diff options
author | prashantsinalkar | 2020-04-14 10:19:27 +0530 |
---|---|---|
committer | prashantsinalkar | 2020-04-14 10:23:54 +0530 |
commit | 476705d693c7122d34f9b049fa79b935405c9b49 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Elements_Of_Physical_Chemistry_by_P_Atkins | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
download | all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.gz all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.tar.bz2 all-scilab-tbc-books-ipynb-476705d693c7122d34f9b049fa79b935405c9b49.zip |
Initial commit
Diffstat (limited to 'Elements_Of_Physical_Chemistry_by_P_Atkins')
19 files changed, 3311 insertions, 0 deletions
diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb new file mode 100644 index 0000000..e12db8f --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/1-The_properties_of_gases.ipynb @@ -0,0 +1,174 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: The properties of gases" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialzation of variables\n", +"m=1.25 //g\n", +"MN2=28.02 //g/mol\n", +"T=20+273.15 //K\n", +"V=0.25//L\n", +"//Calculations\n", +"P=m*8.31451*T/(MN2*V)\n", +"//Results\n", +"printf('Pressure in the gas flask =%.2f kPa',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialzation of variables\n", +"xN2=0.780\n", +"xO2=0.210\n", +"xAr=0.009\n", +"P=100 //kPa\n", +"//Calculations\n", +"PN2=xN2*P\n", +"PO2=xO2*P\n", +"PAr=xAr*P\n", +"//Results\n", +"printf('Partial pressure of Nitrogen(kPa) = %.1f',PN2)\n", +"printf('\n Partial pressure of Oxygen(kPa) = %.1f',PO2)\n", +"printf('\n Partial pressure of Argon(kPa) = %.1f',PAr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3_i: Illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialzation of variables\n", +"T1=298//K\n", +"T2=273//K\n", +"//Calculations\n", +"factor=sqrt(T2/T1)\n", +"percentage=(1-factor)*100\n", +"//Results\n", +"printf('Percentage loss of speed of air molecules = %.2f',percentage)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4_i: illustration_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialzation of variables\n", +"MH2=2.016 //g/mol\n", +"MCO2=44.01 //g/mol\n", +"//calculations\n", +"ratio=sqrt(MCO2/MH2)\n", +"//results\n", +"printf('ratio of rates of effusion =%.3f',ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5_i: illustration_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialzation of variables\n", +"T=25+273 //K\n", +"sigma=0.4*10^(-18) //m^2\n", +"P=10^5 //Pa\n", +"c=481.8 //m/sec\n", +"//Calculations\n", +"Lambda=8.31451*T/(2^0.5 *6.022*10^23 *sigma*P)\n", +"frequency=2^0.5 *6.022*10^23 *sigma*P*c/(8.31451*T)\n", +"//Results\n", +"printf('Mean free path = %.2e m',Lambda)\n", +"printf('\n Collision frequency = %.2e m',frequency)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb new file mode 100644 index 0000000..5a2784e --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/10-The_rates_of_reactions.ipynb @@ -0,0 +1,217 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: The rates of reactions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"I=[1 2 4 6]*10^-5\n", +"r1=[1.070 3.48 13.9 31.3]*10^-3\n", +"r2=[4.35 17.4 69.6 157]*10^-3\n", +"r3=[10.69 34.7 138 313]*10^-3\n", +"Ar=[1 5 10]*10^-3\n", +"//calculations\n", +"logI=log(I)\n", +"logr1=log(r1)\n", +"logr2=log(r2)\n", +"logr3=log(r3)\n", +"//The calculations are approximate.hence the value differs from textbook a bit.\n", +"x=logI\n", +"y=logr1\n", +"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n", +"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n", +"m1=p(1,1);b1=p(2,1);\n", +"y=logr2\n", +"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n", +"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n", +"m2=p(1,1);b2=p(2,1);\n", +"y=logr3\n", +"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n", +"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n", +"m3=p(1,1);b3=p(2,1);\n", +"logAr=log(Ar)\n", +"kdash=[b1 b2 b3]\n", +"plot(logAr,kdash)\n", +"x=logAr\n", +"y=kdash\n", +"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n", +"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n", +"m4=p(1,1);b4=p(2,1);\n", +"logk=b4\n", +"k=%e^logk\n", +"//results\n", +"printf('Overall rate law is r = %.1e [I]^2 [Ar]',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"t=28.4 //min\n", +"//calculations\n", +"n=log2(8)\n", +"time=n*t\n", +"printf('Time required = %.1f min',time)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"t=[0 1000 2000 3000 4000]\n", +"p=[10.20 5.72 3.99 2.78 1.94]\n", +"lnp=log(p)\n", +"x=t\n", +"y=lnp\n", +"//hence the value differs from textbook a bit.\n", +"sx=sum(x);sx2=sum(x^2);sy=sum(y);sxy=sum(x.*y);n=length(x);\n", +"A=[sx,n;sx2,sx];B=[sy;sxy];p=A\B;\n", +"m=p(1,1);b=p(2,1);\n", +"k=m\n", +"plot(x,y)\n", +"//Since first order reaction\n", +"//results\n", +"printf('rate constant = %.2e s^-1',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"E=50*10^3 //J/mol\n", +"T1=25+273 //K\n", +"T2=37+273 //K\n", +"//calculations\n", +"ln=E/8.3145 *(1/T1-1/T2)\n", +"factor=%e^(ln)\n", +"//results\n", +"printf('kdash = %.2f k',factor)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=[700 730 760 790 810 840 910 1000]\n", +"k=[0.011 0.035 0.105 0.343 0.789 2.17 20 145]\n", +"//calculations\n", +"x=1000/T\n", +"y=log(k)\n", +"//sx=sum(x)\n", +"//sx2=sum(x^2)\n", +"//sy=sum(y)\n", +"//sxy=sum(x.*y)\n", +"//n=length(x)\n", +"//A=[sx,n;sx2,sx]\n", +"//B=[sy;sxy]\n", +"//p=A\B\n", +"//m=p(1,1)\n", +"//b=p(2,1)\n", +"disp('from graph')\n", +"m=2.265*10^4\n", +"Ea=m*8.3145\n", +"b=27.71\n", +"A=%e^(b)\n", +"//results\n", +"printf('Activation energy = %d kJ/mol',Ea/1000)\n", +"printf('\n Arrhenius factor = %.2e L/ mol s',A)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb new file mode 100644 index 0000000..a056596 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/11-Accounting_for_the_rate_laws.ipynb @@ -0,0 +1,203 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Accounting for the rate laws" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"S=[10 20 40 80 120 180 300]\n", +"v=[0.32 0.58 0.9 1.22 1.42 1.58 1.74]\n", +"//calculations\n", +"bys=1000/S\n", +"byv=1/v\n", +"n=size(S)\n", +"x=bys\n", +"y=byv\n", +"disp('From graph,')\n", +"m=26.17\n", +"c=0.476\n", +"//Sx =sum(x);\n", +"//Sxx =sum(x.*x);\n", +"//Sy =sum(y);\n", +"//Syy =sum(y.*y);\n", +"//Sxy =sum(x.*y);\n", +"//m =(n*Sxy-(Sx*Sy))/(n*Sxx-(Sx*Sx));\n", +"//c =(Sy/n)-(m*Sx/n);\n", +"//disp(m)\n", +"//disp(c)\n", +"//y=zeros(7)\n", +"//for i =1:n(1)\n", +"// y(i)=m*bys(i)+c\n", +"//end\n", +"\n", +"//clf();\n", +"//plot(x,y);\n", +"//xtitle('','x ','y ');\n", +"//legend(['measure points', 'fitted curve'], 2);\n", +"vmax=1/c\n", +"Km=m/c\n", +"//results\n", +"printf('Max. velocity = %.2f mumol/L s',vmax)\n", +"printf('\n Michaelis constant = %.1f mumol/L',Km)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"kf=8.18*10^8 //L/mol s\n", +"kb=2*10^6 //s^-1\n", +"//calculations\n", +"K=kf/kb\n", +"//results\n", +"printf('Equilibriu constant for dimerization = %.1e ',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2_e: examlple_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=1.234\n", +"m=2.044\n", +"//calculations\n", +"Ki=c/m\n", +"//results\n", +"printf('KI = %.2f ',Ki)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"F16bP=1.9*10^-5 //mmol/L\n", +"ADP=1.3*10^-3 //mmol/L\n", +"ATP=11.4*10^-3 //mmol/L\n", +"F6P=8.9*10^-5 //mmol/L\n", +"k=1.2*10^3\n", +"//calculations\n", +"Q=F16bP*ADP/(F6P*ATP)\n", +"if(Q<k)\n", +" printf('The reaction step is far from equilibrium and Q= %.3f',Q)\n", +"else\n", +" printf('The reaction step is at equilibrium and Q= %.3f',Q)\n", +"end\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=50 //J/s\n", +"l=313*10^-9 //m\n", +"h=6.62608*10^-34 //Js\n", +"N=6.023*10^23\n", +"c=2.99792*10^8 //m/s\n", +"yield=0.21\n", +"//calculations\n", +"rate=P*l/(h*c)\n", +"Frate=yield*rate\n", +"molrate=Frate/N\n", +"//results\n", +"printf('No.of diheptane molecules destroyed = %.1e s^-1',Frate)\n", +"printf('\n Moles of diheptane molecules destroyed = %.1e mol s^-1',molrate)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb new file mode 100644 index 0000000..d0a173f --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/12-Quantum_theory.ipynb @@ -0,0 +1,190 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Quantum theory" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=100 //W\n", +"t=10 //s\n", +"l=560 //nm\n", +"//calculations\n", +"TE=P*t\n", +"E1=6.626*10^-34 *2.998*10^8 /(l*10^-9)\n", +"N=TE/E1\n", +"//results\n", +"printf('No. of photons required = %.2e ',N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"lmax=4.9*10^-7 //m\n", +"//calculations\n", +"T=2.9*10^-3 /lmax\n", +"//results\n", +"printf('Surface temperature must be close to %d K',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"V=1000 //V\n", +"//calculations\n", +"l=6.626*10^-34 /sqrt(2*9.11*10^-31 *1.602*10^-19 *V)\n", +"//results\n", +"printf('Wavelength of electrons = %.2e m',l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"k=516 //N/m\n", +"m=1.67*10^-27 //kg\n", +"//calculations\n", +"v=sqrt(k/m) /(2*%pi)\n", +"E=6.624*10^-34 *v\n", +"//results\n", +"printf('Separation between adjacent levels frequency, %.2e Hz',v)\n", +"printf('\n Energy = %.2e',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"r1=0 //multiply by a0\n", +"r2=1 //multiply by a0\n", +"//calculations\n", +"ratio=%e^r1 /%e^(-2*r2)\n", +"//results\n", +"printf('It is more propable that electron would be found %.2f times more at r1',ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4_e: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"m=1 //g\n", +"v=10^-6 //m/s\n", +"//calculations\n", +"dx=1.054*10^-34 /(2*m*10^-3 *v)\n", +"//results\n", +"printf('Uncertainity in position = %.1e m',dx)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb new file mode 100644 index 0000000..6a1ab03 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/13-Atomic_structure.ipynb @@ -0,0 +1,84 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Atomic structure" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"dv=1 //pm^3\n", +"a0=52.9 //pm\n", +"//calculations\n", +"Probability=dv/(%pi*a0^3)\n", +"//results\n", +"printf('probability of finding electron = %.1e',Probability)\n", +"printf('\n Chance that electron would be found is one in %d times',1/Probability)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3_i: illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"dr=1 //pm\n", +"r=52.9 //pm\n", +"//calculations\n", +"Probability=4*%e^(-2) *dr/r\n", +"//results\n", +"printf('About 1 inspection in %d',1/Probability +3)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb new file mode 100644 index 0000000..557de53 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/15-Metallic_and_Ionic_solids.ipynb @@ -0,0 +1,121 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Metallic and Ionic solids" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hs=89 //kJ/mol\n", +"HI=418 //kJ/mol\n", +"HD=244 //kJ/mol\n", +"HE=-349 //kJ/mol\n", +"Hf=-437 //kJ/mol\n", +"//calculations\n", +"HL=Hs+HD/2 +HI+HE-Hf\n", +"//results\n", +"printf('Lattice energy = %d kJ/mol',HL)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"a=0.82 //nm\n", +"b=0.94 //nm\n", +"c=0.75 //nm\n", +"h=1\n", +"k=2\n", +"l=3\n", +"//calculations\n", +"invd=sqrt(h*h/(a*a) + k*k/(b*b) + l*l/(c*c))\n", +"d=1/invd\n", +"invd2=sqrt(h*h*4/(a*a) + k*k*4/(b*b) + l*l*4/(c*c))\n", +"d2=1/invd2\n", +"//results\n", +"printf('In case 1, separation = %.2f nm',d)\n", +"printf('\n In case 2, separation = %.2f nm',d2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"l=154 //pm\n", +"theta=11.2 //degrees\n", +"//calculations\n", +"d=l/(2*sind(theta))\n", +"a=d*sqrt(3)\n", +"//results\n", +"printf('Length of the side of the unit cell = %d pm',a+1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb new file mode 100644 index 0000000..21b9711 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/16-Molecular_substances.ipynb @@ -0,0 +1,144 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Molecular substances" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"e=1.609*10^-19 //C\n", +"//calculations\n", +"mux=(-0.36*e*(-0.8) + 0.45*e*(2.1) )*10^-12 /(3.33564*10^-30)\n", +"muy=-0.91\n", +"muz=0\n", +"mux=-1.1\n", +"mu=sqrt(mux*mux+muy*muy+muz*muz)\n", +"//results\n", +"printf('Net dipole moment = %.1f D',mu+0.1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"EH=2.1\n", +"EBr=2.8\n", +"//calculations\n", +"diff=-EH+EBr\n", +"//results\n", +"printf('Prediced dipole moment = %.1f D',diff)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Na=6.023*10^23 // /mol\n", +"e=1.60228*10^-19 //C\n", +"e0=8.85419*10^-12 //C^2/J m\n", +"//calculations\n", +"factor=Na*e^2 /(4*%pi*e0)\n", +"//Multiply by Z^2/R to get the value of potential energy. Plot the graph\n", +"//results\n", +"printf('Potential energy = %.3e Z*Z/R kJ/mol',factor)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"mu1=1.4 //D\n", +"mu2=1.4 //D\n", +"angle=180 //degrees\n", +"d=3 //nm\n", +"D=4.7*10^-30 //C m\n", +"//calculations\n", +"Vmol=D*D*(1-3*(cosd(angle))^2)/(4*%pi*8.854*10^-12 *(d*10^-9)^3)\n", +"V=Vmol*(6.023*10^23)\n", +"//results\n", +"printf('Potential energy = %.1f J/mol',V)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb new file mode 100644 index 0000000..ce8437c --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/17-Molecular_rotations_and_vibrations.ipynb @@ -0,0 +1,88 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Molecular rotations and vibrations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"mH=1.673*10^-27 //kg\n", +"mCl=5.807*10^-26 //kg\n", +"R=127.4 *10^-12//m\n", +"//calculations\n", +"mu=mH*mCl/(mH+mCl)\n", +"I=mu*R^2\n", +"B=1.05457*10^-34 /(4*%pi*I)\n", +"f=2*B\n", +"//results\n", +"printf('Frequency of transistion = %.1f GHz',f/10^9)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"v=89.6*10^12 //Hz\n", +"//calculations\n", +"l=3*10^8 /v\n", +"wn=10^-2 /l\n", +"//results\n", +"printf('Wavenumber = %d cm^-1',wn)\n", +"printf('\n Wavelength = %.2f mu m',l*10^6)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb new file mode 100644 index 0000000..b8433c2 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/18-Electronic_transistions.ipynb @@ -0,0 +1,97 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 18: Electronic transistions" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"wl=256*10^-9 //m\n", +"t=1 //mm\n", +"C=0.050 //mol/L\n", +"T=0.16\n", +"t2=2 //mm\n", +"//calculations\n", +"E=-log10(T) /(C*t)\n", +"A1=-log10(T)\n", +"A2=E*C*t2\n", +"Tr=10^(-A2)\n", +"//results\n", +"printf('Transmittance = %.3f',Tr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 18.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Q=[1 2 3 4 5]\n", +"t1=[5.2 9.4 13.7 18 22.2]\n", +"t2=[1.1 2 2.9 4 4.5]\n", +"//calculations\n", +"kqbykf=regress(Q,t1)\n", +"slope1=kqbykf(2) *10^3\n", +"kq=regress(Q,t2)\n", +"slope2=kq(2) *10^10\n", +"kq=slope2\n", +"kf=kq/slope1\n", +"thalf=log (2) /kf\n", +"//results\n", +"printf('Quenching rate constant = %.1e L ml^-1 s^-1',kq)\n", +"printf('\n Half life= %.1e s',thalf)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb new file mode 100644 index 0000000..06ae21a --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/19-Magnetic_resonance.ipynb @@ -0,0 +1,62 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 19: Magnetic resonance" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 19.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"A=5.1 //Hz\n", +"B=-1.4 //Hz\n", +"C=3.2 //Hz\n", +"an1=120 //degrees\n", +"an2=180 //degrees\n", +"//calculations\n", +"j1=A+B*cosd(an1) + C*cosd(2*an1)\n", +"j2=A+B*cosd(an2) + C*cosd(2*an2)\n", +"//results\n", +"printf('Spin-spin coupling constant = %d Hz',j1)\n", +"printf('\n Spin-spin coupling constant = %d Hz',j2+1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb new file mode 100644 index 0000000..8d74030 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/2-Thermodynamics_The_first_law.ipynb @@ -0,0 +1,145 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Thermodynamics The first law" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"A=1.23 //A\n", +"V=12 //V\n", +"t=123 //s\n", +"Temp=4.47 //C\n", +"rise=3.22 //C\n", +"//Calculations\n", +"q=A*V*t\n", +"C=q/Temp\n", +"Output= C*rise\n", +"//Results\n", +"printf('heat supplied during calibration = %.1f J',q)\n", +"printf('\n Heat capacity of the calorimeter = %.1f J/C',C)\n", +"printf('\n Heat output = %.2f kJ',Output/1000.)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Cpm=75 //J/k mol\n", +"n=5.55 //mol\n", +"q=1 //kJ\n", +"//Calculations\n", +"deltaT=q*1000/(n*Cpm)\n", +"//results\n", +"printf('Change in temperature = %.1f K',deltaT)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"work=-622 //kJ\n", +"heat=-82 //kJ\n", +"//Calculations\n", +"U=work+heat\n", +"//results\n", +"printf('The persons internal energy falls by %d kJ',U)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4_i: illustration_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"n=5.55 //mol\n", +"T1=20 //C\n", +"T2=80 //K\n", +"Cpm=75.29 //J/K mol\n", +"//Calculations\n", +"H=n*Cpm*(T2-T1)\n", +"//results\n", +"printf('Enthalpy of the sample changes by %d kJ',H/1000.)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb new file mode 100644 index 0000000..d7355c0 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/20-Statistical_thermodynamics.ipynb @@ -0,0 +1,204 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 20: Statistical thermodynamics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"E=22 //kJ/mol\n", +"R=8.214 //J/K mol\n", +"T=293 //K\n", +"//Calculations\n", +"q=1+%e^(-E*10^3 /(R*T))\n", +"//results\n", +"printf('At 20 C, partition function = %.4f',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"E=22*10^3 //kJ/mol\n", +"T=293 //K \n", +"//calculations\n", +"ratio=%e^(-E/(8.31451*T))\n", +"//results\n", +"printf('Relative populations of boat and chair conformations is %.1e',ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"g2=5\n", +"g1=3\n", +"E2=6\n", +"E1=2\n", +"k=1.38*10^-23 //J/K\n", +"h=6.626*10^-34 //J s\n", +"B=3.18*10^11 //Hz\n", +"//calculations\n", +"ratio=g2/g1 *(%e^((E1-E2)*h*B/(k*T)))\n", +"//results\n", +"printf('Ratio= %.2f',ratio)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"k=1.38*10^-23 //J/K\n", +"h=6.626*10^-34 //J s\n", +"B=3.18*10^11 //Hz\n", +"T=298 //K\n", +"R=8.314 //J/K mol\n", +"//calculations\n", +"Sm=R*(1+log(k*T/(h*B)))\n", +"//results\n", +"printf('Contribution to rotational motion= %.1f J/ K mol',Sm)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.3_i: illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=298 //K\n", +"m=32*1.66054*10^-27 //kg\n", +"k=1.38066*10^-23 //j/k\n", +"V=10^-4 //m^3\n", +"h=6.62608*10^-34 //J/s\n", +"//calculations\n", +"q=(2*%pi*m*k*T)^1.5 *V/h^3 \n", +"//results\n", +"printf('Translational partition function = %.2e',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.5_e: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"me=9.10939*10^-31 //kg\n", +"k=1.38*10^-23 //J/K\n", +"h=6.626*10^-34 //J s\n", +"p=10^5 //Pa\n", +"T=1000 //K\n", +"R=8.314 //J/K mol\n", +"I=376*10^3 //J/mol\n", +"//calculations\n", +"K=(2*%pi*me)^1.5 *(k*T)^2.5 /(p*h^3) *%e^(-I/(R*T))\n", +"//results\n", +"printf('Equilibrium constant = %.2e',K)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb new file mode 100644 index 0000000..48bd6e5 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/21-Introduction.ipynb @@ -0,0 +1,163 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 21: Introduction" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 0.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"P=1.115 //bar\n", +"//Calculations\n", +"Conv_fac=1/1.01325\n", +"FinalP=Conv_fac*P //Final pressure\n", +"//Results\n", +"printf ('Final pressure in atmospheres (atm)= %.3f',FinalP)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 0.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"h=0.760 //m\n", +"d=1.36*10^4 //kg/m^3\n", +"//Calculations\n", +"P=9.81*d*h\n", +"//Results\n", +"printf ('Pressure at the foot of the column (Pa)= %.3e',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 20.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"h=0.1 //m\n", +"d=10^3//Kg/m^3\n", +"Patm=100021 //Pa\n", +"//Calculations\n", +"P=9.81*h*d\n", +"//Results\n", +"printf('Hydrostatic pressure(Pa) = %.3f',P )\n", +"printf('\n Pressure in apparatus(kPa) = %.3f',(Patm-P)/1000. )" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 21.3_i: illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"N=8.8*10^22\n", +"NA=6.023*10^23 //mol^-1\n", +"//Calculations\n", +"n=N/NA\n", +"//Results\n", +"printf('No. of moles of Cu ( mol Cu)= %.2f',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 21.4_i: illustration_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"m=21.5 //g\n", +"Mc=12.01 //g/mol\n", +"//Calculations\n", +"nc=m/Mc\n", +"//Results\n", +"printf('Amount of C atoms= %.2f mol C',nc)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb new file mode 100644 index 0000000..7ef50a2 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/3-Thermochemistry.ipynb @@ -0,0 +1,244 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Thermochemistry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"I=0.682 //A\n", +"V=12 //V\n", +"t=500 //s\n", +"m=4.33 //g\n", +"MW=46.07 //g/mol\n", +"//Calculations\n", +"q=I*V*t\n", +"n=m/MW\n", +"H=q/n\n", +"//Results\n", +"printf('Molar enthalpy change = %.1f kJ/mol',H/1000.)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"dU=-969.6 //kJ/mol\n", +"nN2=1/2\n", +"nCO2=2\n", +"nO2=9/4\n", +"T=298.15 //K\n", +"//Calculations\n", +"n=nCO2+nN2-nO2\n", +"H=dU+n*8.3145*T/1000.\n", +"//results\n", +"printf('Enthalpy change =%.1f kJ/mol',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"m=1 //g\n", +"MW=24.31 //g/mol\n", +"H=2337 //kJ/mol\n", +"//Calculations\n", +"n=m/MW\n", +"q=n*H\n", +"//results\n", +"printf('Heat supplied = %.1f kJ',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"HC=716.68 //kJ\n", +"HH=871.88 //kJ\n", +"HO=249.17 //kJ\n", +"Hcond=-38 //kJ\n", +"HCH=-412\n", +"HCO=-360\n", +"HOH=-463\n", +"//Calculations\n", +"H1=HC+HH+HO\n", +"H2=3*HCH+HCO+HOH\n", +"H3=Hcond\n", +"H=H1+H2+H3\n", +"//results\n", +"printf('Sum of enthalpy changes = %d kJ',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4_e: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hf=-124 //kJ\n", +"Hoxi=-2220 //kJ\n", +"Hwater=286 //kJ\n", +"//Calculations\n", +"H=Hf+Hoxi+Hwater\n", +"//results\n", +"printf('Standard enthalpy of combustion of propene = %d kJ/mol',H)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5_e: Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"nCO2=6 //mol\n", +"nH2O=3 //mol\n", +"nO2=15/2 //mol\n", +"nC6H6=1 //mol\n", +"HC6H6=49 //kJ/mol\n", +"HH2O=-285.83\n", +"HO2=0\n", +"HCO2=-393.51 \n", +"//Calculations\n", +"H=nCO2*HCO2+nH2O*HH2O-nC6H6*HC6H6-nO2*HO2\n", +"//results\n", +"printf('Standard enthalpy of combustion of benzene is %d kJ/mol',H-1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6_e: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"HH2O=-241.82 //kJ/mol\n", +"T1=25 //C\n", +"T2=100 //C\n", +"CpH2O=33.58 //J/K mol\n", +"CpH2=28.84 //J/K mol\n", +"CpO2=29.37 //J/K mol\n", +"//calculations\n", +"dCp=CpH2O-CpH2-0.5*CpO2\n", +"dH=HH2O+dCp*(T2-T1)/1000.