summaryrefslogtreecommitdiff
path: root/Engineering_Circuit_Analysis_by_W_Hayt
diff options
context:
space:
mode:
Diffstat (limited to 'Engineering_Circuit_Analysis_by_W_Hayt')
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/10-Sinusoidal_Steady_state_Analysis.ipynb63
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/11-AC_Circuit_Power_Analysis.ipynb342
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb277
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb203
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/14-Complex_frequency_and_the_Laplace_Transform.ipynb330
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/15-Circuit_Analysis_in_the_s_domain.ipynb234
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/16-Frequency_Response.ipynb438
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/17-Two_Port_Networks.ipynb309
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/18-Fourier_Circuit_Analysis.ipynb183
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/2-Basic_components_and_Electric_Circuits.ipynb181
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/3-Voltage_and_Current_laws.ipynb32
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/4-Basic_Nodal_and_Mesh_Analysis.ipynb32
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/6-Network_Theorems_and_useful_Circuit_Analysis_Techniques.ipynb242
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/7-Capacitors_and_Inductors.ipynb173
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/8-Basic_RL_and_RC_circuits.ipynb32
-rw-r--r--Engineering_Circuit_Analysis_by_W_Hayt/9-The_RLC_Circuit.ipynb98
16 files changed, 3169 insertions, 0 deletions
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/10-Sinusoidal_Steady_state_Analysis.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/10-Sinusoidal_Steady_state_Analysis.ipynb
new file mode 100644
index 0000000..e27ef8c
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/10-Sinusoidal_Steady_state_Analysis.ipynb
@@ -0,0 +1,63 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Sinusoidal Steady state Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: The_Inductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 10.4\n",
+"//Determine phasor current and time-domain current\n",
+"printf('Given')\n",
+"disp('Voltage is 8(-50 deg),Frequency is 100rad/s,Inductance is 4H')\n",
+"L=4;\n",
+"w=100;\n",
+"Vamp=8;Vang=-50;\n",
+"//Let current be I\n",
+"Iamp=Vamp/(w*L)\n",
+"Iang=-90+Vang\n",
+"printf('I=%3.2f(%d deg) A \n',Iamp,Iang)\n",
+"//In time domain\n",
+"printf('i(t)=%3.2f *cos(%d*t%d) A',Iamp,w,Iang);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/11-AC_Circuit_Power_Analysis.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/11-AC_Circuit_Power_Analysis.ipynb
new file mode 100644
index 0000000..07316b1
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/11-AC_Circuit_Power_Analysis.ipynb
@@ -0,0 +1,342 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: AC Circuit Power Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Instantaneous_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.1\n",
+"//Calculate the powerr absorbed by capacitor and resistor\n",
+"printf('Given')\n",
+"disp('Capacitor 5uF, Resistor 200 ohm, Voltage source is 40+60*u(t)')\n",
+"C=5*10^-6;R=200;\n",
+"//For t<0 the value of u(t) is zero hence at t=0- the value of voltage is 40V\n",
+"//For t=0+ the voltage is 100V \n",
+"//At t=0+ the capacitor cannot charge instantaneously hence resistor voltage is 60V\n",
+"disp('For t=0+')\n",
+"VR=60;\n",
+"i0=VR/R\n",
+"T=R*C\n",
+"t=1.2*10^-3\n",
+"disp('The value of current is i(t)=i0*exp(-t/T)')\n",
+"ival=i0*exp(-t/T)\n",
+"printf('Value of resistor current at 1.2ms=%3.2f mA \n',ival*10^3)\n",
+"//Let PR be the power absorbed by the resistor\n",
+"PR=ival^2*R\n",
+"printf('Value of resistive power at 1.2ms=%3.2f W \n',PR)\n",
+"//Out of the 100V available at t>0 the voltage across the capacitor is\n",
+"disp('vC(t)=100-60*exp(-t/T)')\n",
+"vCval=100-60*exp(-t/T)\n",
+"printf('Value of capacitor voltage at 1.2ms=%3.2f V \n',vCval)\n",
+"//Let PC be the power absorbed by the capacitor\n",
+"PC=ival*vCval\n",
+"printf('Value of capacitive power at 1.2ms=%3.2f W \n',PC)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Average_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.2\n",
+"//Calculate the average power \n",
+"printf('Given')\n",
+"disp('v=4*cos(%pi/6*t), V=4(0 deg), Z=2(60 deg)')\n",
+"Vamp=4;Vang=0;Zamp=2;Zang=60;\n",
+"//Let I be the phasor current\n",
+"Iamp=Vamp/Zamp\n",
+"Iang=Vang-Zang\n",
+"P=0.5*Vamp*Zamp*cos((Zang*%pi)/180)\n",
+"printf('P=%d W \n',P);\n",
+"t=-1:1:15\n",
+"t1=-3:1:12\n",
+"v=Vamp*cos(%pi/6*t)\n",
+"//i=2*cos((%pi/6)*t-(%pi/3))\n",
+"i=Iamp*cos(%pi/6*t+((Iang*%pi)/180))\n",
+"figure\n",
+"a= gca ();\n",
+"plot (t,v,t,i)\n",
+"xtitle ('v,i vs t' ,'t' ,'v,i');\n",
+"a. thickness = 2;\n",
+"//Instantaneous power p=v*i\n",
+"//On solving\n",
+"p=2+4*cos(%pi/3*t+((Iang*%pi)/180))\n",
+"figure\n",
+"a= gca ();\n",
+"plot (t,p)\n",
+"xtitle ('p vs t' ,'t' ,'p');\n",
+"a. thickness = 2;"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Average_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.3\n",
+"//Calculate the Average Power\n",
+"printf('Given')\n",
+"disp('ZL=8-i*11 ohm, I=5(20 deg)A')\n",
+"R=8;Iamp=5;\n",
+"//We need to calculate the average power\n",
+"//In the calculation of average power the resistance part of impedace only occurs\n",
+"//Let P be the average power\n",
+"P=0.5*Iamp^2*R\n",
+"printf('Average Power=%d W \n',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Average_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.4\n",
+"//Calculate the Average power absorbed and average power supplied by source\n",
+"//From figure 11.6\n",
+"//By applying mesh analysis\n",
+"I1mag=11.18;I1ang=-63.43;I2mag=7.071;I2ang=-45;R=2;Vleft=20;Vright=10;\n",
+"//Current through 2 ohm resistor\n",
+"printf('I1-I2=%d(%d ang) A \n',5,-90)\n",
+"//Average power absorbed by resistor\n",
+"PR=0.5*5^2*R\n",
+"printf('Average power absorbed by resistor=%d W \n',PR)\n",
+"//Power supplied by left source\n",
+"Pleft=0.5*Vleft*I1mag*cos(0-I1ang*%pi/180)\n",
+"//Power supplied by right source\n",
+"Pright=0.5*Vright*I2mag*cos(0+I2ang*%pi/180)\n",
+"printf('Power supplied by sources \t Pleft=%d W \t Pright=%3.1f W',Pleft,Pright);\n",
+"\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Average_Power_for_Non_periodic_Functions.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.6\n",
+"//Calculate the Average power\n",
+"printf('Given')\n",
+"disp('Resistor value is 4 ohm, i1=2*cos(10t)-3*cos(20t) A')\n",
+"R=4;im1=2;im2=-3;\n",
+"//Let P be the average power delievered\n",
+"P=0.5*im1^2*R+0.5*im2^2*R\n",
+"printf('Average power=%d W',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.7: Average_Power_for_Non_periodic_Functions.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.7\n",
+"//Calculate the Average power\n",
+"printf('Given')\n",
+"disp('Resistor value is 4 ohm, i2=2*cos(10t)-3*cos(10t) A')\n",
+"disp('On solving we get i2=-cos(10t)')\n",
+"R=4;im=-1\n",
+"//Let P be the average power delievered\n",
+"P=0.5*im^2*R\n",
