diff options
Diffstat (limited to 'Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb')
-rw-r--r-- | Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb | 277 |
1 files changed, 277 insertions, 0 deletions
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb new file mode 100644 index 0000000..d1f0d83 --- /dev/null +++ b/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb @@ -0,0 +1,277 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Polyphase Circuits" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Three_phase_Wye_connection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Example 12.2\n", +"//Calculate total power dissipated\n", +"disp('Given')\n", +"disp('Van=200 with angle 0 degree and Zp=100with angle 60 degree')\n", +"Zpamp=100;Zpang=60\n", +"//Since one of the phase voltage is given, we need to find other phase voltages\n", +"Vanamp=200;Vbnamp=200 ; Vcnamp=200;\n", +"Vanang=0;Vbnang=-120;Vcnang=-240;\n", +"disp('The phase voltages are')\n", +"printf('Van=%d /_%d deg V\tVbn=%d /_%d deg V\tVcn=%d /_%d deg V\t',Vanamp,Vanang,Vbnamp,Vbnang,Vcnamp,Vcnang)\n", +"\n", +"//Now we will find line voltages\n", +"//Let line voltage be Vline\n", +"Vline=200*sqrt(3)\n", +"//By constructing a phasor diagram\n", +"disp('The line voltages are')\n", +"printf('\n Vab=%d /_%d deg V\tVbc=%d /_%d deg V\tVca=%d /_%d deg V\t',Vline,30,Vline,-90,Vline,-210)\n", +"\n", +"//Let the line current be IaA\n", +"IaAamp=Vanamp/Zpamp\n", +"IaAang=Vanang-Zpang\n", +"//Since the given system is a balanced three phase system\n", +"//From phasor diagram as shown in figure 12.16\n", +"disp('The line currents are')\n", +"printf('\n IaA=%d /_%d deg V\tIbB=%d /_%d deg V\tIcC=%d /_%d deg V\t',IaAamp,IaAang,IaAamp,IaAang-120,IaAamp,IaAang-240)\n", +"//Let power absorbeed by phase A is PAN\n", +"PAN=Vanamp*IaAamp*cos(((Vanang+IaAang)*%pi)/180)\n", +"printf('\n Total average power = %d W',3*PAN)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Three_phase_Wye_connection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Example 12.3\n", +"//Calculate the line current and phase impedance\n", +"disp('Given')\n", +"disp('Line voltage = 300V, Power factor=0.8(lead), Phase power = 1200W')\n", +"Vline=300;pf=0.8;PW=1200;\n", +"Vp=Vline/sqrt(3)\n", +"PerPhpower=PW/3;\n", +"//Line current can be found as\n", +"IL=PerPhpower/(pf*Vp)\n", +"printf('Line current= %3.2f A \n',IL)\n", +"//Let Zp be the phase impedance\n", +"Zpmag=Vp/IL\n", +"//Sice power factor is 'leading'\n", +"Zpang=-(acos(0.8)*180)/%pi\n", +"printf('Phase impedance = %d/_%3.2f deg ohm',Zpmag,Zpang);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Three_phase_Wye_connection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Example 12.4\n", +"//Calculate the line current\n", +"//Continuing from example 12.3\n", +"Vp=300/sqrt(3);\n", +"IL=2.89;pf=0.8\n", +"disp('A balanced 600W lighting load is added in parallel with the existing load')\n", +"disp('600W if balanced then 200W will be consumed by each phase')\n", +"Vpadd=200;\n", +"//From figure 12.17\n", +"I1=Vpadd/Vp\n", +"disp('Load current is unchanged')\n", +"I2mag=IL\n", +"I2ph=(acos(pf)*180)/%pi\n", +"x=I2mag * cos (( I2ph * %pi ) /180) ;\n", +"y=I2mag * sin (( I2ph * %pi ) /180) ;\n", +"z= complex (x,y)\n", +"disp(z)\n", +"ILnew=I1+z\n", +"[ILmag ILph]=polar(ILnew)\n", +"printf('Line current=%3.2f /_%3.2f deg A \n ',ILmag,ILph*(180/%pi));" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: The_Delta_connection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Example 12.5\n", +"//Calculate amplitude of line current\n", +"disp('Given')\n", +"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n", +"Vline=300;pf=0.8;PW=1200;\n", +"disp('1200W will be consumed as 400W in each phase')\n", +"Vp=400\n", +"//Phase current be Ip\n", +"Ip=Vp/(Vline*pf)\n", +"//Let amplitude of line current be IL\n", +"IL=Ip*sqrt(3)\n", +"printf('Line current=%3.2f A \n',IL)\n", +"//Let Zp be the phase impedance\n", +"Zpmag=Vline/Ip\n", +"//Sice power factor is 'lagging'\n", +"Zpang=(acos(0.8)*180)/%pi\n", +"printf('Phase impedance = %d(%3.2f deg)ohm',Zpmag,Zpang);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: The_Delta_connection.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Example 12.6\n", +"//Calculate amplitude of line current\n", +"disp('Given')\n", +"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n", +"Vline=300;pf=0.8;PW=1200;\n", +"Vph=Vline/sqrt(3)\n", +"disp('1200W will be consumed as 400W in each phase')\n", +"Vp=400\n", +"//Let phase current be Ip\n", +"Ip=Vp/(Vph*pf)\n", +"printf('Phase current=%3.2f A \n',Ip)\n", +"//Let Zp be the phase impedance\n", +"Zpmag=Vph/Ip\n", +"//Sice power factor is 'lagging'\n", +"Zpang=(acos(0.8)*180)/%pi\n", +"printf('Phase impedance = %d(%3.2f deg)ohm\n',Zpmag,Zpang);\n", +"//PW=sqrt(3)*VL*IL*pf\n", +"IL=PW/(sqrt(3)*Vline*pf)\n", +"printf('Line current=%3.2f A \n',IL)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: Power_measurement_in_three_phase_systems.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Example 12.7\n", +"//Determine wattmeter reading and total power drawn by the load\n", +"disp('Given')\n", +"disp('Vab=230(0 deg)V')\n", +"Vline=230\n", +"//Since positive phase sequence is used\n", +"disp('The line voltages are')\n", +"printf('\n Vab=%d (%d deg)V\tVbc=%d (%d deg) V\tVca=%d (%d deg)V\t',Vline,0,Vline,-120,Vline,120)\n", +"Vacamp=Vline;\n", +"Vacang=-60;\n", +"Vbcamp=Vline;\n", +"Vbcang=-120;\n", +"//Now we will evaluate phase current\n", +"//Let IaA be the phase current\n", +"Vanamp=Vline/sqrt(3)\n", +"Vanph=-30\n", +"//From figure 12.28\n", +"Zph=4+%i*15\n", +"[Zphmag Zphang]=polar(Zph)\n", +"IaAamp=Vanamp/Zphmag\n", +"IaAang=Vanph-(Zphang*180)/%pi\n", +"IbBang=IaAang+240\n", +"printf('\nIaA=%3.2f(%3.2f deg)A\n',IaAamp,IaAang);\n", +"//Power rating of each wattmeter is now calculated\n", +"//Power measured by wattmeter #1\n", +"P1=Vline*IaAamp*cos(((Vacang-IaAang)*%pi)/180)\n", +"printf('P1=%d W \n',P1)\n", +"//Power measured by wattmeter #2\n", +"P2=Vline*IaAamp*cos(((Vbcang-IbBang)*%pi)/180)\n", +"printf('P2=%3.2f W \n',P2)\n", +"//Net power be P\n", +"P=P1+P2\n", +"printf('P=%3.2f W \n',P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |