summaryrefslogtreecommitdiff
path: root/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb')
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb277
1 files changed, 277 insertions, 0 deletions
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb
new file mode 100644
index 0000000..d1f0d83
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb
@@ -0,0 +1,277 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Polyphase Circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Three_phase_Wye_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.2\n",
+"//Calculate total power dissipated\n",
+"disp('Given')\n",
+"disp('Van=200 with angle 0 degree and Zp=100with angle 60 degree')\n",
+"Zpamp=100;Zpang=60\n",
+"//Since one of the phase voltage is given, we need to find other phase voltages\n",
+"Vanamp=200;Vbnamp=200 ; Vcnamp=200;\n",
+"Vanang=0;Vbnang=-120;Vcnang=-240;\n",
+"disp('The phase voltages are')\n",
+"printf('Van=%d /_%d deg V\tVbn=%d /_%d deg V\tVcn=%d /_%d deg V\t',Vanamp,Vanang,Vbnamp,Vbnang,Vcnamp,Vcnang)\n",
+"\n",
+"//Now we will find line voltages\n",
+"//Let line voltage be Vline\n",
+"Vline=200*sqrt(3)\n",
+"//By constructing a phasor diagram\n",
+"disp('The line voltages are')\n",
+"printf('\n Vab=%d /_%d deg V\tVbc=%d /_%d deg V\tVca=%d /_%d deg V\t',Vline,30,Vline,-90,Vline,-210)\n",
+"\n",
+"//Let the line current be IaA\n",
+"IaAamp=Vanamp/Zpamp\n",
+"IaAang=Vanang-Zpang\n",
+"//Since the given system is a balanced three phase system\n",
+"//From phasor diagram as shown in figure 12.16\n",
+"disp('The line currents are')\n",
+"printf('\n IaA=%d /_%d deg V\tIbB=%d /_%d deg V\tIcC=%d /_%d deg V\t',IaAamp,IaAang,IaAamp,IaAang-120,IaAamp,IaAang-240)\n",
+"//Let power absorbeed by phase A is PAN\n",
+"PAN=Vanamp*IaAamp*cos(((Vanang+IaAang)*%pi)/180)\n",
+"printf('\n Total average power = %d W',3*PAN)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: Three_phase_Wye_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.3\n",
+"//Calculate the line current and phase impedance\n",
+"disp('Given')\n",
+"disp('Line voltage = 300V, Power factor=0.8(lead), Phase power = 1200W')\n",
+"Vline=300;pf=0.8;PW=1200;\n",
+"Vp=Vline/sqrt(3)\n",
+"PerPhpower=PW/3;\n",
+"//Line current can be found as\n",
+"IL=PerPhpower/(pf*Vp)\n",
+"printf('Line current= %3.2f A \n',IL)\n",
+"//Let Zp be the phase impedance\n",
+"Zpmag=Vp/IL\n",
+"//Sice power factor is 'leading'\n",
+"Zpang=-(acos(0.8)*180)/%pi\n",
+"printf('Phase impedance = %d/_%3.2f deg ohm',Zpmag,Zpang);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: Three_phase_Wye_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.4\n",
+"//Calculate the line current\n",
+"//Continuing from example 12.3\n",
+"Vp=300/sqrt(3);\n",
+"IL=2.89;pf=0.8\n",
+"disp('A balanced 600W lighting load is added in parallel with the existing load')\n",
+"disp('600W if balanced then 200W will be consumed by each phase')\n",
+"Vpadd=200;\n",
+"//From figure 12.17\n",
+"I1=Vpadd/Vp\n",
+"disp('Load current is unchanged')\n",
+"I2mag=IL\n",
