summaryrefslogtreecommitdiff
path: root/Elements_Of_Physical_Chemistry_by_P_Atkins
diff options
context:
space:
mode:
Diffstat (limited to 'Elements_Of_Physical_Chemistry_by_P_Atkins')
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb174
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb217
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb203
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb190
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb84
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb121
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb144
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb88
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb97
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb62
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb145
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb204
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb163
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb244
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb172
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb227
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb275
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb208
-rw-r--r--Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb293
19 files changed, 3311 insertions, 0 deletions
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb
new file mode 100644
index 0000000..e12db8f
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb
@@ -0,0 +1,174 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: The properties of gases"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialzation of variables\n",
+"m=1.25 //g\n",
+"MN2=28.02 //g/mol\n",
+"T=20+273.15 //K\n",
+"V=0.25//L\n",
+"//Calculations\n",
+"P=m*8.31451*T/(MN2*V)\n",
+"//Results\n",
+"printf('Pressure in the gas flask =%.2f kPa',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialzation of variables\n",
+"xN2=0.780\n",
+"xO2=0.210\n",
+"xAr=0.009\n",
+"P=100 //kPa\n",
+"//Calculations\n",
+"PN2=xN2*P\n",
+"PO2=xO2*P\n",
+"PAr=xAr*P\n",
+"//Results\n",
+"printf('Partial pressure of Nitrogen(kPa) = %.1f',PN2)\n",
+"printf('\n Partial pressure of Oxygen(kPa) = %.1f',PO2)\n",
+"printf('\n Partial pressure of Argon(kPa) = %.1f',PAr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3_i: Illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialzation of variables\n",
+"T1=298//K\n",
+"T2=273//K\n",
+"//Calculations\n",
+"factor=sqrt(T2/T1)\n",
+"percentage=(1-factor)*100\n",
+"//Results\n",
+"printf('Percentage loss of speed of air molecules = %.2f',percentage)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4_i: illustration_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialzation of variables\n",
+"MH2=2.016 //g/mol\n",
+"MCO2=44.01 //g/mol\n",
+"//calculations\n",
+"ratio=sqrt(MCO2/MH2)\n",
+"//results\n",
+"printf('ratio of rates of effusion =%.3f',ratio)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5_i: illustration_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialzation of variables\n",
+"T=25+273 //K\n",
+"sigma=0.4*10^(-18) //m^2\n",
+"P=10^5 //Pa\n",
+"c=481.8 //m/sec\n",
+"//Calculations\n",
+"Lambda=8.31451*T/(2^0.5 *6.022*10^23 *sigma*P)\n",
+"frequency=2^0.5 *6.022*10^23 *sigma*P*c/(8.31451*T)\n",
+"//Results\n",
+"printf('Mean free path = %.2e m',Lambda)\n",
+"printf('\n Collision frequency = %.2e m',frequency)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb
new file mode 100644
index 0000000..5a2784e
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb
@@ -0,0 +1,217 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: The rates of reactions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"I=[1 2 4 6]*10^-5\n",
+"r1=[1.070 3.48 13.9 31.3]*10^-3\n",
+"r2=[4.35 17.4 69.6 157]*10^-3\n",
+"r3=[10.69 34.7 138 313]*10^-3\n",
+"Ar=[1 5 10]*10^-3\n",
+"//calculations\n",
+"logI=log(I)\n",
+"logr1=log(r1)\n",
+"logr2=log(r2)\n",
+"logr3=log(r3)\n",
+"//The calculations are approximate.hence the value differs from textbook a bit.\n",
+"x=logI\n",
+"y=logr1\n",
+"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n",
+"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n",
+"m1=p(1,1);b1=p(2,1);\n",
+"y=logr2\n",
+"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n",
+"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n",
+"m2=p(1,1);b2=p(2,1);\n",
+"y=logr3\n",
+"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n",
+"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n",
+"m3=p(1,1);b3=p(2,1);\n",
+"logAr=log(Ar)\n",
+"kdash=[b1 b2 b3]\n",
+"plot(logAr,kdash)\n",
+"x=logAr\n",
+"y=kdash\n",
+"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n",
+"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n",
+"m4=p(1,1);b4=p(2,1);\n",
+"logk=b4\n",
+"k=%e^logk\n",
+"//results\n",
+"printf('Overall rate law is r = %.1e [I]^2 [Ar]',k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"t=28.4 //min\n",
+"//calculations\n",
+"n=log2(8)\n",
+"time=n*t\n",
+"printf('Time required = %.1f min',time)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"t=[0 1000 2000 3000 4000]\n",
+"p=[10.20 5.72 3.99 2.78 1.94]\n",
+"lnp=log(p)\n",
+"x=t\n",
+"y=lnp\n",
+"//hence the value differs from textbook a bit.\n",
+"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n",
+"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n",
+"m=p(1,1);b=p(2,1);\n",
+"k=m\n",
+"plot(x,y)\n",
+"//Since first order reaction\n",
+"//results\n",
+"printf('rate constant = %.2e s^-1',k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"E=50*10^3 //J/mol\n",
+"T1=25+273 //K\n",
+"T2=37+273 //K\n",
+"//calculations\n",
+"ln=E/8.3145 *(1/T1-1/T2)\n",
+"factor=%e^(ln)\n",
+"//results\n",
+"printf('kdash = %.2f k',factor)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"T=[700 730 760 790 810 840 910 1000]\n",
+"k=[0.011 0.035 0.105 0.343 0.789 2.17 20 145]\n",
+"//calculations\n",
+"x=1000/T\n",
+"y=log(k)\n",
+"//sx=sum(x)\n",
+"//sx2=sum(x^2)\n",
+"//sy=sum(y)\n",
+"//sxy=sum(x.*y)\n",
+"//n=length(x)\n",
+"//A=[sx,n;sx2,sx]\n",
+"//B=[sy;sxy]\n",
+"//p=A\B\n",
+"//m=p(1,1)\n",
+"//b=p(2,1)\n",
+"disp('from graph')\n",
+"m=2.265*10^4\n",
+"Ea=m*8.3145\n",
+"b=27.71\n",
+"A=%e^(b)\n",
+"//results\n",
+"printf('Activation energy = %d kJ/mol',Ea/1000)\n",
+"printf('\n Arrhenius factor = %.2e L/ mol s',A)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb
new file mode 100644
index 0000000..a056596
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb
@@ -0,0 +1,203 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Accounting for the rate laws"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"S=[10 20 40 80 120 180 300]\n",
+"v=[0.32 0.58 0.9 1.22 1.42 1.58 1.74]\n",
+"//calculations\n",
+"bys=1000/S\n",
+"byv=1/v\n",
+"n=size(S)\n",
+"x=bys\n",
+"y=byv\n",
+"disp('From graph,')\n",
+"m=26.17\n",
+"c=0.476\n",
+"//Sx =sum(x);\n",
+"//Sxx =sum(x.*x);\n",
+"//Sy =sum(y);\n",
+"//Syy =sum(y.*y);\n",
+"//Sxy =sum(x.*y);\n",
+"//m =(n*Sxy-(Sx*Sy))/(n*Sxx-(Sx*Sx));\n",
+"//c =(Sy/n)-(m*Sx/n);\n",
+"//disp(m)\n",
+"//disp(c)\n",
+"//y=zeros(7)\n",
+"//for i =1:n(1)\n",
+"// y(i)=m*bys(i)+c\n",
+"//end\n",
+"\n",
+"//clf();\n",
+"//plot(x,y);\n",
+"//xtitle('','x ','y ');\n",
+"//legend(['measure points', 'fitted curve'], 2);\n",
+"vmax=1/c\n",
+"Km=m/c\n",
+"//results\n",
+"printf('Max. velocity = %.2f mumol/L s',vmax)\n",
+"printf('\n Michaelis constant = %.1f mumol/L',Km)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"kf=8.18*10^8 //L/mol s\n",
+"kb=2*10^6 //s^-1\n",
+"//calculations\n",
+"K=kf/kb\n",
+"//results\n",
+"printf('Equilibriu constant for dimerization = %.1e ',K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2_e: examlple_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"c=1.234\n",
+"m=2.044\n",
+"//calculations\n",
+"Ki=c/m\n",
+"//results\n",
+"printf('KI = %.2f ',Ki)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"F16bP=1.9*10^-5 //mmol/L\n",
+"ADP=1.3*10^-3 //mmol/L\n",
+"ATP=11.4*10^-3 //mmol/L\n",
+"F6P=8.9*10^-5 //mmol/L\n",
+"k=1.2*10^3\n",
+"//calculations\n",
+"Q=F16bP*ADP/(F6P*ATP)\n",
+"if(Q<k)\n",
+" printf('The reaction step is far from equilibrium and Q= %.3f',Q)\n",
+"else\n",
+" printf('The reaction step is at equilibrium and Q= %.3f',Q)\n",
+"end\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"P=50 //J/s\n",
+"l=313*10^-9 //m\n",
+"h=6.62608*10^-34 //Js\n",
+"N=6.023*10^23\n",
+"c=2.99792*10^8 //m/s\n",
+"yield=0.21\n",
+"//calculations\n",
+"rate=P*l/(h*c)\n",
+"Frate=yield*rate\n",
+"molrate=Frate/N\n",
+"//results\n",
+"printf('No.of diheptane molecules destroyed = %.1e s^-1',Frate)\n",
+"printf('\n Moles of diheptane molecules destroyed = %.1e mol s^-1',molrate)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb
new file mode 100644
index 0000000..d0a173f
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb
@@ -0,0 +1,190 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Quantum theory"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"P=100 //W\n",
+"t=10 //s\n",
+"l=560 //nm\n",
+"//calculations\n",
+"TE=P*t\n",
+"E1=6.626*10^-34 *2.998*10^8 /(l*10^-9)\n",
+"N=TE/E1\n",
+"//results\n",
+"printf('No. of photons required = %.2e ',N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"lmax=4.9*10^-7 //m\n",