\n", +"//results\n", +"printf('Enthalpy of fromation of water at 100 C is %.2f kJ/mol',dH)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb new file mode 100644 index 0000000..6d82353 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/4-Thermodynamics_The_second_law.ipynb @@ -0,0 +1,172 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Thermodynamics The second law" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Power=100 //W\n", +"time=1 //day\n", +"T=20 //C\n", +"//calculations\n", +"timeins=1*24*3600\n", +"qsurr=timeins*Power\n", +"Ssurr=qsurr/(T+273)\n", +"//results\n", +"printf('Heat transferred to surroundings = %d J',qsurr)\n", +"printf('\n Entropy production per day = %.2e J/k',Ssurr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"H=100 //kJ\n", +"T1=273 //K\n", +"T2=373//K\n", +"//calculations\n", +"S1=H*1000/T1\n", +"S2=H*1000/T2\n", +"//results\n", +"printf('Entropy change at 273 K is %d J/K ',S1)\n", +"printf('\n Entropy change at 373 K is %d J/K ',S2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"g=9.81 //m/s^2\n", +"m=30*10^-3 //kg\n", +"d=10 //m\n", +"H=2.828*10^6 //j/mol\n", +"M=180 //g/mol\n", +"//calculations\n", +"w=g*m*d\n", +"n=w/H\n", +"m=n*M\n", +"//results\n", +"printf('Amount bird must consume = %.1e g',m)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"T=59.2 //K\n", +"//calculations\n", +"Hvap=85*(273.2+T)\n", +"//results\n", +"printf('Enthalpy of vaportization =%d kJ/mol',Hvap/1000)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3_i: illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"SH2O=70 //J/K mol\n", +"SH2=131 //J/K mol\n", +"SO2=205 //J/K mol\n", +"//calculations\n", +"deltaS=2*SH2O-2*SH2-SO2\n", +"printf('Change in entropy = %d J/K mol',deltaS)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb new file mode 100644 index 0000000..e90983a --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/6-The_properties_of_mixtures.ipynb @@ -0,0 +1,227 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: The properties of mixtures" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"m=0.14 //mol/kg\n", +"w=1 //kg Assume\n", +"//Calculations\n", +"ngly=m*w\n", +"nwater=w*10^3 /18.02\n", +"ntotal=ngly+nwater\n", +"xgly=ngly/ntotal\n", +"//results\n", +"printf('Mole fraction of glycerine is xgly = %.2e',xgly)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"mE=50 //g\n", +"mW=50 //g\n", +"//calculations\n", +"nE=mE/46\n", +"nW=mW/18\n", +"ntotal=nE+nW\n", +"xE=nE/ntotal\n", +"xW=1-xE\n", +"disp('for the observed xE and xW')\n", +"vE=55 //cc/mol\n", +"vW=18 //cc/mol\n", +"V=nE*vE+nW*vW\n", +"//results\n", +"printf('\n VOlume of the mixture = %d cm^3 ',V+1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"xc=[0 0.20 0.40 0.60 0.80 1]\n", +"pc=[0 35 82 142 219 293]\n", +"pa=[347 270 185 102 37 0]\n", +"//calculations\n", +"plot(xc,pc)\n", +"plot(xc,pa)\n", +"xlabel('Mole fraction xc')\n", +"ytitle('Pressure /Torr')\n", +"disp('From the graph it is clear that KA=175 torr and KC=165 torr. They are plotted with Raoults law lines')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4_e: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"C=4 //mg/L\n", +"MO2=32 //g/mol\n", +"Mw=18\n", +"w=1 //L\n", +"K=3.3*10^7 //torr\n", +"patm=0.21*760 //torr\n", +"//calculations\n", +"nO2=C/MO2\n", +"nH2O=w*10^3 /Mw\n", +"xO2=nO2/(nO2+nH2O)\n", +"pO2=xO2*K\n", +"if(pO2>patm)\n", +" disp('The required concentration can be maintained under normal conditions')\n", +"else\n", +" disp('The required concentration cannot be maintained under normal conditions')\n", +"end\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5_e: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"c=[1 2 4 7 9]\n", +"hbyc=[0.28 0.36 0.503 0.739 0.889]\n", +"R=8.3145 //J/K mol\n", +"T=298 //K\n", +"g=9.81 //m/s^2\n", +"d=0.9998 //g/cm^3\n", +"//calculations\n", +"plot(c,hbyc)\n", +"xlabel('c')\n", +"ylabel('hbyc')\n", +"vector=regress(c,hbyc)\n", +"intercept=vector(1)\n", +"intercept=intercept*10^-2\n", +"M=R*T/(d*g*intercept)\n", +"//results\n", +"printf('Molar mass of the enzyme is close to %d kDa',M/1000 -3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6_e: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"nB=0.59 //mol\n", +"nNB=0.41 //mol\n", +"xN1=0.38\n", +"xN2=0.74\n", +"xNm=0.41\n", +"//calculations\n", +"disp('By lever rule')\n", +"ratio=(xNm-xN1)/(xN2-xNm)\n", +"percent=ratio*100\n", +"//results\n", +"printf('The rich phase is %d times more abundant in nitrobenzene',percent+1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb new file mode 100644 index 0000000..7ccd74f --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/7-Principles_of_chemical_equilibrium.ipynb @@ -0,0 +1,275 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Principles of chemical equilibrium" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"G=-31 //kJ/mol\n", +"T=37+273 //K\n", +"Cadp=10^-3 //mmol/L\n", +"Cp=8*10^-3 //mmol/L\n", +"Catp=8*10^-3 //mmol/L\n", +"R=8.314 //J/K mol\n", +"//calculations\n", +"Q=Cadp*Cp/Catp\n", +"deltaG=G+R*T*log(Q) /1000.\n", +"//results\n", +"printf('Reaction Gibbs energy = %d kJ/mol',deltaG-1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hr=-285.83 //kJ/mol\n", +"Sr=-163.34 //J/ K mol\n", +"T=298.15 //K\n", +"//calculations\n", +"Gr=Hr-T*Sr/1000.\n", +"//results\n", +"printf('Gibbs energy = %.2f kJ/mol',Gr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Gr=-3.40 //kJ/mol\n", +"R=8.314 //J/k mol\n", +"T=298 //K\n", +"//calculations\n", +"lnK=Gr*10^3/(R*T)\n", +"K=exp(lnK)\n", +"//results\n", +"printf('Equilibrium constant K= %.2f',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"aADP=1 //mol/L\n", +"aP=1 //mol/L\n", +"aATP=1 //mol/L\n", +"aH2O=1 //mol/L\n", +"aH=10^-7 //mol/L\n", +"G=10 //kJ/mol\n", +"T=298 //K\n", +"R=8.314 //J/K mol\n", +"//calculations\n", +"Q=aADP*aP*aH/(aATP*aH2O)\n", +"Gr=G+R*T*log(Q)/1000.\n", +"//results\n", +"printf('Change in nGibbs energy =%d kJ/mol',Gr-1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3_i: illustration_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Hr=178 //kJ/mol\n", +"Sr=161 //J/K mol\n", +"//calculations\n", +"T=Hr*10^3 /Sr\n", +"//results\n", +"printf('Decompostion temperature = %.2e K',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4_e: example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Gr=1.7*10^3 //J/mol\n", +"T=298 //K\n", +"R=8.314 //J/K mol\n", +"K=0.5\n", +"//calculations\n", +"GbyRT=Gr/(R*T)\n", +"feq=K/(K+1)\n", +"//results\n", +"printf('Equivalent fraction = %.2f ',feq)\n", +"disp('For the second part, Gr=1.7 + 2.48 ln(f/1-f)')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4_i: illustration_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"GCO2=-394 //kJ/mol\n", +"GCO=-137 //kJ/mol\n", +"GO2=0\n", +"//calculations\n", +"deltaG=2*GCO2-2*GCO+GO2\n", +"//results\n", +"printf('Standard reaction gibbs energy = %d kJ/mol',deltaG)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.5_e: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"species=['N2' 'H2' 'NH3']\n", +"change=['-x' '-3x' '2x']\n", +"E=['1-x' '3-3x' '2x']\n", +"disp('Concentration table')\n", +"disp(species)\n", +"disp(change)\n", +"disp(E)\n", +"K=977\n", +"//Calculations\n", +"g=sqrt(27*K/4)\n", +"x=poly(0,'x');\n", +"vector=roots(g*x^2 -(2*g +1)*x +g)\n", +"sol=vector(2)\n", +"PN2=1-sol\n", +"PH2=3-3*sol\n", +"PNH3=2*sol\n", +"K=PNH3^2/(PH2^3 *PN2)\n", +"//results\n", +"printf('Pressure of N2 gas =%.2f bar',PN2)\n", +"printf('\n Pressure of H2 gas =%.2f bar',PH2)\n", +"printf('\n Pressure of NH3 gas =%.2f bar',PNH3)\n", +"printf('\n K final = %.1e> it is close to original value.',K)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb new file mode 100644 index 0000000..b406fb1 --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/8-Consequences_of_equilibrium.ipynb @@ -0,0 +1,208 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Consequences of equilibrium" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"C=0.15 //M\n", +"Ka=1.8*10^-5\n", +"//calculations\n", +"x=sqrt(C*Ka)\n", +"f=x/C\n", +"percent=f*100\n", +"//results\n", +"printf('percent of acetic acid molecules that have donated a proton = %.1f percent',percent)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"ph1=6.37\n", +"ph2=10.25\n", +"ph3=7.21\n", +"ph4=12.67\n", +"//calculations\n", +"pH1=0.5*(ph1+ph2)\n", +"pH2=0.5*(ph3+ph4)\n", +"//results\n", +"printf('Equilibrium pH in case 1 = ',pH1)\n", +"printf('\n Equilibrium pH in case 2 = ',pH2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2_e: example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"pKa=4.88\n", +"C=0.01 //M\n", +"pKw=14\n", +"//calculations\n", +"pKb=pKw-pKa\n", +"Kb=10^(-pKb)\n", +"x=(sqrt(C*Kb))\n", +"pOH=-log(x)\n", +"pH=14-pOH\n", +"f=x/C\n", +"//results\n", +"printf('fraction protonated = %.1e',f)\n", +"printf('\n 1 molecule in about %d',1/f)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"n=2.5*10^-3 //mol\n", +"C=0.2 //mol/L\n", +"vbase=37.5*10^-3 //L\n", +"//calculations\n", +"V=n/C\n", +"base=n/vbase\n", +"H=10^-14 /base\n", +"disp('It follows from example 8.2 that')\n", +"pH=10.2\n", +"//results\n", +"printf('\n pH of the solution = %.1f',pH)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3_e: example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"pKa2=10.25\n", +"//calculations\n", +"C=10^(-pKa2)\n", +"//results\n", +"printf('Concentration of Carbonate ions = %.1e mol/l',C)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5_e: example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"vOH=5*10^-3 //L\n", +"vHClO=25*10^-3 //L\n", +"C=0.2 //mol/L\n", +"//calculations\n", +"nOH=vOH*C\n", +"nHClO=vHClO*C/2\n", +"nrem=nHClO-nOH\n", +"pH=7.53-log10(nrem/nOH)\n", +"//results\n", +"printf('Final pH= %.1f',pH)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb b/Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb new file mode 100644 index 0000000..52a0e6d --- /dev/null +++ b/Elements_Of_Physical_Chemistry_by_P_Atkins/9-Electrochemistry.ipynb @@ -0,0 +1,293 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Electrochemistry" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.10_e: example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"E1=2*(-0.340)\n", +"E2=-0.522 \n", +"//calculations\n", +"FE=-E1+E2\n", +"//results\n", +"printf('Electric potential = %.3f V',FE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.11_e: example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"v=2\n", +"F=9.6485*10^4 //C/mol\n", +"E=0.2684 //V\n", +"V1=0.2699 //V\n", +"V2=0.2669 //V\n", +"T1=293 //K\n", +"T=298 //K\n", +"T2=303 //K\n", +"//calculations\n", +"Gr= -v*F*E\n", +"Sr=v*F*(V2-V1)/(T2-T1)\n", +"Hr=Gr+T*Sr\n", +"//results\n", +"printf('Gibbs enthalpy = %.2f kJ/mol',Gr/1000)\n", +"printf('\n Standard Entropy = %.1f J /K mol',Sr)\n", +"printf('\n Enthalpy = %.1f kJ/mol',Hr/1000)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1_e: example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"lw=34.96 //mS m^2 /mol\n", +"la=4.09 //mS m^2 /mol\n", +"C=0.010 //M\n", +"K=1.65 //mS m^2 /mol\n", +"//calculations\n", +"lmd=lw+la\n", +"alpha=K/lmd\n", +"Ka=C*alpha^2\n", +"pKa=-log10(Ka)\n", +"//results\n", +"printf('Acidity constant of the acid = %.2f ',pKa)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1_i: illustration_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"Gr=-10^5 //kJ/mol\n", +"v=1\n", +"F=9.6485*10^4 //C/mol\n", +"//calculations\n", +"E=-Gr/(v*F)\n", +"//results\n", +"printf('potential of the cell = %d V',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2_i: illustration_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"V=1.1 //V\n", +"F=9.6485*10^4 //C/mol\n", +"R=8.314 //J/K mol\n", +"T=298.15 //K\n", +"//calculations\n", +"lnK=2*F*V/(R*T)\n", +"k=%e^(lnK)\n", +"//results\n", +"printf('Equilibrium constant = %.1e',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.6_e: example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"ER=1.23 //V\n", +"EL=-0.44 //V\n", +"//calculations\n", +"E=ER-EL\n", +"//results\n", +"if(E>0)\n", +" printf('The reaction is favouring products and E is %.2f V',E)\n", +"else\n", +" printf('The reaction is not favouring products and E is %.2f V',E)\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.7_e: example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"ER=0.52 //V\n", +"EL=0.15 //V\n", +"//calculations\n", +"E=ER-EL\n", +"lnK=E/(25.69*10^-3)\n", +"K=exp(lnK)\n", +"//results\n", +"printf('Equilbrum constant K= %.1e',K)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.8_e: example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"E0=-0.11 //V\n", +"H=10^-7\n", +"//calculations\n", +"pH=-log10(H)\n", +"E=E0-29.59*pH*10^-3\n", +"//results\n", +"printf('Biological standard potential = %.2f V',E)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.9_e: example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Initialization of variables\n", +"ER=-0.21 //V\n", +"EL=-0.6 //V\n", +"//calculations\n", +"E=ER-EL\n", +"lnK=2*E/(25.69*10^-3)\n", +"K=exp(lnK)\n", +"//results\n", +"printf('Equilibrium constant for the reaction = %.1e',K)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |