\nThe density of copper is %.0f kg/m^3',d);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Interatomic_distance_of_NACL.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.4.\n", +"//Page No.186.\n", +"clc;clear;\n", +"Na = 23;//Atomic weight of Na\n", +"Cl = 35.5;//Atomic weight of Cl\n", +"d = 2180;//Density of Nacl -[kg/m^3].\n", +"nA = 6.022*10^(26);\n", +"NaCl = (Na+Cl)//Molecular weight of NaCl.\n", +"printf('\n1) Molecular weigth of NaCl is %.1f',NaCl);\n", +"n = 4;\n", +"A = 58.5;\n", +"a = (((n*A)/(nA*d))^(1/3));\n", +"printf('\n2) The interatomic distance of NaCl crystal is %3.3e m',a); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Relation_between_interatomic_and_interplanar.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.5.\n", +"//Page No.187.\n", +"clc;clear;\n", +"a = 0.42;//Lattice constant -[nm].\n", +"//(h1,k1,l1) are the miller indices of the plane (101).\n", +"h1 = 1;\n", +"k1 = 0;\n", +"l1 = 1;\n", +"d1 = (a/sqrt(h1^(2)+k1^(2)+l1^(2)));//interplanar and interatomic distance of plane (101)\n", +"printf('\nFor (101) plane, the interplanar and interatomic distance is %.4f nm',d1);\n", +"// (h2,k2,l2) are the miller indices of the plane (221).\n", +"h2 = 2;\n", +"k2 = 2;\n", +"l2 = 1;\n", +"d2 = (a/sqrt(h2^(2)+k2^(2)+l2^(2)));//interplanar and interatomic distance of plane (221)\n", +"printf('\nFor (221) plane, the interplanar and interatomic distance is %.2f nm',d2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Axial_intercepts.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.6.6.\n", +"// Page No.187.\n", +"clc;clear;\n", +"disp('For the plane (102),the intercepts are (a/1) = a,(b/0) = infinity ,c/2');\n", +"disp('For the plane (231),the intercepts are a/2 , b/3 and (c/1) = c');\n", +"disp('For the plane (312),the intercepts are a/3 ,(b/-1) = -b ,c/2');\n", +"\n", +"//As there are no numerical steps available and hence the display statement has been typed directly.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Angle_between_the_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.7\n", +"//Page No.188.\n", +"//Find the angle between two planes (111) and (212) in a cubic lattice.\n", +"clc;clear;\n", +"// (u1,v1,w1) are the miller indices of the plane (111).\n", +"u1 = 1;\n", +"v1 = 1;\n", +"w1 = 1;\n", +"// (u2,v2,w2) are the miller indices of the plane (212).\n", +"u2 = 2;\n", +"v2 = 1;\n", +"w2 = 2;\n", +"u = acosd(((u1*u2)+(v1*v2)+(w1*w2))/((sqrt((u1^2)+(v1^2)+(w1^2))*sqrt((u2^2)+(v2^2)+(w2^2)))));//u is the angle between two planes.\n", +"printf('\n The angle between the planes (111) and (212) is %.3f degree',u);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Crystallographic_planes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"// Example No.6.8.\n", +"// Page No.188.\n", +"clc;clear;\n", +"disp('The intercepts of the plane(100) are a ,infinity ,infinity.');\n", +"disp('The intercepts of the cubic plane(110) are a ,a ,infinity.');\n", +"disp('The intercepts of the plane(111) are a ,a ,a.');\n", +"disp('The intercepts of the plane(200) are a/2 ,infinity ,infinity.');\n", +"disp('The intercepts of the plane(120) are a ,a/2 ,infinity.');\n", +"disp('The intercepts of the plane(211) are a/2 ,a ,a.');\n", +"\n", +"//As there are no numerical steps and hence the display statement has been typed directly.\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: Lattice_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.6.9.\n", +"//Page No.189.\n", +"clc;clear;\n", +"d = 0.2338;//'d' is the interplanar distance -[nm].\n", +"// (h,k,l) are the miller indices of the given plane.\n", +"h = (-1);\n", +"k = 1;\n", +"l = 1;\n", +"a = (d*sqrt(h^2+k^2+l^2));//'a' is the lattice constant\n", +"printf('\nThe lattice constant is %.4f nm',a); " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/7-Crystal_imperfection.ipynb b/Engineering_Physics_by_A_Marikani/7-Crystal_imperfection.ipynb new file mode 100644 index 0000000..fdb6bbc --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/7-Crystal_imperfection.ipynb @@ -0,0 +1,140 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Crystal imperfection" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Number_of_vacancies_and_vacancy_fraction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.7.1\n", +"//Page No.207\n", +"//To find number of vacancies.\n", +"clc;clear;\n", +"Av = 6.022*10^(26);//Avogadro's constant.\n", +"d = 18630;//Density.\n", +"Aw = 196.9;//Atomic weight -[g/mol].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"T = 900;//Temperature.\n", +"Ev = 0.98*1.6*10^(-19);//Energy of formation.\n", +"N = ((Av*d)/Aw);//Concentration of atoms.\n", +"printf('\nConcentration of atoms = %3.3e m^-3',N);\n", +"n = N*exp(-(Ev)/(k*T));//'n' is number of vacancy.\n", +"printf('\nThe number of vacancies for gold at 900 degree celcius is %3.3e vacancies per m^3',n);\n", +"T1 = 1000;\n", +"Vf = exp((-Ev)/(k*T1));//p=(n/N) is the vacancy fraction.\n", +"printf('\nVacancy fraction = %3.3e',Vf);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Energy_for_vacancy_information.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.7.2\n", +"//Page No.208.\n", +"//To find energy for vacancy information.\n", +"clc;clear;\n", +"Av = 6.022*10^(26);//Avogadro's constant.\n", +"d = 9500;//Density.\n", +"Aw = 107.9;//Atomic weight -[g/mol].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"T = 1073;//Temperature -[K]\n", +"n = 3.6*10^(23);//Number of vacancies -[per m^3].\n", +"N = ((Av*d)/Aw);//Concentration of atoms.\n", +"printf('\nConcentration of atoms is %3.3e m^-3',N);\n", +"Ev = k*T*log(N/n);\n", +"printf('\nThe energy for vacancy formation in joules is %3.3e J',Ev);\n", +"Ev = Ev/1.6*10^(19);\n", +"printf('\nThe energy for vacancy formation in eV is %3.3e eV',Ev);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: number_of_schottky_defected.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"//Example No.7.3\n", +"//Page No.209.\n", +"//To find number of Schottky defected.\n", +"clc;clear;\n", +"Av = 6.022*10^(26);//Avogadro's constant.\n", +"d = 1955;//Density.\n", +"Aw = (39.1+35.45);//Atomic weight.\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"T = 773;//Temperature -[K]\n", +"Es = 2.6*1.6*10^(-19);//Energy formation.\n", +"N = ((Av*d)/Aw);//Concentration of atoms.\n", +"printf('\nConcentration of atoms is %3.3e m^-3',N);\n", +"n = N*exp(-(Es)/(2*k*T));\n", +"printf('\nThe number of Schottky defect for KCl at 500 degree celcius is %3.3e Schottky defect per m^-3',n);\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb new file mode 100644 index 0000000..52eabbb --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/8-Conducting_materials.ipynb @@ -0,0 +1,340 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Conducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: Lorentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.10.\n", +"//Page No.234.\n", +"clc;clear;\n", +"K = 387;//Thermal conductivity of copper -[W m^-1 K^-1].\n", +"d = 5.82*10^(7);//Electrical conductivity of copper -[ohm^-1 m^-1].\n", +"T = 300;//Temperature -[K].\n", +"L = (K/(d*T));\n", +"printf('\nThe Lorentz number is %3.3e W ohm K^-2',L);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: conductivity_and_Larentz_number.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.11.\n", +"//Page No.235.\n", +"clc;clear;\n", +"n = 8.49*10^(28);//Concentration of electrons in copper -[m^-3].\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"Tr = 2.44*10^(-14);//Relaxation time of electron -[s]\n", +"m = 9.1*10^(-31);//mass of electron.\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"T = 293;//Temperature -[K].\n", +"d = ((n*e^(2)*Tr)/(m));\n", +"printf('\n1)The electrical conductivity is %3.3e per ohm meter',d);\n", +"K = ((n*(%pi)^(2)*k^(2)*T*Tr)/(3*m));\n", +"printf('\n 2)The thermal conductivity is %.2f W m^-1.K^-1',K);\n", +"L = K/(d*T);\n", +"printf('\n3)The Lorentz number is %3.3e W ohm K^-2',L);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Resistivity_of_sodium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.1\n", +"//Page No.231.\n", +"clc;clear;\n", +"m = 9.1*10^(-31);//mass\n", +"n = 2.533*10^(28);//concentration of electrons -[per m^3]\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"Tr = 3.1*10^(-14);//Relaxation time -[s].\n", +"d = m/(n*e^(2)*Tr);//The resistivity of sodium at 0 degree celcius.\n", +"printf('\nThe resistivity of sodium at 0 degree celcius is %3.3e ohm m',d);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.2.\n", +"//Page No.231.\n", +"clc;clear;\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"slope = 3.75*10^(3);\n", +"Eg = ((2*k)*slope)/(1.6*10^(-19));//The band gap of the semiconductor.\n", +"printf('\nThe band gap of the semiconductor is %.3f eV',Eg);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Probability_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.3.\n", +"//Page No.231.\n", +"clc;clear;\n", +"T = 1262;//Temperature -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"E = 0.5*1.6*10^(-19);//Here E= E-Ef.\n", +"f = 1/(1+exp(E/(k*T)));//'f' is the probability of occupation of electron at 989 degree celcius.\n", +"printf('\nThe probability of occupation of electron at 989 degree celcius is %.2f',f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: Drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.4.\n", +"//Page No.232.\n", +"clc;clear;\n", +"ue = 0.0035*10^(3);// mobility of electron\n", +"E = 0.5;//Electric field strength\n", +"vd = ue*E;\n", +"printf('\nThe drift velocity of the electron is %.2f m/s',vd);\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.6.\n", +"//Page No.232.\n", +"clc;clear;\n", +"n = 18.1*10^(28);\n", +"h = 6.62*10^(-34);//Planck's constant.\n", +"m = 9.1*10^(-31);//mass\n", +"Efo = (h^(2)/(8*m))*(((3*n)/(%pi))^(2/3));//The fermi energy level at 0 k.\n", +"printf('\nThe Fermi energy of Al at 0 k in joules is %3.3e J',Efo);\n", +"Efo = (Efo/(1.6*10^(-19)));\n", +"printf('\nThe Fermi energy of Al at 0 k in eV is %3.3e eV',Efo);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: Fermi_energy_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.6.\n", +"//Page No.232.\n", +"clc;clear;\n", +"n = 18.1*10^(28);\n", +"h = 6.62*10^(-34);//Planck's constant.\n", +"m = 9.1*10^(-31);//mass of electron\n", +"Efo = (h^(2)/(8*m))*(((3*n)/(%pi))^(2/3));//The fermi energy level at 0 k.\n", +"printf('\nFermi energy of Al at 0 k in joules = %3.3e J',Efo);\n", +"Efo = (Efo/(1.6*10^(-19)));\n", +"printf('\nFermi energy of Al at 0 k in eV = %.2fe eV',Efo);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: concentration_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.7.\n", +"//Page No.233.\n", +"clc;clear;\n", +"h = 6.62*10^(-34);//Planck's constant -[J s].\n", +"m = 9.1*10^(-31);//mass -[kg].\n", +"Efo = 5.5*1.6*10^(-19);//Fermi energy.\n", +"n = ((2*m*Efo)^(3/2))*(8*(%pi))/(3*(h^(3)));\n", +"printf('\nThe concentration of free electrons per unit volume of silver is %3.3e m^-3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: probability_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Example No.8.8.\n", +"//Page No.233.\n", +"clc;clear;\n", +"T = 298;//Temperature -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"Eg = 1.07*1.6*10^(-19);//Here E= E-Eg.\n", +"f = 1/(1+exp(Eg/(2*k*T)));//probability of an electron to the conduction band at 25 degree celcius.\n", +"printf('\nThe probability of an electron thermlly excited to the conduction band at 25 degree celcius is %3.3e',f);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.9: fermi_energy_and_fermi_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.8.9.\n", +"//Page No.234.\n", +"clc;clear;\n", +"m = 9.1*10^(-31);//mass of electron.\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"vf = 0.86*10^(6);//Fermi velocity -[m s^-1].\n", +"Ef = 0.5*m*vf^(2);//Fermi energy \n", +"printf('\nThe Fermi energy of the metal in joules is %3.3e J',Ef);\n", +"Ef = Ef/(1.6*10^(-19));\n", +"printf('\nThe Fermi energy o the metal in eV is %.2f eV',Ef);\n", +"Tf = ((Ef)/k);//Fermi temperature.\n", +"Tf = ((3.365*10^(-19))/k);\n", +"printf('\nThe Fermi temperature of the metal is %3.3e K',Tf);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb b/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb new file mode 100644 index 0000000..e2df71d --- /dev/null +++ b/Engineering_Physics_by_A_Marikani/9-Semiconducting_materials.ipynb @@ -0,0 +1,375 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Semiconducting materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10: Intrinsic_carrier_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.10.\n", +"//Page No 272.\n", +"clc;clear;\n", +"d = 10^(-6);//Electrical conductivity -[ohm^-1 m^-1].\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"ue = 0.85;//Electron mobility -[m^2 V^-1 s^-1].\n", +"uh = 0.04;//hole mobility -[m^2 V^-1 s^-1].\n", +"Ni = (d/(e*(ue+uh)));//intrinsic carrier concentration\n", +"printf('\nThe intrinsic carrier concentration of GaAs is %3.3e m^-3',Ni);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11: Concentrations.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"\n", +"\n", +"//Example No.9.11.\n", +"//Page No 272.\n", +"clc;clear;\n", +"p = 0.1;//Resistivity of P-type and N-type -[ohm m].\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"Uh = 0.48;//Hole mobility -[m^2 V^-1 s^-1].\n", +"Ue = 1.35;//Electron mobility -[m^2 V^-1 s^-1].\n", +"ni = 1.5*10^(16);\n", +"d = (1/p);//Electrical conductivity\n", +"disp('For P-type material')\n", +"printf('\n1)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n", +"Na = (d/(e*Uh));//Acceptor concentration.\n", +"printf('\n2)The acceptor concentration is %3.3e m^-3',Na);\n", +"n1 = (((ni)^(2))/(Na));//Minority carriers concentration.\n", +"printf('\n3)The minority carriers concentration is %3.3e m^-3',n1);\n", +"disp('For N-type semiconductor')\n", +"d = (1/p);//Electrical conductivity.\n", +"printf('\n2)The electrical conductivity is %.1f ohm^-1 m^-1',d);\n", +"Nd = (d/(e*Ue));//Donor concentration.\n", +"printf('\n2)The donor concentration is %3.3e m^-3',Nd);\n", +"n2 = (((ni)^(2))/(Nd));//Minority carriers concentration.\n", +"printf('\n3)The minority carriers concentration is %3.3e m^-3',n2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Number_of_charge_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.1.\n", +"//Page No.266.\n", +"//To find number of charge carrier.\n", +"clc;clear;\n", +"d = 2.2;//Conductivity -[ohm^-1 m^-1].\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"u1 = 0.36;//Mobility of the electrons -[m^2 V^-1 s^-1].\n", +"u2 = 0.14;//Mobility of the holes -[m^2 V^-1 s^-1].\n", +"T = 300;//Temperature -[K].\n", +"n = (d/(e*(u1+u2)));//Number of charge carriers\n", +"printf('\nThe carrier concentration of an intrinsic semiconductor is %3.3e m^3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.2.\n", +"//Page No.266.\n", +"//To find conductivity of semiconductor.\n", +"clc;clear;\n", +"d20 = 250;//Conductivity at 20 degree celcius -[ohm^-1 m^-1].\n", +"d100 = 1100;//Conductivity at 100 degree celcius -[ohm^-1 m^-1].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"Eg = (2*k*((1/373)-(1/293))^(-1)*log((d20/d100)*(373/293)^(3/2)));//Band gap in joules.\n", +"printf('\nBand gap of semiconductor in joules is %3.3e J',Eg);\n", +"Eg = Eg/(1.6*10^(-19));//band gap in eV.\n", +"printf('\nBand gap of semiconductor in eV is %.4f eV',Eg);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.3.\n", +"//Page No.267.\n", +"clc;clear;\n", +"B = 0.5;//Magnetic field -[Wb/m^2].\n", +"I = 10^(-2);//Current -[A].\n", +"l = 100;//Length -[mm].\n", +"d = 1;//Thickness -[mm].\n", +"Rh = 3.66*10^(-4);//Hall coefficient -[m^3/C].\n", +"w = 10*10^(-3);//Breadth -[mm].\n", +"Vh = ((B*I*Rh)/w);//Hall voltage.\n", +"printf('\nThe Hall voltage is %3.3e V',Vh);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Concentration_of_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.4.\n", +"//Page No.268.\n", +"clc;clear;\n", +"d = 3*10^(4);//Conductivity -[S/m].\n", +"e = 1.6*10^(-19);//Value of electron.\n", +"ue = 0.13;\n", +"uh = 0.05;\n", +"ni = 1.5*10^(16);\n", +"disp('For N-type semiconductor')\n", +"Nd = (d/(e*ue));\n", +"printf('\ni)The concentration of electron is %3.3e m^-3',Nd);\n", +"p = ((ni)^(2)/(Nd));\n", +"printf('\nii)The concentration of holes is %3.3e m^-3',p);\n", +"disp('For P-type semiconductor')\n", +"Na = (d/(e*uh));\n", +"printf('\ni)The concentration of holes is %3.3e m^-3',Na);\n", +"n = ((ni)^(2)/(Na));\n", +"printf('\nii)The concentration of electron is %3.3e m^-3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: carrier_concentration_and_type_of_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.5.\n", +"//Page No.269.\n", +"//To calculate carrier concentration.\n", +"clc;clear;\n", +"Rh = 3.68*10^(-5);//Hall coefficient -[m^3/C].\n", +"e = 1.6*10^(-19);//Electron charge -[C].\n", +"disp('1)Since the hall voltage is negative,charge carriers of the semiconductors are electrons')\n", +"n = ((3*%pi)/(8*Rh*e));//Carrier concentration.\n", +"printf('\n2)The carrier concentration is %3.3e m^-3',n);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6: Intrinsic_carrier_densities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.6.\n", +"//Page No.269.\n", +"clc;clear;\n", +"Eg1 = 0.36;//Energy gap of the first material -[eV].\n", +"Eg2 = 0.72//Energy gap of the second material -[eV].\n", +"me = 9.1*10^(-31);// -[kg].\n", +"A = 0.052;//'A' is (2*k*T).\n", +"T = 300;//Temperature -[K].\n", +"a = -0.36;\n", +"b = 0.72;\n", +"N = (exp(a/A)*exp(b/A));//Ratio of intrinsic carrier densities of material A & B.\n", +"printf('\nThe ratio of intrinsic carrier densities of the materials A & B is %3.3e',N);\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7: Mobility_of_electro.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.7.\n", +"//Page No.270.\n", +"//To find mobility of the electron.\n", +"clc;clear;\n", +"d = 112;//Conductivity -[ohm^-1 m^-1].\n", +"Nd = 2*10^(22);//Concentration of electrons -[m^-3].\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"u = (d/(Nd*e));//Mobility of electrons.\n", +"printf('\nMobility of the electron is %.3f m^2 V^-1 s^-1',u);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8: hall_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.8.\n", +"//Page No.270.\n", +"clc;clear;\n", +"Bz = 10*10^(-4);//Magnetic field -[Wb/m^2].\n", +"I = 1;//Current -[A].\n", +"W = 500*10^(-6);//Thickness of the sample -[m].\n", +"n = 10^(16);//Donor concentration.\n", +"e = 1.6*10^(-19);//Electron charge.\n", +"VH = ((Bz*I*3*%pi)/(8*n*e*W));//Hall voltage in the sample.\n", +"printf('\nThe Hall voltage in the sample is %3.3e V',VH);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9: Ratio_between_the_conductivity_of_the_material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"\n", +"//Example No.9.9.\n", +"//Page No 271.\n", +"clc;clear;\n", +"Eg = 1.2*1.6*10^(-19);//Energy gap.\n", +"T1 = 300;//Temperature T1 -[K].\n", +"T2 = 600;//Temperature T2 -[K].\n", +"k = 1.38*10^(-23);//Boltzman's constant.\n", +"N = ((T2/T1)^(3/2))*exp((Eg/(2*k))*((1/T1)-(1/T2)))*10^(-3);//Ratio between the conductivity of the material.\n", +"printf('\nRatio between the conductivity of the material at 600 K and 300 K is %.2f',N);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |