1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Chapter 12: Polyphase Circuits"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.2: Three_phase_Wye_connection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//Example 12.2\n",
"//Calculate total power dissipated\n",
"disp('Given')\n",
"disp('Van=200 with angle 0 degree and Zp=100with angle 60 degree')\n",
"Zpamp=100;Zpang=60\n",
"//Since one of the phase voltage is given, we need to find other phase voltages\n",
"Vanamp=200;Vbnamp=200 ; Vcnamp=200;\n",
"Vanang=0;Vbnang=-120;Vcnang=-240;\n",
"disp('The phase voltages are')\n",
"printf('Van=%d /_%d deg V\tVbn=%d /_%d deg V\tVcn=%d /_%d deg V\t',Vanamp,Vanang,Vbnamp,Vbnang,Vcnamp,Vcnang)\n",
"\n",
"//Now we will find line voltages\n",
"//Let line voltage be Vline\n",
"Vline=200*sqrt(3)\n",
"//By constructing a phasor diagram\n",
"disp('The line voltages are')\n",
"printf('\n Vab=%d /_%d deg V\tVbc=%d /_%d deg V\tVca=%d /_%d deg V\t',Vline,30,Vline,-90,Vline,-210)\n",
"\n",
"//Let the line current be IaA\n",
"IaAamp=Vanamp/Zpamp\n",
"IaAang=Vanang-Zpang\n",
"//Since the given system is a balanced three phase system\n",
"//From phasor diagram as shown in figure 12.16\n",
"disp('The line currents are')\n",
"printf('\n IaA=%d /_%d deg V\tIbB=%d /_%d deg V\tIcC=%d /_%d deg V\t',IaAamp,IaAang,IaAamp,IaAang-120,IaAamp,IaAang-240)\n",
"//Let power absorbeed by phase A is PAN\n",
"PAN=Vanamp*IaAamp*cos(((Vanang+IaAang)*%pi)/180)\n",
"printf('\n Total average power = %d W',3*PAN)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.3: Three_phase_Wye_connection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//Example 12.3\n",
"//Calculate the line current and phase impedance\n",
"disp('Given')\n",
"disp('Line voltage = 300V, Power factor=0.8(lead), Phase power = 1200W')\n",
"Vline=300;pf=0.8;PW=1200;\n",
"Vp=Vline/sqrt(3)\n",
"PerPhpower=PW/3;\n",
"//Line current can be found as\n",
"IL=PerPhpower/(pf*Vp)\n",
"printf('Line current= %3.2f A \n',IL)\n",
"//Let Zp be the phase impedance\n",
"Zpmag=Vp/IL\n",
"//Sice power factor is 'leading'\n",
"Zpang=-(acos(0.8)*180)/%pi\n",
"printf('Phase impedance = %d/_%3.2f deg ohm',Zpmag,Zpang);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.4: Three_phase_Wye_connection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//Example 12.4\n",
"//Calculate the line current\n",
"//Continuing from example 12.3\n",
"Vp=300/sqrt(3);\n",
"IL=2.89;pf=0.8\n",
"disp('A balanced 600W lighting load is added in parallel with the existing load')\n",
"disp('600W if balanced then 200W will be consumed by each phase')\n",
"Vpadd=200;\n",
"//From figure 12.17\n",
"I1=Vpadd/Vp\n",
"disp('Load current is unchanged')\n",
"I2mag=IL\n",
"I2ph=(acos(pf)*180)/%pi\n",
"x=I2mag * cos (( I2ph * %pi ) /180) ;\n",
"y=I2mag * sin (( I2ph * %pi ) /180) ;\n",
"z= complex (x,y)\n",
"disp(z)\n",
"ILnew=I1+z\n",
"[ILmag ILph]=polar(ILnew)\n",
"printf('Line current=%3.2f /_%3.2f deg A \n ',ILmag,ILph*(180/%pi));"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.5: The_Delta_connection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//Example 12.5\n",
"//Calculate amplitude of line current\n",
"disp('Given')\n",
"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n",
"Vline=300;pf=0.8;PW=1200;\n",
"disp('1200W will be consumed as 400W in each phase')\n",
"Vp=400\n",
"//Phase current be Ip\n",
"Ip=Vp/(Vline*pf)\n",
"//Let amplitude of line current be IL\n",
"IL=Ip*sqrt(3)\n",
"printf('Line current=%3.2f A \n',IL)\n",
"//Let Zp be the phase impedance\n",
"Zpmag=Vline/Ip\n",
"//Sice power factor is 'lagging'\n",
"Zpang=(acos(0.8)*180)/%pi\n",
"printf('Phase impedance = %d(%3.2f deg)ohm',Zpmag,Zpang);"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.6: The_Delta_connection.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//Example 12.6\n",
"//Calculate amplitude of line current\n",
"disp('Given')\n",
"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n",
"Vline=300;pf=0.8;PW=1200;\n",
"Vph=Vline/sqrt(3)\n",
"disp('1200W will be consumed as 400W in each phase')\n",
"Vp=400\n",
"//Let phase current be Ip\n",
"Ip=Vp/(Vph*pf)\n",
"printf('Phase current=%3.2f A \n',Ip)\n",
"//Let Zp be the phase impedance\n",
"Zpmag=Vph/Ip\n",
"//Sice power factor is 'lagging'\n",
"Zpang=(acos(0.8)*180)/%pi\n",
"printf('Phase impedance = %d(%3.2f deg)ohm\n',Zpmag,Zpang);\n",
"//PW=sqrt(3)*VL*IL*pf\n",
"IL=PW/(sqrt(3)*Vline*pf)\n",
"printf('Line current=%3.2f A \n',IL)"
]
}
,
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example 12.7: Power_measurement_in_three_phase_systems.sce"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clc\n",
"//Example 12.7\n",
"//Determine wattmeter reading and total power drawn by the load\n",
"disp('Given')\n",
"disp('Vab=230(0 deg)V')\n",
"Vline=230\n",
"//Since positive phase sequence is used\n",
"disp('The line voltages are')\n",
"printf('\n Vab=%d (%d deg)V\tVbc=%d (%d deg) V\tVca=%d (%d deg)V\t',Vline,0,Vline,-120,Vline,120)\n",
"Vacamp=Vline;\n",
"Vacang=-60;\n",
"Vbcamp=Vline;\n",
"Vbcang=-120;\n",
"//Now we will evaluate phase current\n",
"//Let IaA be the phase current\n",
"Vanamp=Vline/sqrt(3)\n",
"Vanph=-30\n",
"//From figure 12.28\n",
"Zph=4+%i*15\n",
"[Zphmag Zphang]=polar(Zph)\n",
"IaAamp=Vanamp/Zphmag\n",
"IaAang=Vanph-(Zphang*180)/%pi\n",
"IbBang=IaAang+240\n",
"printf('\nIaA=%3.2f(%3.2f deg)A\n',IaAamp,IaAang);\n",
"//Power rating of each wattmeter is now calculated\n",
"//Power measured by wattmeter #1\n",
"P1=Vline*IaAamp*cos(((Vacang-IaAang)*%pi)/180)\n",
"printf('P1=%d W \n',P1)\n",
"//Power measured by wattmeter #2\n",
"P2=Vline*IaAamp*cos(((Vbcang-IbBang)*%pi)/180)\n",
"printf('P2=%3.2f W \n',P2)\n",
"//Net power be P\n",
"P=P1+P2\n",
"printf('P=%3.2f W \n',P)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Scilab",
"language": "scilab",
"name": "scilab"
},
"language_info": {
"file_extension": ".sce",
"help_links": [
{
"text": "MetaKernel Magics",
"url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
}
],
"mimetype": "text/x-octave",
"name": "scilab",
"version": "0.7.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|