+"//calculations\n",
+"T=2.9*10^-3 /lmax\n",
+"//results\n",
+"printf('Surface temperature must be close to %d K',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"V=1000 //V\n",
+"//calculations\n",
+"l=6.626*10^-34 /sqrt(2*9.11*10^-31 *1.602*10^-19 *V)\n",
+"//results\n",
+"printf('Wavelength of electrons = %.2e m',l)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"k=516 //N/m\n",
+"m=1.67*10^-27 //kg\n",
+"//calculations\n",
+"v=sqrt(k/m) /(2*%pi)\n",
+"E=6.624*10^-34 *v\n",
+"//results\n",
+"printf('Separation between adjacent levels frequency, %.2e Hz',v)\n",
+"printf('\n Energy = %.2e',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"r1=0 //multiply by a0\n",
+"r2=1 //multiply by a0\n",
+"//calculations\n",
+"ratio=%e^r1 /%e^(-2*r2)\n",
+"//results\n",
+"printf('It is more propable that electron would be found %.2f times more at r1',ratio)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.4_e: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"m=1 //g\n",
+"v=10^-6 //m/s\n",
+"//calculations\n",
+"dx=1.054*10^-34 /(2*m*10^-3 *v)\n",
+"//results\n",
+"printf('Uncertainity in position = %.1e m',dx)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb
new file mode 100644
index 0000000..6a1ab03
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb
@@ -0,0 +1,84 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Atomic structure"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dv=1 //pm^3\n",
+"a0=52.9 //pm\n",
+"//calculations\n",
+"Probability=dv/(%pi*a0^3)\n",
+"//results\n",
+"printf('probability of finding electron = %.1e',Probability)\n",
+"printf('\n Chance that electron would be found is one in %d times',1/Probability)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3_i: illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dr=1 //pm\n",
+"r=52.9 //pm\n",
+"//calculations\n",
+"Probability=4*%e^(-2) *dr/r\n",
+"//results\n",
+"printf('About 1 inspection in %d',1/Probability +3)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb
new file mode 100644
index 0000000..557de53
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb
@@ -0,0 +1,121 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15: Metallic and Ionic solids"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Hs=89 //kJ/mol\n",
+"HI=418 //kJ/mol\n",
+"HD=244 //kJ/mol\n",
+"HE=-349 //kJ/mol\n",
+"Hf=-437 //kJ/mol\n",
+"//calculations\n",
+"HL=Hs+HD/2 +HI+HE-Hf\n",
+"//results\n",
+"printf('Lattice energy = %d kJ/mol',HL)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"a=0.82 //nm\n",
+"b=0.94 //nm\n",
+"c=0.75 //nm\n",
+"h=1\n",
+"k=2\n",
+"l=3\n",
+"//calculations\n",
+"invd=sqrt(h*h/(a*a) + k*k/(b*b) + l*l/(c*c))\n",
+"d=1/invd\n",
+"invd2=sqrt(h*h*4/(a*a) + k*k*4/(b*b) + l*l*4/(c*c))\n",
+"d2=1/invd2\n",
+"//results\n",
+"printf('In case 1, separation = %.2f nm',d)\n",
+"printf('\n In case 2, separation = %.2f nm',d2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 15.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"l=154 //pm\n",
+"theta=11.2 //degrees\n",
+"//calculations\n",
+"d=l/(2*sind(theta))\n",
+"a=d*sqrt(3)\n",
+"//results\n",
+"printf('Length of the side of the unit cell = %d pm',a+1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb
new file mode 100644
index 0000000..21b9711
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb
@@ -0,0 +1,144 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 16: Molecular substances"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"e=1.609*10^-19 //C\n",
+"//calculations\n",
+"mux=(-0.36*e*(-0.8) + 0.45*e*(2.1) )*10^-12 /(3.33564*10^-30)\n",
+"muy=-0.91\n",
+"muz=0\n",
+"mux=-1.1\n",
+"mu=sqrt(mux*mux+muy*muy+muz*muz)\n",
+"//results\n",
+"printf('Net dipole moment = %.1f D',mu+0.1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"EH=2.1\n",
+"EBr=2.8\n",
+"//calculations\n",
+"diff=-EH+EBr\n",
+"//results\n",
+"printf('Prediced dipole moment = %.1f D',diff)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Na=6.023*10^23 // /mol\n",
+"e=1.60228*10^-19 //C\n",
+"e0=8.85419*10^-12 //C^2/J m\n",
+"//calculations\n",
+"factor=Na*e^2 /(4*%pi*e0)\n",
+"//Multiply by Z^2/R to get the value of potential energy. Plot the graph\n",
+"//results\n",
+"printf('Potential energy = %.3e Z*Z/R kJ/mol',factor)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 16.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"mu1=1.4 //D\n",
+"mu2=1.4 //D\n",
+"angle=180 //degrees\n",
+"d=3 //nm\n",
+"D=4.7*10^-30 //C m\n",
+"//calculations\n",
+"Vmol=D*D*(1-3*(cosd(angle))^2)/(4*%pi*8.854*10^-12 *(d*10^-9)^3)\n",
+"V=Vmol*(6.023*10^23)\n",
+"//results\n",
+"printf('Potential energy = %.1f J/mol',V)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb
new file mode 100644
index 0000000..ce8437c
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb
@@ -0,0 +1,88 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 17: Molecular rotations and vibrations"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"mH=1.673*10^-27 //kg\n",
+"mCl=5.807*10^-26 //kg\n",
+"R=127.4 *10^-12//m\n",
+"//calculations\n",
+"mu=mH*mCl/(mH+mCl)\n",
+"I=mu*R^2\n",
+"B=1.05457*10^-34 /(4*%pi*I)\n",
+"f=2*B\n",
+"//results\n",
+"printf('Frequency of transistion = %.1f GHz',f/10^9)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 17.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"v=89.6*10^12 //Hz\n",
+"//calculations\n",
+"l=3*10^8 /v\n",
+"wn=10^-2 /l\n",
+"//results\n",
+"printf('Wavenumber = %d cm^-1',wn)\n",
+"printf('\n Wavelength = %.2f mu m',l*10^6)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb
new file mode 100644
index 0000000..b8433c2
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb
@@ -0,0 +1,97 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 18: Electronic transistions"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"wl=256*10^-9 //m\n",
+"t=1 //mm\n",
+"C=0.050 //mol/L\n",
+"T=0.16\n",
+"t2=2 //mm\n",
+"//calculations\n",
+"E=-log10(T) /(C*t)\n",
+"A1=-log10(T)\n",
+"A2=E*C*t2\n",
+"Tr=10^(-A2)\n",
+"//results\n",
+"printf('Transmittance = %.3f',Tr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 18.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Q=[1 2 3 4 5]\n",
+"t1=[5.2 9.4 13.7 18 22.2]\n",
+"t2=[1.1 2 2.9 4 4.5]\n",
+"//calculations\n",
+"kqbykf=regress(Q,t1)\n",
+"slope1=kqbykf(2) *10^3\n",
+"kq=regress(Q,t2)\n",
+"slope2=kq(2) *10^10\n",
+"kq=slope2\n",
+"kf=kq/slope1\n",
+"thalf=log (2) /kf\n",
+"//results\n",
+"printf('Quenching rate constant = %.1e L ml^-1 s^-1',kq)\n",
+"printf('\n Half life= %.1e s',thalf)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb
new file mode 100644
index 0000000..06ae21a
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb
@@ -0,0 +1,62 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 19: Magnetic resonance"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 19.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"A=5.1 //Hz\n",
+"B=-1.4 //Hz\n",
+"C=3.2 //Hz\n",
+"an1=120 //degrees\n",
+"an2=180 //degrees\n",
+"//calculations\n",
+"j1=A+B*cosd(an1) + C*cosd(2*an1)\n",
+"j2=A+B*cosd(an2) + C*cosd(2*an2)\n",
+"//results\n",
+"printf('Spin-spin coupling constant = %d Hz',j1)\n",
+"printf('\n Spin-spin coupling constant = %d Hz',j2+1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb
new file mode 100644
index 0000000..8d74030
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb
@@ -0,0 +1,145 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Thermodynamics The first law"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"A=1.23 //A\n",
+"V=12 //V\n",
+"t=123 //s\n",
+"Temp=4.47 //C\n",
+"rise=3.22 //C\n",
+"//Calculations\n",
+"q=A*V*t\n",
+"C=q/Temp\n",
+"Output= C*rise\n",
+"//Results\n",
+"printf('heat supplied during calibration = %.1f J',q)\n",
+"printf('\n Heat capacity of the calorimeter = %.1f J/C',C)\n",
+"printf('\n Heat output = %.2f kJ',Output/1000.)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Cpm=75 //J/k mol\n",
+"n=5.55 //mol\n",
+"q=1 //kJ\n",
+"//Calculations\n",
+"deltaT=q*1000/(n*Cpm)\n",
+"//results\n",
+"printf('Change in temperature = %.1f K',deltaT)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"work=-622 //kJ\n",
+"heat=-82 //kJ\n",
+"//Calculations\n",
+"U=work+heat\n",
+"//results\n",
+"printf('The persons internal energy falls by %d kJ',U)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4_i: illustration_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"n=5.55 //mol\n",
+"T1=20 //C\n",
+"T2=80 //K\n",
+"Cpm=75.29 //J/K mol\n",
+"//Calculations\n",
+"H=n*Cpm*(T2-T1)\n",
+"//results\n",
+"printf('Enthalpy of the sample changes by %d kJ',H/1000.)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb
new file mode 100644
index 0000000..d7355c0
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb
@@ -0,0 +1,204 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 20: Statistical thermodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"E=22 //kJ/mol\n",
+"R=8.214 //J/K mol\n",
+"T=293 //K\n",
+"//Calculations\n",
+"q=1+%e^(-E*10^3 /(R*T))\n",
+"//results\n",
+"printf('At 20 C, partition function = %.4f',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"E=22*10^3 //kJ/mol\n",
+"T=293 //K \n",
+"//calculations\n",
+"ratio=%e^(-E/(8.31451*T))\n",
+"//results\n",
+"printf('Relative populations of boat and chair conformations is %.1e',ratio)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g2=5\n",
+"g1=3\n",
+"E2=6\n",
+"E1=2\n",
+"k=1.38*10^-23 //J/K\n",
+"h=6.626*10^-34 //J s\n",
+"B=3.18*10^11 //Hz\n",
+"//calculations\n",
+"ratio=g2/g1 *(%e^((E1-E2)*h*B/(k*T)))\n",
+"//results\n",
+"printf('Ratio= %.2f',ratio)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"k=1.38*10^-23 //J/K\n",
+"h=6.626*10^-34 //J s\n",
+"B=3.18*10^11 //Hz\n",
+"T=298 //K\n",
+"R=8.314 //J/K mol\n",
+"//calculations\n",
+"Sm=R*(1+log(k*T/(h*B)))\n",
+"//results\n",
+"printf('Contribution to rotational motion= %.1f J/ K mol',Sm)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.3_i: illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"T=298 //K\n",
+"m=32*1.66054*10^-27 //kg\n",
+"k=1.38066*10^-23 //j/k\n",
+"V=10^-4 //m^3\n",
+"h=6.62608*10^-34 //J/s\n",
+"//calculations\n",
+"q=(2*%pi*m*k*T)^1.5 *V/h^3 \n",
+"//results\n",
+"printf('Translational partition function = %.2e',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.5_e: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"me=9.10939*10^-31 //kg\n",
+"k=1.38*10^-23 //J/K\n",
+"h=6.626*10^-34 //J s\n",
+"p=10^5 //Pa\n",
+"T=1000 //K\n",
+"R=8.314 //J/K mol\n",
+"I=376*10^3 //J/mol\n",
+"//calculations\n",
+"K=(2*%pi*me)^1.5 *(k*T)^2.5 /(p*h^3) *%e^(-I/(R*T))\n",
+"//results\n",
+"printf('Equilibrium constant = %.2e',K)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb
new file mode 100644
index 0000000..48bd6e5
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb
@@ -0,0 +1,163 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 21: Introduction"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 0.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"P=1.115 //bar\n",
+"//Calculations\n",
+"Conv_fac=1/1.01325\n",
+"FinalP=Conv_fac*P //Final pressure\n",
+"//Results\n",
+"printf ('Final pressure in atmospheres (atm)= %.3f',FinalP)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 0.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"h=0.760 //m\n",
+"d=1.36*10^4 //kg/m^3\n",
+"//Calculations\n",
+"P=9.81*d*h\n",
+"//Results\n",
+"printf ('Pressure at the foot of the column (Pa)= %.3e',P)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 20.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"h=0.1 //m\n",
+"d=10^3//Kg/m^3\n",
+"Patm=100021 //Pa\n",
+"//Calculations\n",
+"P=9.81*h*d\n",
+"//Results\n",
+"printf('Hydrostatic pressure(Pa) = %.3f',P )\n",
+"printf('\n Pressure in apparatus(kPa) = %.3f',(Patm-P)/1000. )"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 21.3_i: illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"N=8.8*10^22\n",
+"NA=6.023*10^23 //mol^-1\n",
+"//Calculations\n",
+"n=N/NA\n",
+"//Results\n",
+"printf('No. of moles of Cu ( mol Cu)= %.2f',n)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 21.4_i: illustration_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"m=21.5 //g\n",
+"Mc=12.01 //g/mol\n",
+"//Calculations\n",
+"nc=m/Mc\n",
+"//Results\n",
+"printf('Amount of C atoms= %.2f mol C',nc)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb
new file mode 100644
index 0000000..7ef50a2
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb
@@ -0,0 +1,244 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Thermochemistry"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"I=0.682 //A\n",
+"V=12 //V\n",
+"t=500 //s\n",
+"m=4.33 //g\n",
+"MW=46.07 //g/mol\n",
+"//Calculations\n",
+"q=I*V*t\n",
+"n=m/MW\n",
+"H=q/n\n",
+"//Results\n",
+"printf('Molar enthalpy change = %.1f kJ/mol',H/1000.)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"dU=-969.6 //kJ/mol\n",
+"nN2=1/2\n",
+"nCO2=2\n",
+"nO2=9/4\n",
+"T=298.15 //K\n",
+"//Calculations\n",
+"n=nCO2+nN2-nO2\n",
+"H=dU+n*8.3145*T/1000.\n",
+"//results\n",
+"printf('Enthalpy change =%.1f kJ/mol',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"m=1 //g\n",
+"MW=24.31 //g/mol\n",
+"H=2337 //kJ/mol\n",
+"//Calculations\n",
+"n=m/MW\n",
+"q=n*H\n",
+"//results\n",
+"printf('Heat supplied = %.1f kJ',q)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"HC=716.68 //kJ\n",
+"HH=871.88 //kJ\n",
+"HO=249.17 //kJ\n",
+"Hcond=-38 //kJ\n",
+"HCH=-412\n",
+"HCO=-360\n",
+"HOH=-463\n",
+"//Calculations\n",
+"H1=HC+HH+HO\n",
+"H2=3*HCH+HCO+HOH\n",
+"H3=Hcond\n",
+"H=H1+H2+H3\n",
+"//results\n",
+"printf('Sum of enthalpy changes = %d kJ',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4_e: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Hf=-124 //kJ\n",
+"Hoxi=-2220 //kJ\n",
+"Hwater=286 //kJ\n",
+"//Calculations\n",
+"H=Hf+Hoxi+Hwater\n",
+"//results\n",
+"printf('Standard enthalpy of combustion of propene = %d kJ/mol',H)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5_e: Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"nCO2=6 //mol\n",
+"nH2O=3 //mol\n",
+"nO2=15/2 //mol\n",
+"nC6H6=1 //mol\n",
+"HC6H6=49 //kJ/mol\n",
+"HH2O=-285.83\n",
+"HO2=0\n",
+"HCO2=-393.51 \n",
+"//Calculations\n",
+"H=nCO2*HCO2+nH2O*HH2O-nC6H6*HC6H6-nO2*HO2\n",
+"//results\n",
+"printf('Standard enthalpy of combustion of benzene is %d kJ/mol',H-1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6_e: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"HH2O=-241.82 //kJ/mol\n",
+"T1=25 //C\n",
+"T2=100 //C\n",
+"CpH2O=33.58 //J/K mol\n",
+"CpH2=28.84 //J/K mol\n",
+"CpO2=29.37 //J/K mol\n",
+"//calculations\n",
+"dCp=CpH2O-CpH2-0.5*CpO2\n",
+"dH=HH2O+dCp*(T2-T1)/1000.\n",
+"//results\n",
+"printf('Enthalpy of fromation of water at 100 C is %.2f kJ/mol',dH)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb
new file mode 100644
index 0000000..6d82353
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb
@@ -0,0 +1,172 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Thermodynamics The second law"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Power=100 //W\n",
+"time=1 //day\n",
+"T=20 //C\n",
+"//calculations\n",
+"timeins=1*24*3600\n",
+"qsurr=timeins*Power\n",
+"Ssurr=qsurr/(T+273)\n",
+"//results\n",
+"printf('Heat transferred to surroundings = %d J',qsurr)\n",
+"printf('\n Entropy production per day = %.2e J/k',Ssurr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"H=100 //kJ\n",
+"T1=273 //K\n",
+"T2=373//K\n",
+"//calculations\n",
+"S1=H*1000/T1\n",
+"S2=H*1000/T2\n",
+"//results\n",
+"printf('Entropy change at 273 K is %d J/K ',S1)\n",
+"printf('\n Entropy change at 373 K is %d J/K ',S2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"g=9.81 //m/s^2\n",
+"m=30*10^-3 //kg\n",
+"d=10 //m\n",
+"H=2.828*10^6 //j/mol\n",
+"M=180 //g/mol\n",
+"//calculations\n",
+"w=g*m*d\n",
+"n=w/H\n",
+"m=n*M\n",
+"//results\n",
+"printf('Amount bird must consume = %.1e g',m)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"T=59.2 //K\n",
+"//calculations\n",
+"Hvap=85*(273.2+T)\n",
+"//results\n",
+"printf('Enthalpy of vaportization =%d kJ/mol',Hvap/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3_i: illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"SH2O=70 //J/K mol\n",
+"SH2=131 //J/K mol\n",
+"SO2=205 //J/K mol\n",
+"//calculations\n",
+"deltaS=2*SH2O-2*SH2-SO2\n",
+"printf('Change in entropy = %d J/K mol',deltaS)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb
new file mode 100644
index 0000000..e90983a
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb
@@ -0,0 +1,227 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: The properties of mixtures"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"m=0.14 //mol/kg\n",
+"w=1 //kg Assume\n",
+"//Calculations\n",
+"ngly=m*w\n",
+"nwater=w*10^3 /18.02\n",
+"ntotal=ngly+nwater\n",
+"xgly=ngly/ntotal\n",
+"//results\n",
+"printf('Mole fraction of glycerine is xgly = %.2e',xgly)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"mE=50 //g\n",
+"mW=50 //g\n",
+"//calculations\n",
+"nE=mE/46\n",
+"nW=mW/18\n",
+"ntotal=nE+nW\n",
+"xE=nE/ntotal\n",
+"xW=1-xE\n",
+"disp('for the observed xE and xW')\n",
+"vE=55 //cc/mol\n",
+"vW=18 //cc/mol\n",
+"V=nE*vE+nW*vW\n",
+"//results\n",
+"printf('\n VOlume of the mixture = %d cm^3 ',V+1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"xc=[0 0.20 0.40 0.60 0.80 1]\n",
+"pc=[0 35 82 142 219 293]\n",
+"pa=[347 270 185 102 37 0]\n",
+"//calculations\n",
+"plot(xc,pc)\n",
+"plot(xc,pa)\n",
+"xlabel('Mole fraction xc')\n",
+"ytitle('Pressure /Torr')\n",
+"disp('From the graph it is clear that KA=175 torr and KC=165 torr. They are plotted with Raoults law lines')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4_e: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"C=4 //mg/L\n",
+"MO2=32 //g/mol\n",
+"Mw=18\n",
+"w=1 //L\n",
+"K=3.3*10^7 //torr\n",
+"patm=0.21*760 //torr\n",
+"//calculations\n",
+"nO2=C/MO2\n",
+"nH2O=w*10^3 /Mw\n",
+"xO2=nO2/(nO2+nH2O)\n",
+"pO2=xO2*K\n",
+"if(pO2>patm)\n",
+" disp('The required concentration can be maintained under normal conditions')\n",
+"else\n",
+" disp('The required concentration cannot be maintained under normal conditions')\n",
+"end\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5_e: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"c=[1 2 4 7 9]\n",
+"hbyc=[0.28 0.36 0.503 0.739 0.889]\n",
+"R=8.3145 //J/K mol\n",
+"T=298 //K\n",
+"g=9.81 //m/s^2\n",
+"d=0.9998 //g/cm^3\n",
+"//calculations\n",
+"plot(c,hbyc)\n",
+"xlabel('c')\n",
+"ylabel('hbyc')\n",
+"vector=regress(c,hbyc)\n",
+"intercept=vector(1)\n",
+"intercept=intercept*10^-2\n",
+"M=R*T/(d*g*intercept)\n",
+"//results\n",
+"printf('Molar mass of the enzyme is close to %d kDa',M/1000 -3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6_e: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"nB=0.59 //mol\n",
+"nNB=0.41 //mol\n",
+"xN1=0.38\n",
+"xN2=0.74\n",
+"xNm=0.41\n",
+"//calculations\n",
+"disp('By lever rule')\n",
+"ratio=(xNm-xN1)/(xN2-xNm)\n",
+"percent=ratio*100\n",
+"//results\n",
+"printf('The rich phase is %d times more abundant in nitrobenzene',percent+1)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb
new file mode 100644
index 0000000..7ccd74f
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb
@@ -0,0 +1,275 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Principles of chemical equilibrium"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"G=-31 //kJ/mol\n",
+"T=37+273 //K\n",
+"Cadp=10^-3 //mmol/L\n",
+"Cp=8*10^-3 //mmol/L\n",
+"Catp=8*10^-3 //mmol/L\n",
+"R=8.314 //J/K mol\n",
+"//calculations\n",
+"Q=Cadp*Cp/Catp\n",
+"deltaG=G+R*T*log(Q) /1000.\n",
+"//results\n",
+"printf('Reaction Gibbs energy = %d kJ/mol',deltaG-1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Hr=-285.83 //kJ/mol\n",
+"Sr=-163.34 //J/ K mol\n",
+"T=298.15 //K\n",
+"//calculations\n",
+"Gr=Hr-T*Sr/1000.\n",
+"//results\n",
+"printf('Gibbs energy = %.2f kJ/mol',Gr)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Gr=-3.40 //kJ/mol\n",
+"R=8.314 //J/k mol\n",
+"T=298 //K\n",
+"//calculations\n",
+"lnK=Gr*10^3/(R*T)\n",
+"K=exp(lnK)\n",
+"//results\n",
+"printf('Equilibrium constant K= %.2f',K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"aADP=1 //mol/L\n",
+"aP=1 //mol/L\n",
+"aATP=1 //mol/L\n",
+"aH2O=1 //mol/L\n",
+"aH=10^-7 //mol/L\n",
+"G=10 //kJ/mol\n",
+"T=298 //K\n",
+"R=8.314 //J/K mol\n",
+"//calculations\n",
+"Q=aADP*aP*aH/(aATP*aH2O)\n",
+"Gr=G+R*T*log(Q)/1000.\n",
+"//results\n",
+"printf('Change in nGibbs energy =%d kJ/mol',Gr-1)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3_i: illustration_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Hr=178 //kJ/mol\n",
+"Sr=161 //J/K mol\n",
+"//calculations\n",
+"T=Hr*10^3 /Sr\n",
+"//results\n",
+"printf('Decompostion temperature = %.2e K',T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_e: example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Gr=1.7*10^3 //J/mol\n",
+"T=298 //K\n",
+"R=8.314 //J/K mol\n",
+"K=0.5\n",
+"//calculations\n",
+"GbyRT=Gr/(R*T)\n",
+"feq=K/(K+1)\n",
+"//results\n",
+"printf('Equivalent fraction = %.2f ',feq)\n",
+"disp('For the second part, Gr=1.7 + 2.48 ln(f/1-f)')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4_i: illustration_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"GCO2=-394 //kJ/mol\n",
+"GCO=-137 //kJ/mol\n",
+"GO2=0\n",
+"//calculations\n",
+"deltaG=2*GCO2-2*GCO+GO2\n",
+"//results\n",
+"printf('Standard reaction gibbs energy = %d kJ/mol',deltaG)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5_e: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"species=['N2' 'H2' 'NH3']\n",
+"change=['-x' '-3x' '2x']\n",
+"E=['1-x' '3-3x' '2x']\n",
+"disp('Concentration table')\n",
+"disp(species)\n",
+"disp(change)\n",
+"disp(E)\n",
+"K=977\n",
+"//Calculations\n",
+"g=sqrt(27*K/4)\n",
+"x=poly(0,'x');\n",
+"vector=roots(g*x^2 -(2*g +1)*x +g)\n",
+"sol=vector(2)\n",
+"PN2=1-sol\n",
+"PH2=3-3*sol\n",
+"PNH3=2*sol\n",
+"K=PNH3^2/(PH2^3 *PN2)\n",
+"//results\n",
+"printf('Pressure of N2 gas =%.2f bar',PN2)\n",
+"printf('\n Pressure of H2 gas =%.2f bar',PH2)\n",
+"printf('\n Pressure of NH3 gas =%.2f bar',PNH3)\n",
+"printf('\n K final = %.1e> it is close to original value.',K)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb
new file mode 100644
index 0000000..b406fb1
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb
@@ -0,0 +1,208 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Consequences of equilibrium"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"C=0.15 //M\n",
+"Ka=1.8*10^-5\n",
+"//calculations\n",
+"x=sqrt(C*Ka)\n",
+"f=x/C\n",
+"percent=f*100\n",
+"//results\n",
+"printf('percent of acetic acid molecules that have donated a proton = %.1f percent',percent)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"ph1=6.37\n",
+"ph2=10.25\n",
+"ph3=7.21\n",
+"ph4=12.67\n",
+"//calculations\n",
+"pH1=0.5*(ph1+ph2)\n",
+"pH2=0.5*(ph3+ph4)\n",
+"//results\n",
+"printf('Equilibrium pH in case 1 = ',pH1)\n",
+"printf('\n Equilibrium pH in case 2 = ',pH2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2_e: example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"pKa=4.88\n",
+"C=0.01 //M\n",
+"pKw=14\n",
+"//calculations\n",
+"pKb=pKw-pKa\n",
+"Kb=10^(-pKb)\n",
+"x=(sqrt(C*Kb))\n",
+"pOH=-log(x)\n",
+"pH=14-pOH\n",
+"f=x/C\n",
+"//results\n",
+"printf('fraction protonated = %.1e',f)\n",
+"printf('\n 1 molecule in about %d',1/f)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"n=2.5*10^-3 //mol\n",
+"C=0.2 //mol/L\n",
+"vbase=37.5*10^-3 //L\n",
+"//calculations\n",
+"V=n/C\n",
+"base=n/vbase\n",
+"H=10^-14 /base\n",
+"disp('It follows from example 8.2 that')\n",
+"pH=10.2\n",
+"//results\n",
+"printf('\n pH of the solution = %.1f',pH)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3_e: example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"pKa2=10.25\n",
+"//calculations\n",
+"C=10^(-pKa2)\n",
+"//results\n",
+"printf('Concentration of Carbonate ions = %.1e mol/l',C)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5_e: example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"vOH=5*10^-3 //L\n",
+"vHClO=25*10^-3 //L\n",
+"C=0.2 //mol/L\n",
+"//calculations\n",
+"nOH=vOH*C\n",
+"nHClO=vHClO*C/2\n",
+"nrem=nHClO-nOH\n",
+"pH=7.53-log10(nrem/nOH)\n",
+"//results\n",
+"printf('Final pH= %.1f',pH)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb
new file mode 100644
index 0000000..52a0e6d
--- /dev/null
+++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb
@@ -0,0 +1,293 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Electrochemistry"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10_e: example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"E1=2*(-0.340)\n",
+"E2=-0.522 \n",
+"//calculations\n",
+"FE=-E1+E2\n",
+"//results\n",
+"printf('Electric potential = %.3f V',FE)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11_e: example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"v=2\n",
+"F=9.6485*10^4 //C/mol\n",
+"E=0.2684 //V\n",
+"V1=0.2699 //V\n",
+"V2=0.2669 //V\n",
+"T1=293 //K\n",
+"T=298 //K\n",
+"T2=303 //K\n",
+"//calculations\n",
+"Gr= -v*F*E\n",
+"Sr=v*F*(V2-V1)/(T2-T1)\n",
+"Hr=Gr+T*Sr\n",
+"//results\n",
+"printf('Gibbs enthalpy = %.2f kJ/mol',Gr/1000)\n",
+"printf('\n Standard Entropy = %.1f J /K mol',Sr)\n",
+"printf('\n Enthalpy = %.1f kJ/mol',Hr/1000)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1_e: example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"lw=34.96 //mS m^2 /mol\n",
+"la=4.09 //mS m^2 /mol\n",
+"C=0.010 //M\n",
+"K=1.65 //mS m^2 /mol\n",
+"//calculations\n",
+"lmd=lw+la\n",
+"alpha=K/lmd\n",
+"Ka=C*alpha^2\n",
+"pKa=-log10(Ka)\n",
+"//results\n",
+"printf('Acidity constant of the acid = %.2f ',pKa)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1_i: illustration_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"Gr=-10^5 //kJ/mol\n",
+"v=1\n",
+"F=9.6485*10^4 //C/mol\n",
+"//calculations\n",
+"E=-Gr/(v*F)\n",
+"//results\n",
+"printf('potential of the cell = %d V',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2_i: illustration_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"V=1.1 //V\n",
+"F=9.6485*10^4 //C/mol\n",
+"R=8.314 //J/K mol\n",
+"T=298.15 //K\n",
+"//calculations\n",
+"lnK=2*F*V/(R*T)\n",
+"k=%e^(lnK)\n",
+"//results\n",
+"printf('Equilibrium constant = %.1e',k)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6_e: example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"ER=1.23 //V\n",
+"EL=-0.44 //V\n",
+"//calculations\n",
+"E=ER-EL\n",
+"//results\n",
+"if(E>0)\n",
+" printf('The reaction is favouring products and E is %.2f V',E)\n",
+"else\n",
+" printf('The reaction is not favouring products and E is %.2f V',E)\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7_e: example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"ER=0.52 //V\n",
+"EL=0.15 //V\n",
+"//calculations\n",
+"E=ER-EL\n",
+"lnK=E/(25.69*10^-3)\n",
+"K=exp(lnK)\n",
+"//results\n",
+"printf('Equilbrum constant K= %.1e',K)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8_e: example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"E0=-0.11 //V\n",
+"H=10^-7\n",
+"//calculations\n",
+"pH=-log10(H)\n",
+"E=E0-29.59*pH*10^-3\n",
+"//results\n",
+"printf('Biological standard potential = %.2f V',E)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9_e: example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Initialization of variables\n",
+"ER=-0.21 //V\n",
+"EL=-0.6 //V\n",
+"//calculations\n",
+"E=ER-EL\n",
+"lnK=2*E/(25.69*10^-3)\n",
+"K=exp(lnK)\n",
+"//results\n",
+"printf('Equilibrium constant for the reaction = %.1e',K)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}