+"I2ph=(acos(pf)*180)/%pi\n",
+"x=I2mag * cos (( I2ph * %pi ) /180) ;\n",
+"y=I2mag * sin (( I2ph * %pi ) /180) ;\n",
+"z= complex (x,y)\n",
+"disp(z)\n",
+"ILnew=I1+z\n",
+"[ILmag ILph]=polar(ILnew)\n",
+"printf('Line current=%3.2f /_%3.2f deg A \n ',ILmag,ILph*(180/%pi));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: The_Delta_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.5\n",
+"//Calculate amplitude of line current\n",
+"disp('Given')\n",
+"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n",
+"Vline=300;pf=0.8;PW=1200;\n",
+"disp('1200W will be consumed as 400W in each phase')\n",
+"Vp=400\n",
+"//Phase current be Ip\n",
+"Ip=Vp/(Vline*pf)\n",
+"//Let amplitude of line current be IL\n",
+"IL=Ip*sqrt(3)\n",
+"printf('Line current=%3.2f A \n',IL)\n",
+"//Let Zp be the phase impedance\n",
+"Zpmag=Vline/Ip\n",
+"//Sice power factor is 'lagging'\n",
+"Zpang=(acos(0.8)*180)/%pi\n",
+"printf('Phase impedance = %d(%3.2f deg)ohm',Zpmag,Zpang);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: The_Delta_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.6\n",
+"//Calculate amplitude of line current\n",
+"disp('Given')\n",
+"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n",
+"Vline=300;pf=0.8;PW=1200;\n",
+"Vph=Vline/sqrt(3)\n",
+"disp('1200W will be consumed as 400W in each phase')\n",
+"Vp=400\n",
+"//Let phase current be Ip\n",
+"Ip=Vp/(Vph*pf)\n",
+"printf('Phase current=%3.2f A \n',Ip)\n",
+"//Let Zp be the phase impedance\n",
+"Zpmag=Vph/Ip\n",
+"//Sice power factor is 'lagging'\n",
+"Zpang=(acos(0.8)*180)/%pi\n",
+"printf('Phase impedance = %d(%3.2f deg)ohm\n',Zpmag,Zpang);\n",
+"//PW=sqrt(3)*VL*IL*pf\n",
+"IL=PW/(sqrt(3)*Vline*pf)\n",
+"printf('Line current=%3.2f A \n',IL)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: Power_measurement_in_three_phase_systems.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.7\n",
+"//Determine wattmeter reading and total power drawn by the load\n",
+"disp('Given')\n",
+"disp('Vab=230(0 deg)V')\n",
+"Vline=230\n",
+"//Since positive phase sequence is used\n",
+"disp('The line voltages are')\n",
+"printf('\n Vab=%d (%d deg)V\tVbc=%d (%d deg) V\tVca=%d (%d deg)V\t',Vline,0,Vline,-120,Vline,120)\n",
+"Vacamp=Vline;\n",
+"Vacang=-60;\n",
+"Vbcamp=Vline;\n",
+"Vbcang=-120;\n",
+"//Now we will evaluate phase current\n",
+"//Let IaA be the phase current\n",
+"Vanamp=Vline/sqrt(3)\n",
+"Vanph=-30\n",
+"//From figure 12.28\n",
+"Zph=4+%i*15\n",
+"[Zphmag Zphang]=polar(Zph)\n",
+"IaAamp=Vanamp/Zphmag\n",
+"IaAang=Vanph-(Zphang*180)/%pi\n",
+"IbBang=IaAang+240\n",
+"printf('\nIaA=%3.2f(%3.2f deg)A\n',IaAamp,IaAang);\n",
+"//Power rating of each wattmeter is now calculated\n",
+"//Power measured by wattmeter #1\n",
+"P1=Vline*IaAamp*cos(((Vacang-IaAang)*%pi)/180)\n",
+"printf('P1=%d W \n',P1)\n",
+"//Power measured by wattmeter #2\n",
+"P2=Vline*IaAamp*cos(((Vbcang-IbBang)*%pi)/180)\n",
+"printf('P2=%3.2f W \n',P2)\n",
+"//Net power be P\n",
+"P=P1+P2\n",
+"printf('P=%3.2f W \n',P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}