+"printf('Average power=%d W',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.8: Apparent_Power_and_Power_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.8\n",
+"//Calculate average power, power supplied by source and the power factor\n",
+"printf('Given')\n",
+"disp('Voltage source is 60 V,Load values are 2-i ohm and 1+5i ohm')\n",
+"Vamp=60;Vang=0;\n",
+"//Let Z be the cobined resistance\n",
+"Z=2-%i+1+5*%i\n",
+"[Zmag Zph]=polar(Z)\n",
+"Isamp=Vamp/Zmag;\n",
+"Isang=Vang-Zph;\n",
+"printf('Ieff=%3.0f A rms and angle of Is is %3.2f degree\n',Isamp,(Isang*180)/%pi);\n",
+"//Let Pupper be the power delievered to the upper load\n",
+"Rtop=2;\n",
+"Pupper=Isamp^2*Rtop\n",
+"printf('Average Power delievered to the top load=%3.0f W \n',Pupper)\n",
+"//Let Plower be the power delievered to the lower load\n",
+"Rright=1;\n",
+"Plower=Isamp^2*Rright\n",
+"printf('Average Power delievered to the right load=%3.0f W \n',Plower)\n",
+"//Let Papp be the apparent power\n",
+"Papp=Vamp*Isamp\n",
+"printf('Apparent Power =%3.0f VA \n',Papp)\n",
+"//Let pf be the power factor\n",
+"pf=(Pupper+Plower)/Papp\n",
+"printf('power factor=%3.1f lag \n',pf)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.9: Complex_Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 11.9\n",
+"printf('Given')\n",
+"disp('Power of induction motor=50kW ,power factor is 0.8 lag,Source voltage is 230V')\n",
+"disp('The wish of the consumer is to raise the power factor to 0.95 lag')\n",
+"//Let S1 be the complex power supplied to the indiction motor\n",
+"V=230;Pmag=50*10^3;pf=0.8;\n",
+"Pang=(acos(pf)*180)/%pi\n",
+"S1mag=Pmag/pf\n",
+"S1ph=Pang\n",
+"x=S1mag * cos (( Pang * %pi ) /180) ;\n",
+"y=S1mag * sin (( Pang * %pi ) /180) ;\n",
+"z= complex (x,y)\n",
+"disp(z ,'S1=')\n",
+"//To achieve a power factor of 0.95\n",
+"pf1=0.95\n",
+"//Now the total complex power be S\n",
+"P1ang=(acos(pf1)*180)/%pi\n",
+"Smag=Pmag/pf1\n",
+"Sph=P1ang\n",
+"a=Smag * cos (( P1ang * %pi ) /180) ;\n",
+"b=Smag * sin (( P1ang * %pi ) /180) ;\n",
+"c= complex (a,b)\n",
+"disp(c,'S=')\n",
+"//Let S2 be the complex power drawn by the corrective load\n",
+"S2=c-z\n",
+"disp(S2,'S2=')\n",
+"disp('Let a phase angle of voltage source selected be 0 degree')\n",
+"//Let I2 be the current\n",
+"I2=-S2/V\n",
+"//Let Z2 be the impedance of corrective load\n",
+"Z2=V/I2\n",
+"disp(Z2,'Z2=')\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb
new file mode 100644
index 0000000..d1f0d83
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/12-Polyphase_Circuits.ipynb
@@ -0,0 +1,277 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Polyphase Circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Three_phase_Wye_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.2\n",
+"//Calculate total power dissipated\n",
+"disp('Given')\n",
+"disp('Van=200 with angle 0 degree and Zp=100with angle 60 degree')\n",
+"Zpamp=100;Zpang=60\n",
+"//Since one of the phase voltage is given, we need to find other phase voltages\n",
+"Vanamp=200;Vbnamp=200 ; Vcnamp=200;\n",
+"Vanang=0;Vbnang=-120;Vcnang=-240;\n",
+"disp('The phase voltages are')\n",
+"printf('Van=%d /_%d deg V\tVbn=%d /_%d deg V\tVcn=%d /_%d deg V\t',Vanamp,Vanang,Vbnamp,Vbnang,Vcnamp,Vcnang)\n",
+"\n",
+"//Now we will find line voltages\n",
+"//Let line voltage be Vline\n",
+"Vline=200*sqrt(3)\n",
+"//By constructing a phasor diagram\n",
+"disp('The line voltages are')\n",
+"printf('\n Vab=%d /_%d deg V\tVbc=%d /_%d deg V\tVca=%d /_%d deg V\t',Vline,30,Vline,-90,Vline,-210)\n",
+"\n",
+"//Let the line current be IaA\n",
+"IaAamp=Vanamp/Zpamp\n",
+"IaAang=Vanang-Zpang\n",
+"//Since the given system is a balanced three phase system\n",
+"//From phasor diagram as shown in figure 12.16\n",
+"disp('The line currents are')\n",
+"printf('\n IaA=%d /_%d deg V\tIbB=%d /_%d deg V\tIcC=%d /_%d deg V\t',IaAamp,IaAang,IaAamp,IaAang-120,IaAamp,IaAang-240)\n",
+"//Let power absorbeed by phase A is PAN\n",
+"PAN=Vanamp*IaAamp*cos(((Vanang+IaAang)*%pi)/180)\n",
+"printf('\n Total average power = %d W',3*PAN)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3: Three_phase_Wye_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.3\n",
+"//Calculate the line current and phase impedance\n",
+"disp('Given')\n",
+"disp('Line voltage = 300V, Power factor=0.8(lead), Phase power = 1200W')\n",
+"Vline=300;pf=0.8;PW=1200;\n",
+"Vp=Vline/sqrt(3)\n",
+"PerPhpower=PW/3;\n",
+"//Line current can be found as\n",
+"IL=PerPhpower/(pf*Vp)\n",
+"printf('Line current= %3.2f A \n',IL)\n",
+"//Let Zp be the phase impedance\n",
+"Zpmag=Vp/IL\n",
+"//Sice power factor is 'leading'\n",
+"Zpang=-(acos(0.8)*180)/%pi\n",
+"printf('Phase impedance = %d/_%3.2f deg ohm',Zpmag,Zpang);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4: Three_phase_Wye_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.4\n",
+"//Calculate the line current\n",
+"//Continuing from example 12.3\n",
+"Vp=300/sqrt(3);\n",
+"IL=2.89;pf=0.8\n",
+"disp('A balanced 600W lighting load is added in parallel with the existing load')\n",
+"disp('600W if balanced then 200W will be consumed by each phase')\n",
+"Vpadd=200;\n",
+"//From figure 12.17\n",
+"I1=Vpadd/Vp\n",
+"disp('Load current is unchanged')\n",
+"I2mag=IL\n",
+"I2ph=(acos(pf)*180)/%pi\n",
+"x=I2mag * cos (( I2ph * %pi ) /180) ;\n",
+"y=I2mag * sin (( I2ph * %pi ) /180) ;\n",
+"z= complex (x,y)\n",
+"disp(z)\n",
+"ILnew=I1+z\n",
+"[ILmag ILph]=polar(ILnew)\n",
+"printf('Line current=%3.2f /_%3.2f deg A \n ',ILmag,ILph*(180/%pi));"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.5: The_Delta_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.5\n",
+"//Calculate amplitude of line current\n",
+"disp('Given')\n",
+"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n",
+"Vline=300;pf=0.8;PW=1200;\n",
+"disp('1200W will be consumed as 400W in each phase')\n",
+"Vp=400\n",
+"//Phase current be Ip\n",
+"Ip=Vp/(Vline*pf)\n",
+"//Let amplitude of line current be IL\n",
+"IL=Ip*sqrt(3)\n",
+"printf('Line current=%3.2f A \n',IL)\n",
+"//Let Zp be the phase impedance\n",
+"Zpmag=Vline/Ip\n",
+"//Sice power factor is 'lagging'\n",
+"Zpang=(acos(0.8)*180)/%pi\n",
+"printf('Phase impedance = %d(%3.2f deg)ohm',Zpmag,Zpang);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.6: The_Delta_connection.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.6\n",
+"//Calculate amplitude of line current\n",
+"disp('Given')\n",
+"disp('Line voltage = 300V, Power factor=0.8(lag), Phase power = 1200W')\n",
+"Vline=300;pf=0.8;PW=1200;\n",
+"Vph=Vline/sqrt(3)\n",
+"disp('1200W will be consumed as 400W in each phase')\n",
+"Vp=400\n",
+"//Let phase current be Ip\n",
+"Ip=Vp/(Vph*pf)\n",
+"printf('Phase current=%3.2f A \n',Ip)\n",
+"//Let Zp be the phase impedance\n",
+"Zpmag=Vph/Ip\n",
+"//Sice power factor is 'lagging'\n",
+"Zpang=(acos(0.8)*180)/%pi\n",
+"printf('Phase impedance = %d(%3.2f deg)ohm\n',Zpmag,Zpang);\n",
+"//PW=sqrt(3)*VL*IL*pf\n",
+"IL=PW/(sqrt(3)*Vline*pf)\n",
+"printf('Line current=%3.2f A \n',IL)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.7: Power_measurement_in_three_phase_systems.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 12.7\n",
+"//Determine wattmeter reading and total power drawn by the load\n",
+"disp('Given')\n",
+"disp('Vab=230(0 deg)V')\n",
+"Vline=230\n",
+"//Since positive phase sequence is used\n",
+"disp('The line voltages are')\n",
+"printf('\n Vab=%d (%d deg)V\tVbc=%d (%d deg) V\tVca=%d (%d deg)V\t',Vline,0,Vline,-120,Vline,120)\n",
+"Vacamp=Vline;\n",
+"Vacang=-60;\n",
+"Vbcamp=Vline;\n",
+"Vbcang=-120;\n",
+"//Now we will evaluate phase current\n",
+"//Let IaA be the phase current\n",
+"Vanamp=Vline/sqrt(3)\n",
+"Vanph=-30\n",
+"//From figure 12.28\n",
+"Zph=4+%i*15\n",
+"[Zphmag Zphang]=polar(Zph)\n",
+"IaAamp=Vanamp/Zphmag\n",
+"IaAang=Vanph-(Zphang*180)/%pi\n",
+"IbBang=IaAang+240\n",
+"printf('\nIaA=%3.2f(%3.2f deg)A\n',IaAamp,IaAang);\n",
+"//Power rating of each wattmeter is now calculated\n",
+"//Power measured by wattmeter #1\n",
+"P1=Vline*IaAamp*cos(((Vacang-IaAang)*%pi)/180)\n",
+"printf('P1=%d W \n',P1)\n",
+"//Power measured by wattmeter #2\n",
+"P2=Vline*IaAamp*cos(((Vbcang-IbBang)*%pi)/180)\n",
+"printf('P2=%3.2f W \n',P2)\n",
+"//Net power be P\n",
+"P=P1+P2\n",
+"printf('P=%3.2f W \n',P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb
new file mode 100644
index 0000000..0ed6937
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/13-Magnetically_coupled_circuits.ipynb
@@ -0,0 +1,203 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Magnetically coupled circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Mutual_Inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.2\n",
+"disp('Given')\n",
+"disp('Input voltage is 10V')\n",
+"Viamp=10\n",
+"//From figure 13.7\n",
+"//Writing the left mesh equations\n",
+"disp('(1+10i)*I1-90i*I2=10')\n",
+"//Writing the right mesh equations \n",
+"disp('(400+1000i)*I2-90i*I1=0')\n",
+"i=%i\n",
+"A=[1+10*i -90*i;-90*i 400+1000*i]\n",
+"i2mat=[1+10*i 10; -90*i 0] \n",
+"//Find i2 \n",
+"i2=det(i2mat)/det(A)\n",
+"[mag Theta]=polar(i2)\n",
+"Theta=(Theta*180)/%pi\n",
+"//The value of resistor is 400 ohm\n",
+"R=400;\n",
+"//Let V=V2/V1\n",
+"Vamp=R*mag/Viamp\n",
+"printf('Ratio of output voltage to input is %3.2f with angle %3.2f degrees',Vamp,Theta);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.4: Energy_considerations.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.4\n",
+"disp('Given')\n",
+"disp('L1=0.4H L2=2.5H k=0.6 i1=4i2=20*cos(500t-20)mA')\n",
+"L1=0.4;L2=2.5;k=0.6;\n",
+"disp('a)')\n",
+"t=0;\n",
+"i2=5*cos(500*t-(20*%pi)/180)\n",
+"printf('i2(0)=%3.2f mA \n',i2)\n",
+"disp('b)')\n",
+"M=k*sqrt(L1*L2)\n",
+"//v1(t)=L1*d/dt(i1)+M*d/dt(i2)\n",
+"v1=-L1*20*500*10^-3*sin(500*t-(20*%pi)/180)-M*5*500*10^-3*sin(500*t-(20*%pi)/180)\n",
+"printf('v1(0)=%3.2f V \n',v1)\n",
+"disp('c')\n",
+"//The total energy can be found as\n",
+"w=(L1*(4*i2)^2)/2+ (L2*(i2)^2)/2+M*(4*i2)*(i2)\n",
+"printf('w=%3.2f uJ \n',w)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.5: T_and_PI_equivalent_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.5\n",
+"printf('Given')\n",
+"disp('L1=30 mH L2=60 mH M=40 mH')\n",
+"L1=30*10^-3; L2=60*10^-3; M=40*10^-3;\n",
+"//The equivalent T network is \n",
+"UL=L1-M\n",
+"UR=L2-M\n",
+"CS=M\n",
+"printf('The T network has \n')\n",
+"printf('%d mH in the upper left arm\n',UL*10^3)\n",
+"printf('%3.0f mH in the upper right arm\n',UR*10^3)\n",
+"printf('%d mH in the center stem\n',CS*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.6: T_and_PI_equivalent_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.6\n",
+"printf('Given')\n",
+"disp('L1=30 mH L2=60 mH M=40 mH')\n",
+"L1=30*10^-3; L2=60*10^-3; M=40*10^-3;\n",
+"//Let X=L1*L2-M^2\n",
+"X=L1*L2-M^2\n",
+"//The equivalent PI network is \n",
+"LA=X/(L2-M)\n",
+"LB=X/M\n",
+"LC=X/(L1-M)\n",
+"printf('The PI network has \n')\n",
+"printf('LA=%3.0f mH\n',LA*10^3)\n",
+"printf('LB=%3.0f mH \n',LB*10^3)\n",
+"printf('LC=%3.0f mH\n',LC*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.8: Equivalent_Circuits.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 13.8\n",
+"disp('Given')\n",
+"disp('Vin=50V Zg=100 ohm')\n",
+"Vin=50;Zg=100;\n",
+"//From figure 13.32\n",
+"disp('When the secondary circuit and ideal transformer is replaced by a Thevenin equivalent then the primary circuit sees a 100 ohm impedance')\n",
+"//The turns ratio is a\n",
+"a=10;\n",
+"disp('We place the secondary circuit and ideal transformer by a Thevenin equivalent circuit')\n",
+"Vth=-a*Vin\n",
+"Zth=(-a)^2*Zg\n",
+"printf('The secondary circuit has voltage source %d V rms with %d kohm resistance in series with it along with %d kohm load resistance',Vth,Zth*10^-3,10)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/14-Complex_frequency_and_the_Laplace_Transform.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/14-Complex_frequency_and_the_Laplace_Transform.ipynb
new file mode 100644
index 0000000..9c9e4ee
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/14-Complex_frequency_and_the_Laplace_Transform.ipynb
@@ -0,0 +1,330 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 14: Complex frequency and the Laplace Transform"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.10: The_time_shift_theorem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.10\n",
+"//Install Symbolic toolbox\n",
+"//Determine the transform of rectangular pulse\n",
+"syms t s\n",
+"v=integ(exp(-s*t),t,2,%inf)-integ(exp(-s*t),t,5,%inf)\n",
+"disp(v,'V(s)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.11: The_Initial_and_Final_value_theorems.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.11\n",
+"//Install Symbolic toolbox\n",
+"//Calculate f(inf)\n",
+"syms s t ;\n",
+"disp('Given function is f(t)=1-exp(-a*t)')\n",
+"u=laplace(1)\n",
+"v=laplace(exp(-2*t))\n",
+"F=u-v\n",
+"x=s*F\n",
+"//From final value theorem\n",
+"y=limit(x,s,0)\n",
+"disp(y,'f(inf)=')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.2: Definition_of_the_Laplace_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 14.2\n",
+"//Install Symbolic toolbox\n",
+"//Find the Laplace transform\n",
+"syms t s\n",
+"clc\n",
+"z=integ(2*exp(-s*t),t,3,%inf)\n",
+"//The second term will result in zero\n",
+"disp(z,'F(s)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.3: Inverse_Transform_Techniques.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.3\n",
+"//Install Symbolic toolbox\n",
+"//Find the Inverse Laplace transform\n",
+"syms s\n",
+"a=7/s\n",
+"b=31/(s+17)\n",
+"x=ilaplace(a)\n",
+"y=ilaplace(b)\n",
+"g=x-y\n",
+"disp(g,'g(t)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.4: Inverse_Transform_Techniques.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.4\n",
+"//Install Symbolic toolbox\n",
+"//Find the Inverse Laplace transform\n",
+"syms s t\n",
+"a=2\n",
+"b=4/s\n",
+"x=ilaplace(b)\n",
+"//Inverse laplace transform of a constant is\n",
+"disp('inverse laplace(2)=2*delta(t)')\n",
+"disp('Answer is')\n",
+"disp(x+'2*delta(t)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.5: Inverse_Transform_Techniques.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.5\n",
+"//Install Symbolic toolbox\n",
+"//Find the Inverse Laplace transform\n",
+"syms s\n",
+"s=%s;\n",
+"P =(7*s+5)/(s^2+s);\n",
+"Pp=pfss (P)\n",
+"p1=ilaplace (Pp(1))\n",
+"p2=ilaplace (Pp(2))\n",
+"p=p1+p2\n",
+"disp(p,'p(t)=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.6: Inverse_Transform_Techniques.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.6\n",
+"//Install Symbolic toolbox\n",
+"//Find the Inverse Laplace transform\n",
+"syms s\n",
+"s=%s;\n",
+"V =2/(s^3+12*s^2+36*s);\n",
+"Vp=pfss (V)\n",
+"v1=ilaplace (Vp(1))\n",
+"v2=ilaplace (Vp(2))\n",
+"v=v1+v2\n",
+"disp(v,'v(t)=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.7: Basic_Theorems_for_the_Laplace_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.7\n",
+"//Install Symbolic toolbox\n",
+"//Find the current through 5 ohm resistor\n",
+"syms s\n",
+"s=%s\n",
+"//From figure 14.3\n",
+"//Writing the KVL equation and taking the Laplace transform\n",
+"I=1.5/(s*(s+2))+5/(s+2)\n",
+"I1=1.5/(s*(s+2))\n",
+"I2=5/(s+2)\n",
+"I1p=pfss(I1)\n",
+"i1=ilaplace(I1p(1))\n",
+"i2=ilaplace(I1p(2)+I2)\n",
+"i=i1+i2\n",
+"disp(i,'i(t)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.8: Basic_Theorems_for_the_Laplace_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.8\n",
+"//Install Symbolic toolbox\n",
+"//Find the current for t>0\n",
+"syms s\n",
+"s=%s\n",
+"//From figure 14.5\n",
+"//Writing the KVL equation and taking the Laplace transform\n",
+"I=-2/(s+4)\n",
+"i=ilaplace(I)\n",
+"disp(i,'i(t)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 14.9: Basic_Theorems_for_the_Laplace_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 14.9\n",
+"//Install Symbolic toolbox\n",
+"//Find the voltage v(t)\n",
+"syms s\n",
+"s=%s\n",
+"//From figure 14.6\n",
+"//Writing the KCL equation and taking the Laplace transform\n",
+"V=4/(s*(s+4))+9/(s+4)\n",
+"V1=4/(s*(s+4))\n",
+"V2=9/(s+4)\n",
+"V1p=pfss(V1)\n",
+"v1=ilaplace(V1p(1))\n",
+"v2=ilaplace(V1p(2)+V2)\n",
+"v=v1+v2\n",
+"disp(v,'v(t)=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/15-Circuit_Analysis_in_the_s_domain.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/15-Circuit_Analysis_in_the_s_domain.ipynb
new file mode 100644
index 0000000..06c2abe
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/15-Circuit_Analysis_in_the_s_domain.ipynb
@@ -0,0 +1,234 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Circuit Analysis in the s domain"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.10: Convolution_and_Laplace_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 15.10\n",
+"//Since the input function is given the Laplace transform is found\n",
+"syms s t\n",
+"s=%s\n",
+"vin=6*exp(-t)\n",
+"Vin=laplace(vin)\n",
+"//Connecting the impulse voltage pulse to the circuit and converting to s-domain\n",
+"//If vin=delta(t)..the impulse source\n",
+"V0=2/((2/s)+2)\n",
+"//As source voltage is 1V\n",
+"H=V0\n",
+"V=Vin*H\n",
+"Vp=pfss ((6*s)/(s+1)^2)\n",
+"Vp1=ilaplace(Vp(1))\n",
+"v0=Vp1\n",
+"disp(v0,'v0(t)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1: Modeling_Inductors_in_the_s_domain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 15.1\n",
+"//Install Symbolic toolbox\n",
+"//Calculate the voltage\n",
+"//From figure 15.3\n",
+"//Writing the KVL equation for the voltage and taking the Laplace transform\n",
+"syms s\n",
+"s=%s\n",
+"disp('V=(2*s*(s+9.5)/((s+8)*(s+0.5)))-2')\n",
+"//On solving\n",
+"V=(2*s-8)/((s+8)*(s+0.5))\n",
+"Vp=pfss (V)\n",
+"Vp1=ilaplace(Vp(1))\n",
+"Vp2=ilaplace(Vp(2))\n",
+"v=Vp1+Vp2\n",
+"disp(v,'v(t)=')\n",
+"\n",
+"\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2: Modeling_capacitors_in_the_s_domain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 15.2\n",
+"//Install Symbolic toolbox\n",
+"//Calculate the voltage\n",
+"//Selecting the current based model\n",
+"//From figure 15.6(b)\n",
+"//Writing the KCL equation for the voltage and taking the Laplace transform\n",
+"syms s\n",
+"s=%s\n",
+"Vc=-2*(s-3)/(s*(s+2/3))\n",
+"Vcp=pfss (Vc)\n",
+"Vcp1=ilaplace(Vcp(1))\n",
+"Vcp2=ilaplace(Vcp(2))\n",
+"vc=Vcp1+Vcp2\n",
+"disp(vc,'vc=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.4: Nodal_and_Mesh_analysis_in_s_domain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 15.4\n",
+"//Install Symbolic toolbox\n",
+"//Calculate the voltage\n",
+"//From figure 15.9\n",
+"//Applying nodal equation and solving for vx\n",
+"syms s\n",
+"s=%s\n",
+"Vx=(10*s^2+4)/(s*(2*s^2+4*s+1))\n",
+"Vxp=pfss (Vx)\n",
+"Vxp1= ilaplace (Vxp(1))\n",
+"Vxp2= ilaplace (Vxp(2))\n",
+"vx=Vxp1+Vxp2\n",
+"disp(vx,'vx=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.6: Additional_circuit_analysis_techniques.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 15.6\n",
+"//Install Symbolic toolbox\n",
+"//Calculate the voltage\n",
+"//Performing source transformatiom on the s-domain circuit\n",
+"//Solving for V(s)\n",
+"syms s\n",
+"s=%s\n",
+"V=(180*s^4)/((s^2+9)*(90*s^3+18*s^2+40*s+4))\n",
+"Vp=pfss (V)\n",
+"Vp1=ilaplace(Vp(1))\n",
+"Vp2=ilaplace(Vp(2))\n",
+"Vp3=ilaplace(Vp(3))\n",
+"v=Vp1+Vp2+Vp3\n",
+"disp(v,'v(t)=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.9: Convolution_and_Laplace_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 15.9\n",
+"//Install Symbolic toolbox\n",
+"//Find the inverse Laplace transform\n",
+"syms s\n",
+"s=%s\n",
+"//Let a=1 and b=3\n",
+"a=1;b=3;\n",
+"V=1/((s+a)*(s+b))\n",
+"Vp=pfss (V)\n",
+"Vp1=ilaplace(Vp(1))\n",
+"Vp2=ilaplace(Vp(2))\n",
+"v=Vp1+Vp2\n",
+"disp(v,'v(t)=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/16-Frequency_Response.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/16-Frequency_Response.ipynb
new file mode 100644
index 0000000..f23243d
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/16-Frequency_Response.ipynb
@@ -0,0 +1,438 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Frequency Response"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.10: Bode_diagrams.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.10\n",
+"s=poly(0,'s')\n",
+"h=syslin('c',(10*s)/((1+s)*(s^2+20*s+10000)))\n",
+"disp(h)\n",
+"fmin=0.01\n",
+"fmax=10^4\n",
+"scf(1);clf;\n",
+"//Calculate Bode plot\n",
+"bode(h,fmin,fmax)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.11: Filters.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.11\n",
+"disp('Given')\n",
+"disp('A high pass filter with cutoff frequency of 3k Hz')\n",
+"//Cutoff frequency(wc)=1/(R*C)\n",
+"//Let us select some standard value of resistor\n",
+"disp('Let R=4.7k ohm')\n",
+"fc=3*10^3;R=4.7*10^3;\n",
+"wc=2*%pi*fc\n",
+"C=1/(R*wc)\n",
+"printf('\n C=%3.2f nF ',C*10^9);\n",
+"s=poly(0,'s')\n",
+"h=syslin('c',(R*C*s)/((1+s*R*C)))\n",
+"disp(h)\n",
+"HW = frmag(h,512);\n",
+"w=0: %pi /511: %pi ;\n",
+"plot(w,HW)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.12: Filters.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.12\n",
+"disp('Given')\n",
+"disp('Bandwidth = 1M Hz and high frequency cutoff = 1.1M Hz')\n",
+"B=10^6;fH=1.1*10^6\n",
+"//B=fH-fL\n",
+"fL=fH-B\n",
+"printf('Low frequency cutoff fL= %d kHz \n',fL*10^-3);\n",
+"wL=2*%pi*fL\n",
+"printf('wL= %3.2f krad/s \n',wL*10^-3);\n",
+"wH=2*%pi*fH\n",
+"printf('wH= %3.3f Mrad/s \n',wH*10^-6);\n",
+"//Now we need to find values for R,L and C\n",
+"//Let X=1/LC\n",
+"B=2*%pi*(fH-fL)\n",
+"X=(wH-B/2)^2-(B^2/4)\n",
+"disp(X)\n",
+"disp('Let L=1H')\n",
+"L=1;\n",
+"C=1/(L*X)\n",
+"disp(C,'C=')\n",
+"//B=R/L\n",
+"R=L*B\n",
+"printf('R= %3.3f Mohm \n',R*10^-6);\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.13: Filters.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.13\n",
+"disp('Given')\n",
+"disp('Voltage gain = 40dB and cutoff frequency = 10k Hz')\n",
+"Av_dB=40\n",
+"Av=10^(Av_dB/20)\n",
+"f=10*10^3\n",
+"B=2*%pi*f\n",
+"//From figure 16.41(a)\n",
+"disp('1+Rf/R1=100(Gain)')\n",
+"//From figure 16.41(b)\n",
+"//The transfer function is \n",
+"disp('V+= Vi*(1/sC)/(1+1/sC)')\n",
+"//Combining two transfer functions\n",
+"disp('V0 = Vi*(1/sC)/(1+1/sC)*(1+Rf/R1)')\n",
+"//The maximum value of the combined transfer function is\n",
+"disp('Maximum value is V0 = Vi*(1+Rf/R1)')\n",
+"disp('Let R1=1k ohm')\n",
+"R1=10^3\n",
+"Rf=(Av-1)*R1\n",
+"printf('Rf= %d kohm \n',Rf*10^-3);\n",
+"disp('C=1 uF')\n",
+"C=10^-6\n",
+"//B=1/(R2*C)\n",
+"R2=1/(C*B)\n",
+"printf('R2= %3.2f ohm \n',R2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1: Parallel_Resonance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.1\n",
+"disp('Given')\n",
+"disp('L=2.5mH Q0=5 C=0.01uF')\n",
+"L=2.5*10^-3; Q0=5; C=0.01*10^-6;\n",
+"w0=1/sqrt(L*C)\n",
+"printf('w0= %3.1f krad/s \n',w0*10^-3);\n",
+"f0=w0/(2*%pi)\n",
+"alpha=w0/(2*Q0)\n",
+"printf('alpha= %3.1f Np/s \n',alpha);\n",
+"wd=sqrt(w0^2-alpha^2)\n",
+"printf('wd= %3.1f krad/s \n',wd*10^-3);\n",
+"R=Q0/(w0*C)\n",
+"printf('R= %3.2f ohm \n',R*10^-3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2: Bandwidth_and_high_Q_circuits.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.2\n",
+"disp('Given')\n",
+"disp('R=40Kohm L=1H C=1/64 uF w=8.2krad/s')\n",
+"R=40*10^3; L=1; C=1/64 *10^-6; w=8.2*10^3;\n",
+"//The value of Q0 must be at least 5 \n",
+"Q0=5;\n",
+"w0=1/sqrt(L*C)\n",
+"printf('w0= %3.1f krad/s \n',w0*10^-3);\n",
+"f0=w0/(2*%pi)\n",
+"B=w0/Q0\n",
+"printf('Bandwidth= %3.1f krad/s \n',B*10^-3);\n",
+"//Number of half bandwidths be N\n",
+"N=2*(w-w0)/B\n",
+"disp(N)\n",
+"//Admittance Y(s)=(1+i*N)/R\n",
+"//Finding the magnitude and angle\n",
+"magY=sqrt(1+N^2)/R\n",
+"angY=atan(N)*(180/%pi)\n",
+"disp(angY,'angY=')\n",
+"printf('admittance value=%3.2f uS',magY*10^6)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.3: Series_Resonance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.3\n",
+"disp('Given')\n",
+"disp('R=10 ohm L=2mH C=200 nF w=48 krad/s vs=100*cos(wt) mV')\n",
+"R=10; L=2*10^-3; C=200*10^-9; w=48*10^3;\n",
+"vsamp=100;\n",
+"w0=1/sqrt(L*C)\n",
+"printf('w0= %3.1f krad/s \n',w0*10^-3);\n",
+"Q0=w0*L/R\n",
+"printf('Q0=%d \n',Q0)\n",
+"B=w0/Q0\n",
+"printf('Bandwidth= %3.1f krad/s \n',B*10^-3);\n",
+"//Number of half bandwidths be N\n",
+"N=2*(w-w0)/B\n",
+"disp(N)\n",
+"//Impedance Z(s)=(1+i*N)*R\n",
+"//Finding the magnitude and angle\n",
+"magZ=sqrt(1+N^2)*R\n",
+"angZ=atan(N)*(180/%pi)\n",
+"disp(angZ,'angZ=')\n",
+"printf('Equivalent impedance value=%3.2f ohm \n',magZ)\n",
+"//Approx current magnitude is\n",
+"Iamp=vsamp/magZ\n",
+"printf('\n Approx current magnitude= %3.2f mA \n',Iamp);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.4: Other_resonant_forms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.4\n",
+"disp('Given')\n",
+"disp('R1=2 ohm R2=3 ohm L=1H C=125mF')\n",
+"R1=2;R2=3 ; L=1;C=125*10^-3;\n",
+"w0=sqrt(1/(L*C)-(R1/L)^2)\n",
+"printf('w0=%d rad/s \n',w0)\n",
+"//Input admittance is 1/R2+i*w*C+1/(R+I*w*L)\n",
+"Y=1/3+%i/4+1/(2+%i*2)\n",
+"printf('Y= %3.4f S \n',Y)\n",
+"//Now input impedance at resonance \n",
+"Z=1/Y\n",
+"printf('Z= %3.4f ohm \n',Z)\n",
+"//Resonant frequency f=1/sqrt(L*C)\n",
+"f=1/sqrt(L*C)\n",
+"printf('f=%3.2f rad/s \n',f);\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.5: Equivalent_Series_and_parallel_combination.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.5\n",
+"disp('Given')\n",
+"disp('R=5 ohm L=100mH w=100 rad/s')\n",
+"Rs=5; Ls=100*10^-3 ;w=100;\n",
+"//Let Xs be the capacitive and inductive reactance \n",
+"Xs=w*Ls\n",
+"Q=Xs/Rs\n",
+"//As Q is greater than 5 we can approximate as\n",
+"Rp=Q^2*Rs\n",
+"Lp=Ls\n",
+"printf('The parallel equivalent is \n');\n",
+"printf('Rp= %d ohm \t Lp=%d mH',Rp,Lp*10^3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.6: Scaling.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.6\n",
+"disp('Given')\n",
+"disp('Km=20 Kf=50')\n",
+"Km=20; Kf=50;\n",
+"s=poly(0,'s')\n",
+"//From figure 16.20(a)\n",
+"C=0.05; L=0.5;\n",
+"//Performing magnitude as well as frequency scaling simultaneously\n",
+"Cscaled =C/(Km*Kf)\n",
+"Lscaled = L*Km/Kf\n",
+"printf('Scaled values are \n')\n",
+"printf('Cscaled =%d uF \t Lscaled =%d mH \n',Cscaled*10^6,Lscaled*10^3)\n",
+"//Converting the Laplace transform of the circuit\n",
+"//From figure 16.20(c)\n",
+"disp('Vin=V1+0.5s*(1-0.2*V1)')\n",
+"disp('V1=20/s')\n",
+"//On substituting V1 in equation of Vin\n",
+"\n",
+"Zin=(s^2-4*s+40)/(2*s)\n",
+"disp(Zin,'Zin=')\n",
+"//Now we need to scale Zin\n",
+"//We will multiply Zin by Km and replace s by s/Kf\n",
+"Zinscaled=horner(Km*Zin,s/Kf)\n",
+"disp(Zinscaled,'Zinscaled')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.8: Bode_diagrams.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 16.8\n",
+"//From figure 16.26\n",
+"disp('Writing the expression for voltage gain')\n",
+"disp('Vout/Vin=4000*(-1/200)*(5000*10^8/s)/((5000+10^8/s)*(5000+10^6/20s))')\n",
+"//On simplification\n",
+"s=poly(0,'s')\n",
+"h=syslin('c',(-2*s)/((1+s/10)*(1+s/20000)))\n",
+"disp(h)\n",
+"fmin=0.01\n",
+"fmax=10^7\n",
+"scf(1);clf;\n",
+"bode(h,fmin,fmax)\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/17-Two_Port_Networks.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/17-Two_Port_Networks.ipynb
new file mode 100644
index 0000000..61aff4a
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/17-Two_Port_Networks.ipynb
@@ -0,0 +1,309 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Two Port Networks"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.10: Transmission_parameters.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 17.10\n",
+"//From figure 17.32\n",
+"disp('Consider Network A')\n",
+"//Writing the mesh equations \n",
+"disp('V1=12*I1+10*I2')\n",
+"disp('V2=10*I1+14*I2')\n",
+"//Arranging in the standard form \n",
+"//V1=t11*V2-t12*I2\n",
+"//I1=t21*V2-t22*I2\n",
+"//Therefore t parameters of Network A is\n",
+"t11A=1.2;t12A=6.8;t21A=0.1;t22A=1.4;\n",
+"disp('Consider Network B')\n",
+"//Writing the mesh equations \n",
+"disp('V1=24*I1+20*I2')\n",
+"disp('V2=20*I1+28*I2')\n",
+"//Arranging in the standard form \n",
+"//V1=t11*V2-t12*I2\n",
+"//I1=t21*V2-t22*I2\n",
+"//Therefore t parameters of Network B is\n",
+"t11B=1.2;t12B=13.6;t21B=0.05;t22B=1.4;\n",
+"tA=[1.2 6.8;0.1 1.4]\n",
+"tB=[1.2 13.6;0.05 1.4]\n",
+"disp('t parameters of cascaded network is t=tA*tB')\n",
+"t=tA*tB\n",
+"disp(t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1: One_port_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.1\n",
+"clc\n",
+"//From figure 17.3\n",
+"disp('The mesh equations are')\n",
+"disp('V1=10*I1-10*I2')\n",
+"disp('0=-10*I1+17*I2-2*I3-5*I4')\n",
+"disp('0=-2*I2+7*I3-I4')\n",
+"disp('0=-5*I2-I3+26*I4')\n",
+"//We need to find input impedance\n",
+"disp('Zin=delz/del11')\n",
+"//In matrix form\n",
+"A=[10 -10 0 0 ;-10 17 -2 -5; 0 -2 7 -1;0 -5 -1 26]\n",
+"delz=det(A)\n",
+"printf('\n delz=%f ohm^4',delz);\n",
+"//Eliminating first row and first column to find del11\n",
+"B=[17 -2 -5;-2 7 -1;-5 -1 26]\n",
+"del11=det(B)\n",
+"printf('\n del11=%f ohm^3',del11);\n",
+"Zin=delz/del11\n",
+"printf('\n Zin=%f ohm',Zin);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.2: One_port_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.2\n",
+"clc\n",
+"//From figure 17.5\n",
+"disp('The mesh equations are')\n",
+"disp('V1=10*I1-10*I2')\n",
+"disp('0=-10*I1+17*I2-2*I3-5*I4')\n",
+"disp('0=-2*I2+7*I3-I4')\n",
+"disp('0=-0.5*I3+1.5*I4')\n",
+"//We need to find input impedance\n",
+"disp('Zin=delz/del11')\n",
+"//In matrix form\n",
+"A=[10 -10 0 0 ;-10 17 -2 -5; 0 -2 7 -1;0 0 -0.5 1.5]\n",
+"delz=det(A)\n",
+"printf('\n delz=%f ohm^3',delz);\n",
+"//Eliminating first row and first column to find del11\n",
+"B=[17 -2 -5;-2 7 -1;0 -0.5 1.5]\n",
+"del11=det(B)\n",
+"printf('\n del11=%f ohm^2',del11);\n",
+"Zin=delz/del11\n",
+"printf('\n Zin=%f ohm',Zin);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.3: One_port_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 17.3\n",
+"clc\n",
+"//From figure 17.7\n",
+"disp('The nodal equations are')\n",
+"disp('I1=0.35*V1-0.2*V2-0.05*V3')\n",
+"disp('I2=-0.2*V1+1.7*V2-1*V3')\n",
+"disp('I3=-0.05*V1-1*V2+1.3*I3')\n",
+"//We need to find input impedance\n",
+"disp('Yin=dely/del11')\n",
+"disp('Zin=1/Yin')\n",
+"//In matrix form\n",
+"A=[0.35 -0.2 -0.05;-0.2 1.7 -1;-0.05 -1 1.3]\n",
+"dely=det(A)\n",
+"printf('\n dely=%f S^3',dely);\n",
+"//Eliminating first row and first column to find del11\n",
+"B=[1.7 -1;-1 1.3]\n",
+"del11=det(B)\n",
+"printf('\n del11=%f S^2',del11);\n",
+"Yin=dely/del11\n",
+"printf('\n Yin=%f S',Yin);\n",
+"Zin=1/Yin\n",
+"printf('\n Zin=%f ohm',Zin);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.7: Some_equivalent_networks.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 17.7\n",
+"//From figure 17.16\n",
+"disp('Given a linear model of a transistor we need not explicitly find the aadmittance parameters ')\n",
+"disp('-y12 corresponds to admittance of 2k ohm resistor')\n",
+"disp('y11+y12 corresponds to admittance of 500 ohm resistor')\n",
+"disp('y21-y12 correponds to gain of dependent voltage source')\n",
+"disp('y22+y12 corresponds to admittance of 10k ohm resistor')\n",
+"//Writing down in equation form\n",
+"y12=-1/2000\n",
+"y11=1/500-y12\n",
+"y21=0.0395+y12\n",
+"y22=1/10000-y12\n",
+"printf('\n y11= %3.2f mS \n y12= %3.2f mS \n y21= %3.2f mS \n y22= %3.2f mS',y11*10^3,y12*10^3,y21*10^3,y22*10^3);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.8: Impedance_parameters.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 17.8\n",
+"disp('Given')\n",
+"disp('Z=[10^3 10;-10^6 10^4 ]')\n",
+"z11=10^3 ; z12=10;z21=-10^6;z22=10^4 \n",
+"//Using the given matrix we can write the mesh equations as\n",
+"disp('V1=10^3*I1+10*I2')\n",
+"disp('V2=-10^6*I1+10^4*I2')\n",
+"//The input to an two port network is an ideal sinusoidal voltage source in series with 500 ohm\n",
+"//Mathematically\n",
+"disp('The characterizing equations are')\n",
+"disp('Vs=500*I1+V1')\n",
+"//The output to an two port network is a 10k ohm resistor\n",
+"//Mathematically\n",
+"disp('V2=-10^4*I2')\n",
+"Zg=500;\n",
+"//Expressing V1,V2,I1,I2 in terms of Vs\n",
+"V1=0.75*Vs\n",
+"I1=Vs/2000\n",
+"V2=-250*Vs\n",
+"I2=Vs/40\n",
+"disp('Voltage gain Gv=V2/V1')\n",
+"Gv=V2/V1\n",
+"disp(Gv,'Gv=')\n",
+"disp('Current gain Gi=I2/I1')\n",
+"Gi=I2/I1\n",
+"disp(Gi,'Gi=')\n",
+"disp('Power gain Gp=Real[-0.5*V2*I2*]/Real[0..5*V1*I1*]')\n",
+"Gp=(-0.5*V2*I2)/(0.5*V1*I1)\n",
+"disp(Gp,'Gp=')\n",
+"disp('Input impedance is Zin=V1/I1')\n",
+"Zin=V1/I1\n",
+"printf('\n Zin= %d ohm',Zin)\n",
+"disp('Output impedance is Zout=z22-((z12*z21)/(z11+Zg))')\n",
+"Zout=z22-((z12*z21)/(z11+Zg))\n",
+"printf('\n Zout= %3.2f kohm',Zout*10^-3)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.9: Hybrid_parameters.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 17.9\n",
+"//From figure 17.27\n",
+"//Writing the mesh equations \n",
+"disp('V1=5*I1+4*I2')\n",
+"disp('V2=4*I1+10*I2')\n",
+"//Arranging in the standard form \n",
+"//V1=h11*I1+h12*V2\n",
+"//I2=h21*I1+h22*V2\n",
+"//Therefore h parameters are\n",
+"h11=3.4;h12=0.4;h21=-0.4;h22=0.1;\n",
+"h=[h11 h12;h21 h22]\n",
+"disp(h)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/18-Fourier_Circuit_Analysis.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/18-Fourier_Circuit_Analysis.ipynb
new file mode 100644
index 0000000..0e972cc
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/18-Fourier_Circuit_Analysis.ipynb
@@ -0,0 +1,183 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Fourier Circuit Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1: Trigonometric_form_of_the_Fourier_Series.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"close\n",
+"clc\n",
+"//Example 18.1\n",
+"//From the figure 18.2\n",
+"disp('The equation of v(t) considering one period can be written as')\n",
+"disp('v(t)=Vm*cos(5*%pi*t) for -0.1<=t<=0.1')\n",
+"disp('v(t)=0 for 0.1<=t<=0.3')\n",
+"//Assuming the value of Vm is 1\n",
+"Vm=1;\n",
+"//Evaluating the constants an and bn\n",
+"//bn=0 for all n\n",
+"//an=(2*Vm*cos(n*%pi/2))/(%pi*(1-n^2))\n",
+"//a0=Vm/%pi\n",
+"t=-1:0.02:1\n",
+"v0t=Vm/%pi\n",
+"v1t=(1/2)*(Vm*cos(5*%pi*t))\n",
+"v0t_v1t=v0t+v1t\n",
+"v2t=(2/(3*%pi))*(Vm*cos(10*%pi*t))\n",
+"v0t_v1t_v2t=v0t+v1t+v2t\n",
+"v3t=(2/(15*%pi))*(Vm*cos(20*%pi*t))\n",
+"v0t_v1t_v2t_v3t=v0t+v1t+v2t-v3t\n",
+"figure\n",
+"a = gca ();\n",
+"a. y_location = 'origin';\n",
+"a. x_location = 'origin';\n",
+"a. data_bounds =[ -1,0;1 0.5];\n",
+"plot (t,v0t)\n",
+"xtitle('vot vs t','t in s','vot')\n",
+"figure\n",
+"a = gca ();\n",
+"a. y_location = 'origin';\n",
+"a. x_location = 'origin';\n",
+"a. data_bounds =[ -1,-0.5;1 0.5];\n",
+"plot (t,v0t_v1t)\n",
+"a. y_location = 'origin';\n",
+"a. x_location = 'origin';\n",
+"a. data_bounds =[ -1,-0.5;1 0.5];\n",
+"plot (t,v0t_v1t_v2t,'r.->')\n",
+"a. y_location = 'origin';\n",
+"a. x_location = 'origin';\n",
+"a. data_bounds =[ -1,-0.5;1 0.5];\n",
+"plot (t,v0t_v1t_v2t_v3t,'d')\n",
+"xtitle('v(t)','t in s','v(t) in V')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.5: Definition_of_the_Fourier_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc;\n",
+"//Example 18.5\n",
+"//Let amplitude be 1 \n",
+"A=1;\n",
+"Dt=0.01;\n",
+"T1=4;\n",
+"t=0:Dt:T1/4;\n",
+"for i=1:length(t)\n",
+" xt(i)=A\n",
+"end\n",
+"//Calculate Fourier Transform\n",
+"Wmax=2*%pi*1;\n",
+"K=4;\n",
+"k=-(2*K):(K/1000):(2*K);\n",
+"W=k*Wmax/K;\n",
+"xt=xt';\n",
+"XW=xt*exp(-sqrt(-1)*t'*W)*Dt;\n",
+"XW_Mag=real(XW);\n",
+"W=[-mtlb_fliplr(W),W(2:1001)];\n",
+"XW_Mag=[mtlb_fliplr(XW_Mag),XW_Mag(2:1001)];\n",
+"subplot(2,1,1);\n",
+"a=gca();\n",
+"a.data_bounds=[0,0;1,1.5];\n",
+"a.y_location='origin';\n",
+"plot(t,xt);\n",
+"xlabel('t in sec.');\n",
+"title('v(t)vs t');\n",
+"subplot(2,1,2);\n",
+"a=gca();\n",
+"a.y_location='origin';\n",
+"plot(W*%pi/2,abs (XW_Mag));\n",
+"xlabel('Freq in rad/sec');\n",
+"ylabel('|F(jw)|')\n",
+"title('|F(jw)| vs t');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.6: Physical_significance_of_Fourier_Transform.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"syms s t\n",
+"printf('Given')\n",
+"disp('v(t)=4*exp(-3*t)*u(t)')\n",
+"v=4*exp(-3*t)\n",
+"\n",
+"F=4*(integ(exp(-(3+%i*1)*s),s,0,%inf))\n",
+"//The secind term tends to zero\n",
+"disp(F,'F=')\n",
+"//Let W be the total 1 ohm energy in the input signal\n",
+"W=integ(v^2,t,0,%inf)\n",
+"disp(W,'W=')\n",
+"//Let Wo be the total energy\n",
+"//As the frequency range is given as 1 Hz<|f|<2 Hz\n",
+"//Considering symmetry\n",
+"Wo=(1/%pi)*integ((16/(9+s^2)),s,2*%pi,4*%pi)\n",
+"disp(Wo,'Wo=')\n",
+"\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/2-Basic_components_and_Electric_Circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/2-Basic_components_and_Electric_Circuits.ipynb
new file mode 100644
index 0000000..a8cbdbd
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/2-Basic_components_and_Electric_Circuits.ipynb
@@ -0,0 +1,181 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Basic components and Electric Circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.1\n",
+"//Computation of power absorbed by each part\n",
+"//From figure 2.13a\n",
+"V=2;I=3;\n",
+"//We have Power(P)=V*I\n",
+"P=V*I\n",
+"printf('a) Power =%dW\n',P)\n",
+"if P>0 then\n",
+" printf('Power is absorbed by the element\n')\n",
+"else\n",
+" printf('Power is supplied by the element\n');\n",
+"end \n",
+"\n",
+"clear P;\n",
+"//From figure 2.13b\n",
+"V=-2;I=-3;\n",
+"//We have Power(P)=V*I\n",
+"P=V*I\n",
+"printf('b) Power =%dW\n',P)\n",
+"if P>0 then\n",
+" printf('Power is absorbed by the element\n')\n",
+"else\n",
+" printf('Power is supplied by the element\n')\n",
+"end\n",
+"\n",
+"//From figure 2.13c\n",
+"V=4;I=-5;\n",
+"//We have Power(P)=V*I\n",
+"P=V*I\n",
+"printf('c) Power =%dW\n',P)\n",
+"if P>0 then\n",
+" printf('Power is absorbed by the element\n')\n",
+"else\n",
+" printf('Power is supplied by the element\n')\n",
+"end "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Dependent_sources.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.2\n",
+"//Calculate vL \n",
+"disp('Given')\n",
+"disp('v2=3V')\n",
+"v2=3;\n",
+"//From figure 2.19b\n",
+"disp('Considering the right hand part of the circuit ')\n",
+"disp('vL=5v2')\n",
+"vL=5*v2;\n",
+"disp('On substitution')\n",
+"printf('vL=%dV\n',vL);\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Ohm_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.3\n",
+"//Calculate the voltage and power dissipated acreoss the resistor terminals\n",
+"//From figure 2.24b\n",
+"disp('Given')\n",
+"disp('R=560 ohm ; i=428mA')\n",
+"R=560;i=428*10^-3;\n",
+"//Voltage across a resistor is\n",
+"disp('v=R*i')\n",
+"v=R*i;\n",
+"printf('Voltage across a resistor=%3.3fV\n',v)\n",
+"\n",
+"//Power dissipated by the resistor is\n",
+"disp('p=v*i')\n",
+"p=v*i;\n",
+"printf('Power dissipated by the resistor=%3.3fW\n',p)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Ohm_law.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 2.4\n",
+"//Calculate the power dissipated within the wire\n",
+"//From figure 2.27\n",
+"disp('Given')\n",
+"disp('Total length of the wire is 4000 feet')\n",
+"disp('Current drawn by lamp is 100A')\n",
+"//Considering American Wire Gauge system(AWG)\n",
+"//Referring Table 2.4\n",
+"disp('4AWG=0.2485ohms/1000ft')\n",
+"l=4000; i=100 ; rl=0.2485/1000;\n",
+"//Let R be the wire resistance\n",
+"R=l*rl;\n",
+"//Let p be the power dissipated within the wire\n",
+"disp('p=i^2*R')\n",
+"p=i^2*R\n",
+"printf('Power dissipated within the wire=%dW\n',p)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/3-Voltage_and_Current_laws.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/3-Voltage_and_Current_laws.ipynb
new file mode 100644
index 0000000..d66f6d0
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/3-Voltage_and_Current_laws.ipynb
@@ -0,0 +1,32 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Voltage and Current laws"
+ ]
+ },
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/4-Basic_Nodal_and_Mesh_Analysis.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/4-Basic_Nodal_and_Mesh_Analysis.ipynb
new file mode 100644
index 0000000..4a2de73
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/4-Basic_Nodal_and_Mesh_Analysis.ipynb
@@ -0,0 +1,32 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Basic Nodal and Mesh Analysis"
+ ]
+ },
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/6-Network_Theorems_and_useful_Circuit_Analysis_Techniques.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/6-Network_Theorems_and_useful_Circuit_Analysis_Techniques.ipynb
new file mode 100644
index 0000000..6234db5
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/6-Network_Theorems_and_useful_Circuit_Analysis_Techniques.ipynb
@@ -0,0 +1,242 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Network Theorems and useful Circuit Analysis Techniques"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: The_Superposition_principle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 6.10\n",
+"//Calculate the voltage across 20 ohm capacitor\n",
+"//Consider the circuit to be solved by superposition principle\n",
+"disp('Consider the current source 2(90 deg)only')\n",
+"//From figure 6.32\n",
+"//Let I1 be the current through -i*4 capacitive reactance\n",
+"Imag=2;Iph=90;\n",
+"i=%i\n",
+"x=Imag * cos (( Iph * %pi ) /180) ;\n",
+"y=Imag * sin (( Iph * %pi ) /180) ;\n",
+"I= complex (x,y)\n",
+"I1=(I*(i*15))/(i*5+i*15-i*4)\n",
+"//Let V20 be the voltage across -i*4 capacitive reactance\n",
+"V200=(-i*4)*I1\n",
+"printf('V20=%3.2fV \n',V200)\n",
+"disp('Consider the 20 V voltage source only')\n",
+"V=20;\n",
+"//From figure 6.35\n",
+"//let V201 be the voltage across -i*5 capacitive reactance\n",
+"V201=-V\n",
+"printf('V201=%d V \n',V201)\n",
+"disp('Consider the current source 1(90 deg)only')\n",
+"I1mag=1;I1ang=90;\n",
+"//From figure 6.37\n",
+"//Let V202 be the voltage across -i*5 capacitive reactance\n",
+"V202=(-i*5)*I1mag*i\n",
+"printf('V202=%3.2fV \n',V202)\n",
+"//Let V20 be the voltage across -i*20 capacitive reactance\n",
+"V20=V200+V201+V202\n",
+"printf('\n V20=%3.2fV \n',V20)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.17: Reciprocity_Theorem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 6.17\n",
+"//Verification of Reciprocity theorem\n",
+"I=20\n",
+"//From figure 6.59\n",
+"disp('The current divides between the two parallel impedances')\n",
+"//Let I2 be the current through i5 ohm \n",
+"I2=(20*%i*(10+%i*5))/(10+%i*5+%i*5-%i*2)\n",
+"//Let Vx be the voltage across -i2 ohm capacitive reactance\n",
+"Vx=I2*(-%i*2)\n",
+"[Vxmag Vxang]=polar(Vx)\n",
+"printf('Vx=%3.2f(%3.2f deg)V \n',Vxmag,(Vxang*180)/%pi)\n",
+"//To verify Reciprocity theorem remove the current source and place it parallel with -i2 ohm capacitive reactance\n",
+"//From figure 6.60\n",
+"//Let I2 be the current flowing through resistor of 10 ohm\n",
+"I2=(20*%i*(-%i*2))/(10+%i*5+%i*5-%i*2)\n",
+"//let Vx1 be the deired output voltage across 10 ohm resistor and i5 inductive reactance\n",
+"Vx1=I2*(10+%i*5)\n",
+"[Vx1mag Vx1ang]=polar(Vx1)\n",
+"printf('Vx1=%3.2f(%3.2f deg)V \n',Vx1mag,(Vx1ang*180)/%pi)\n",
+"//Comparing the values of Vx and Vx1\n",
+"disp('Vx=Vx1')\n",
+"disp('Hence Reciprocity theorem is verified')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18: Reciprocity_Theorem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 6.18\n",
+"//Verification of Reciprocity theorem\n",
+"I=10\n",
+"//From figure 6.61\n",
+"disp('The current divides between the two parallel impedances')\n",
+"//Let I2 be the current through 4 ohm \n",
+"I2=(10*5)/(4-%i*4+5)\n",
+"//Let Vx be the voltage across -i4 ohm capacitive reactance\n",
+"Vx=I2*(-%i*4)\n",
+"[Vxmag Vxang]=polar(Vx)\n",
+"printf('Vx=%3.2f(%3.2f deg)V \n',Vxmag,(Vxang*180)/%pi)\n",
+"//To verify Reciprocity theorem remove the current source and place it parallel with -i4 ohm capacitive reactance\n",
+"//From figure 6.62\n",
+"//Let I1 be the current flowing through resistor of 5 ohm\n",
+"I1=(10*(-%i*4))/(5+4-%i*4)\n",
+"//let Vx1 be the deired output voltage across 5 ohm resistor\n",
+"Vx1=I1*5\n",
+"[Vx1mag Vx1ang]=polar(Vx1)\n",
+"printf('Vx1=%3.2f(%3.2f deg)V \n',Vx1mag,(Vx1ang*180)/%pi)\n",
+"//Comparing the values of Vx and Vx1\n",
+"disp('Vx=Vx1')\n",
+"disp('Hence Reciprocity theorem is verified')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19: Millman_Theorem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 6.19\n",
+"//Calculate total current through load\n",
+"//On applying source transformation \n",
+"//From figure 6.65\n",
+"i=%i\n",
+"V1=10;V2mag=5;V2ph=90;V3mag=14.4;V3ph=225;\n",
+"x=V2mag * cos (( V2ph * %pi ) /180) ;\n",
+"y=V2mag * sin (( V2ph * %pi ) /180) ;\n",
+"V2= complex (x,y)\n",
+"a=V3mag * cos (( V3ph * %pi ) /180) ;\n",
+"b=V3mag * sin (( V3ph * %pi ) /180) ;\n",
+"V3= complex (a,b)\n",
+"G1=1/2;G2=1/(2+i*3);G3=1/(2-i*2);\n",
+"//By applying Millman Theorem\n",
+"disp('V=((V1*G1)+(V2*G2)+(V3*G3))/(G1+G2+G3)')\n",
+"V=((V1*G1)+(V2*G2)+(V3*G3))/(G1+G2+G3)\n",
+"[Vmag Vang]=polar(V)\n",
+"R=1/(G1+G2+G3)\n",
+"printf('V=%3.2f(%3.2f deg)V',Vmag,(Vang*180)/%pi)\n",
+"disp(R,'R=')\n",
+"//Consider the resultant circuit from figure 6.66\n",
+"disp('Let the total current through 3+i4 be I')\n",
+"//Applying KVL to the circuit\n",
+"I=V/(3+i*4+R)\n",
+"[Imag Iang]=polar(I)\n",
+"printf('I=%3.2f(%3.2f deg)V',Imag,(Iang*180)/%pi)\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.22: Tellegen_Theorem.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 6.22\n",
+"//Writing KVL for the circuit\n",
+"disp('10*i=30')\n",
+"//On solving\n",
+"i=3;R=10;V1=25;V2=5;\n",
+"printf('Power absorbed by 10 ohm resistor is %d W \n',i^2*R)\n",
+"printf('Power delivered by 25 V source is %d W \n',V1*i)\n",
+"printf('Power delivered by 5 V source is %d W \n',V2*i)\n",
+"//Let P be the total power\n",
+"P=i^2*R-(V1*i+V2*i)\n",
+"if P==0 then\n",
+" disp('Tellegen theorem is valid')\n",
+"else\n",
+" disp('Tellegen theorem is not valid')\n",
+"end"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/7-Capacitors_and_Inductors.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/7-Capacitors_and_Inductors.ipynb
new file mode 100644
index 0000000..990342d
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/7-Capacitors_and_Inductors.ipynb
@@ -0,0 +1,173 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Capacitors and Inductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: The_Capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"syms s t\n",
+"//part(a)\n",
+"i=diff(5*s^0,s)\n",
+"disp(i,'i=')\n",
+"//prt(b)\n",
+"i1=diff(4*sin(3*t),t)\n",
+"t=-2:.1:5\n",
+" plot (t,12*cos(3*t))\n",
+"xtitle('i vs t','t(s)','i(A)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: The_Capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"t = 0:0.000001:0.002; \n",
+"deff('y=u(t)','y=1*(t>=0)');\n",
+"y =0.02*(u(t) - u(t-0.002));\n",
+"figure\n",
+"a=gca()\n",
+"subplot(111)\n",
+"plot2d(t,y,5,rect=[0 0 0.004 0.03])\n",
+"xtitle('i vs t','t in ms','i in mA')\n",
+"\n",
+"syms s\n",
+"//For t<=0 ms\n",
+"v=0\n",
+"//For the region in the rectangular pulse i.e 0<t<=2 ms\n",
+"v=integ(s^0,s)*4000\n",
+"//For t>2 ms\n",
+"v=8\n",
+"s=0:0.000001:0.002\n",
+"\n",
+"figure\n",
+"a=gca()\n",
+"subplot(111)\n",
+"plot(s,(4000*s),s+0.002,8)\n",
+"xtitle('v vs t','t in ms','v in V')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: The_Capacitor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 7.3\n",
+"//Let wc be the energy stored in capacitor\n",
+"C=20*10^-6; R=10^6;\n",
+"t=0:0.001:0.5\n",
+"v=100*sin(2*%pi*t)\n",
+"wc=0.5*C*v^2\n",
+"plot(t,wc)\n",
+"xtitle('wC vs t','t in sec','wC in J')\n",
+"//Let iR be the current in the resistor\n",
+"iR=v/R\n",
+"//Let pR be the power dissipated in the resistor\n",
+"pR=iR^2*R\n",
+"//If wR is the energy dissipated in the resistor\n",
+"syms s\n",
+"wR=integ(100*(sin(2*%pi*s))^2,s,0,0.5)\n",
+"disp(wR,'wR=')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: The_Inductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 7.7\n",
+"printf('Given')\n",
+"disp('i=12*sin(%pi*t/6),R=0.1 ohm,L=3H')\n",
+"t=0:.1:6\n",
+"i=12*sin(%pi*t/6),R=0.1;L=3;\n",
+"//Let wL be the energy stored in the inductor\n",
+"wL=0.5*L*i^2\n",
+"plot(t,wL)\n",
+"//From the above graph\n",
+"wLmax=216;tmax=3;\n",
+"printf('Maximum value at %d J at %d sec',wLmax,tmax)\n",
+"//Let pR be the power dissipated in the resistor\n",
+"pR=i^2*R\n",
+"//Energy converted to heat in 6 sec interval in the resistor is \n",
+"syms s\n",
+"wR=integ(14.4*(sin(%pi/6*s))^2,s,0,6)\n",
+"disp(wR,'wR')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/8-Basic_RL_and_RC_circuits.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/8-Basic_RL_and_RC_circuits.ipynb
new file mode 100644
index 0000000..6a28ac8
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/8-Basic_RL_and_RC_circuits.ipynb
@@ -0,0 +1,32 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Basic RL and RC circuits"
+ ]
+ },
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Engineering_Circuit_Analysis_by_W_Hayt/9-The_RLC_Circuit.ipynb b/Engineering_Circuit_Analysis_by_W_Hayt/9-The_RLC_Circuit.ipynb
new file mode 100644
index 0000000..990424c
--- /dev/null
+++ b/Engineering_Circuit_Analysis_by_W_Hayt/9-The_RLC_Circuit.ipynb
@@ -0,0 +1,98 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: The RLC Circuit"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: The_Source_free_parallel_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Example 9.1\n",
+"//Calculate resistor values for underdamped and overdamped responses\n",
+"printf('Given')\n",
+"disp('L=10mH and C=100uF')\n",
+"L=10*10^-3;C=100*10^-6\n",
+"w0=sqrt(1/(L*C))\n",
+"printf('w0=%drad/s\n',w0)\n",
+"//alpha(a)=1/(2*R*C)\n",
+"disp('For an overdamped response')\n",
+"disp('a > w0')\n",
+"//On solving\n",
+"disp('Hence')\n",
+"disp('R<5ohm')\n",
+"disp('For an underdamped response')\n",
+"disp('a < w0')\n",
+"//On solving\n",
+"disp('Hence')\n",
+"disp('R>5ohm')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Graphical_Representation_of_Overdamped_response.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Example 9.4\n",
+"//Calculate settling time\n",
+"t=0:0.1:5\n",
+"ic=2*exp(-t)-4*exp(-t)\n",
+"plot(t,ic)\n",
+"xtitle('ic vs t','t in s','ic in A')\n",
+"//Let ts be the settling time\n",
+"//From the graph the maximum value is|-2|=2A\n",
+"//'ts' is the time when ic has decreased to 0.02A\n",
+"//On solving for 'ts'\n",
+"ts=-log(0.02/4)\n",
+"printf('ts=%3.2f s\n',ts)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}