summaryrefslogtreecommitdiff
path: root/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb')
-rw-r--r--Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb535
1 files changed, 535 insertions, 0 deletions
diff --git a/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb b/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb
new file mode 100644
index 0000000..a73738c
--- /dev/null
+++ b/Engineering_Physics_by_A_Marikani/4-Quantum_physics.ipynb
@@ -0,0 +1,535 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Quantum physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Probability_of_finding_the_practicle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.10\n",
+"// Page No.138.\n",
+"//To find the probability.\n",
+"clc;clear;\n",
+"L = 25*10^(-10);//Width of the potential well -[m].\n",
+"delx = 0.05*10^(-10);//Interval -[m].\n",
+"x = int(1);\n",
+"P = (((2*delx)/L)*x);//'P' is the probability of finding the practicle at an interval of 0.05 .\n",
+"printf('\nThe probability of finding the particle is %.3f',P);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: Lowest_energy_of_the_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"//Example No.4.11.\n",
+"//Page No.138.\n",
+"clc;clear;\n",
+"n = 1;//For the lowest energy value n=1.\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"L = 1*10^(-10);//Width of the potential well -[m].\n",
+"m = 9.1*10^(-31);//Mass of the electron.\n",
+"E = ((n^(2)*h^(2))/(8*m*L^(2)));\n",
+"E = ((h^(2))/(8*m*L^(2)));// For the lowest energy value n=1.\n",
+"printf('\nThe lowest energy of the electron in joules is %3.3e J',E);;// Lowest energy of the electron in joules.\n",
+"E = (E/(1.6*10^(-19)));\n",
+"printf('\nThe lowest energy of the electron in eV is %.2f eV',E);// Lowest energy of the electron in eV.\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: Lowest_energy_of_the_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.12.\n",
+"//Page No.139.\n",
+"//To find lowest energy of the electron.\n",
+"clc;clear;\n",
+"n = 1;//For the lowest energy value n=1.\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"L = 1*10^(-10);//Width of the potential well -[m].\n",
+"m = 9.1*10^(-31);//Mass of the electron.\n",
+"E = (2*(n^(2)*h^(2))/(8*m*L^(2)));\n",
+"//'E' is the Lowest energy of the system.\n",
+"printf('\nThe lowest energy of the system in joules is %3.3e J',E);\n",
+"E = (E/(1.6*10^(-19)));\n",
+"printf('\nThe lowest energy of the system in eV is %.2f eV',E);// Lowest energy of the electron in eV."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: Lowest_energy_of_the_system.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.13.\n",
+"//Page No.139.\n",
+"clc;clear;\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"L = 1*10^(-10);//Width of the potential well -[m].\n",
+"m = 9.1*10^(-31);//Mass of the electron.\n",
+"E = ((6*h^(2))/(8*m*L^(2)));\n",
+"printf('\n 1) The lowest energy of the system in joules is %3.3e eV',E);\n",
+"E = (E/(1.6*10^(-19)));\n",
+"printf('\n 2) The lowest energy of the system is %.2f eV',E);\n",
+"disp('3) Quantum numbers are,');\n",
+"n = 1;\n",
+"l = 0;\n",
+"ml = 0;\n",
+"ms = 0.5;\n",
+"ms1 = -0.5;\n",
+"printf('\ni)n = %.0f',n);\n",
+"printf(' , l = %.0f',l);\n",
+"printf(' , ml = %.0f',ml);\n",
+"printf(' , ms = %.1f',ms);\n",
+"printf('\nii)n = %.0f',n);\n",
+"printf(' , l = %.0f',l);\n",
+"printf(' , ml = %.0f',ml);\n",
+"printf(' , ms1 = %.1f',ms1);\n",
+"n=2;\n",
+"printf('\niii)n = %.0f',n);\n",
+"printf(' , l = %.0f',l);\n",
+"printf(' , ml = %.0f',ml);\n",
+"printf(' , ms = %.1f',ms);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: mass_of_the_alpha_practical.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.14.\n",
+"//Page No.140.\n",
+"//The mass of the particle.\n",
+"clc;clear;\n",
+"E = 0.025*1.6*10^(-19);//Lowest energy.\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"L = 100*10^(-10);//Width of the well -[m].\n",
+"m = ((h^(2))/(8*E*L^(2)));\n",
+"printf('\nThe mass of the particle is %3.3e kg',m);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.15: Energy_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.15.\n",
+"//Page No.141.\n",
+"//To find energy density.\n",
+"clc;clear;\n",
+"T = 6000;//Temperature -[K].\n",
+"k = 1.38*10^(-23);//Boltzman's constant.\n",
+"w1 = 450*10^(-9);//wavelength -[m].\n",
+"w2 = 460*10^(-9);//wavelength -[m].\n",
+"c = 3*10^(8);//Velcity of light.\n",
+"v1=(c/w1);\n",
+"printf('\nThe velocity for wavelength 450 nm is %3.3e Hz',v1);\n",
+"v2 = (c/w2);\n",
+"printf('\nThe velocity for wavelength 460 nm is %3.3e Hz',v2);\n",
+"v = ((v1+v2)/2);\n",
+"printf('\nThe average value of v is %3.3e Hz',v);\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"d = (8*%pi*h*v^(3))/(c^(3));\n",
+"dv = d*(1/(exp((h*v)/(k*T))-1));//Energy density.\n",
+"printf('\nThe energy density of the black body is %3.3e J/m^3',dv);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: change_in_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No 133.\n",
+"//Page No 4.1.\n",
+"//To find change in wavelength.\n",
+"clc;clear;\n",
+"h = 6.63*10^(-34);//Planck's constant -[J-s].\n",
+"m0 = 9.1*10^(-31);//mass of electron -[kg].\n",
+"c = 3*10^(8);//Velocity of ligth -[m/s].\n",
+"cosq = cosd(135);//Angle of scattering -[degree].\n",
+"delW = (h/(m0*c))*(1-cosq);//change in wavelength.\n",
+"printf('\nThe change in wavelength is %3.3e m',delW);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: comptom_shift_and_w_and_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.2.\n",
+"//Page No.134.\n",
+"clc;clear;\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"m0 = 9.1*10^(-31);//mass of electron.\n",
+"c = 3*10^(8);//Velocity of ligth.\n",
+"cosq = cosd(90);//Scattering angle -[degree].\n",
+"delW = (h/(m0*c))*(1-cosq);//Compton's shift\n",
+"delW = delW*10^(10);\n",
+"printf('\na)The Comptons shift is %.5f A',delW);\n",
+"w = 2;//Wavelength -[A]\n",
+"W = (delW+w);// Wavelength of the scattered photon.\n",
+"printf('\nb)The wavelength of the scattered photon is % 5f A',W);\n",
+"E = (h*c)*((1/(w*10^(-10)))-(1/(W*10^(-10))));//Energy of the recoiling electron in joules.\n",
+"printf('\nc)The energy of the recoiling electron in joules is %3.3e J',E);\n",
+"E = (E/(1.6*10^(-19)));//Energy of the recoiling electron in eV.\n",
+"printf('\nc)The energy of the recoiling electron in eV is %3.3e eV',E);\n",
+"sinq = sind(90);\n",
+"Q = (((h*c)/w)*sinq)/(((h*c)/w)-((h*c)/W)*cosq);\n",
+"theta = atand(Q);\n",
+"printf('\ne)The angle at which the recoiling electron appears is %.0f degree',theta); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: comptom_shift_and_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.3.\n",
+"//Page NO.135.\n",
+"clc;clear;\n",
+"h = 6.626*10^(-34);//Planck's constant.\n",
+"mo = 9.1*10^(-31);//mass of electron.\n",
+"c = 3*10^(8);//Velocity of ligth.\n",
+"w = (1*1.6*10^(-19)*10^(6));//wavelength.\n",
+"cosq = cosd(60);\n",
+"delw = ((h/(mo*c))*(1-cosq));//Compton shift\n",
+"delw = delw*10^(10);\n",
+"printf('\n1)The Comptons shift = %.3f A',delw);\n",
+"E = ((h*c)/w);//energy of the incident photon.\n",
+"W = (delw+E);//Wavelength of the scattered photon.\n",
+"W = (0.012)+(1.242);\n",
+"printf('\n3)The wavelength of the scattered photon = %.3f A',W);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Number_of_photons_emitted.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No 135.\n",
+"//Page No 4.4.\n",
+"//To find number of photons.\n",
+"clc;clear;\n",
+"h = 6.63*10^(-34);//Planck's constant.\n",
+"c = 3*10^(8);//Velocity of ligth.\n",
+"w = 5893*10^(-10);//wavelength.\n",
+"Op = 60;//output power -[W].\n",
+"E =((h*c)/w);\n",
+"printf('\nEnergy of photon in joules is %3.3e J',E);//Energy of photon in joules.\n",
+"hv = (E/(1.6*10^(-19)));//Energy of photon in eV.\n",
+"printf('\nEnergy of photon in eV is %.3f eV',hv);\n",
+"Ps = ((Op)/(E));\n",
+"Ps = ((60)/(E));// Number of photons emitted per second.\n",
+"printf('\nThe number of photons emitted per second is %3.3e photons per second',Ps);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Mass_and_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No 136.\n",
+"//Page No 4.5.\n",
+"//To find mass,momentum & energy of photon.\n",
+"clc;clear;\n",
+"h = 6.63*10^(-34);//Planck's constant.\n",
+"c = 3*10^(8);//Velocity of ligth.\n",
+"w = 10*10^(-10);//wavelength.\n",
+"E = ((h*c)/w);//Energy.\n",
+"printf('\n1)The energy of photon in joules is %3.3e J',E);\n",
+"E = E/(1.6*10^(-19)*10^(3));\n",
+"printf('\n2)The energy of photon in eV is %.3f Kev',E);\n",
+"p = (h/w);//Momentum.\n",
+"p = ((6.63*10^(-34))/(10*10^(-10)));\n",
+"printf('\n3)The momentum of the photon is %3.3e kg.m/s',p)\n",
+"m = (h/(w*c));\n",
+"printf('\n4)The mass of the photon is %3.3e kg',m);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: DeBroglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No 136.\n",
+"//Page No 4.6.\n",
+"//To find de-Broglie wavelength.\n",
+"clc;clear;\n",
+"V=1.25*10^(3);//Potential difference applied -[V].\n",
+"w=((12.27)/sqroot(V));//de-Broglie wavelength of electron.\n",
+"printf('\nThe de-Broglie wavelength of electron is %.3f A',w);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.136 .\n",
+"//Page No. 4.7.\n",
+"//To find de-Broglie wavelength.\n",
+"clc;clear;\n",
+"E = 45*1.6*10^(-19);//Energy of the electron.\n",
+"h = 6.63*10^(-34);//Planck's constant\n",
+"m = 9.1*10^(-31);//Mass of the electron.\n",
+"w = h/(sqrt(2*m*E));//de-Broglie wavelength.\n",
+"printf('\nThe de-Broglie wavelength of the photon is %3.3e m',w);\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: De_Broglie_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No.4.8.\n",
+"//Page No.137.\n",
+"//To find de-Broglie wavelength.\n",
+"clc;clear;\n",
+"h=6.626*10^(-34);//Planck's constant.\n",
+"v=10^(7);//Velocity of the electron -[m/s].\n",
+"m=9.1*10^(-31);//Mass of the electron.\n",
+"w=(h/(m*v));//de-Broglie wavelength\n",
+"printf('\nThe de-Broglie wavelength is %3.3e m',w);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Wavelength_of_alpha_practical.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"\n",
+"\n",
+"//Example No 137.\n",
+"//Page No 4.9.\n",
+"//The de-Broglie wavelength of alpha particle.\n",
+"clc;clear;\n",
+"V = 1000;//Potential difference applied -[V].\n",
+"h = (6.626*10^(-34));//Planck's constant -[J-s].\n",
+"m = (1.67*10^(-27));//Mass of a proton -[kg].\n",
+"e = (1.6*10^(-19));//charge of electron -[J].\n",
+"w = h/sqrt(2*m*e*V);//de-Broglie wavelength\n",
+"printf('\nThe de-Broglie wavelength of alpha particle = %3.3e m',w);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}