diff options
Diffstat (limited to 'Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb')
-rw-r--r-- | Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb | 378 |
1 files changed, 378 insertions, 0 deletions
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb new file mode 100644 index 0000000..0e05e8c --- /dev/null +++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb @@ -0,0 +1,378 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Fluid Statics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: Chapter_2_Example_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no. 52\n", +"\n", +"m = -0.229;//slope\n", +"a_z = 1.96;// ft/sec^2\n", +"a_x = 4*a_z;// ft/sec^2\n", +"a = sqrt(a_x^2 + a_z^2);// ft/sec^2\n", +"p = integrate('-(32.2 + a_z)*(62.4/32.2)','z',0,-2.75);\n", +"printf('p = %.1f psf',p);\n", +"\n", +"//there is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: Chapter_2_Example_11.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no. 54\n", +"\n", +"l1 = 2;// feet\n", +"l2 = 3;// feet\n", +"rpm = 100;\n", +"p_A = (l1+l2)-(2/3)*(2*%pi*rpm/60)^2 /(2*32.2);\n", +"p_B = (l1+l2)+(1/3)*(2*%pi*rpm/60)^2 /(2*32.2);\n", +"printf('Pressure heads at point A and point B respectively are %.2f ft, %.2f ft',p_A,p_B);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Chapter_2_Example_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"//page no.32\n", +"T = 68;//degreeF\n", +"p = 10;// psi\n", +"d = 15;// feet\n", +"rho = 1.59;//specific gravity\n", +"gam = rho*62.4;//lb/cuft\n", +"p1 = gam*d + p*144;//psf\n", +"printf('p1 = %d psf = %.1f psi ',p1,p1*0.00694);\n", +"//there is an error in the answer given in the textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Chapter_2_Example_2.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no.32\n", +"h = 35000;// feet\n", +"p1 = 14.7;// psia\n", +"T1 = 519;// degreeR\n", +"gam1 = 0.0765;// lb/cuft\n", +"p2 = 504;// psfa\n", +"T2 = T1 - h*0.00356;// degreeR\n", +"gam2 = p2/(53.3*T2);// lb/cuft\n", +"printf('p2 = %d psfa = %.2f psia\n specific weight = %.3f lb/cuft',p2,p2*0.00695,gam2);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Chapter_2_Example_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no.35\n", +"\n", +"h1 = 12.5;// inches\n", +"p1 = 14.50;// psia\n", +"p = p1 - h1*14.70/29.92;//absolute pressure in psia\n", +"printf('Absolute pressure = %.2f psia',p);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Chapter_2_Example_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no.37\n", +"gam1 = 0.9*62.4;\n", +"gam2 = 13.55*62.4;\n", +"l1 = 10;// feet\n", +"l2 = 15/12;// feet\n", +"p_x = gam2*l2 - gam1*l1;// psf\n", +"printf('The gauge reading = %d psf = %.2f psi',p_x,0.00694*p_x);" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Chapter_2_Example_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no. 42\n", +"\n", +"l1 = 4;// feet\n", +"b1 = 6;// feet\n", +"b2 = 6;// feet\n", +"l2 = 2.55;// feet\n", +"t = 1;// feet\n", +"F1 = 0.5*l1*b1*62.4*(0.5*l1 + t) ;// lb\n", +"F2 = 0.25*%pi*b2^2 *62.4*(l2 + t);// lb\n", +"a1 = l1*b2^3 /(36*0.5*b2*0.5*l1*b1);// feet\n", +"a2 = 70/((0.5*l2 + t)*28.3);// feet\n", +"l_p = (F1*(0.5*l1 + a1)+F2*(l2+a2))/(F1+F2) +1;//feet\n", +"x_p1 = (0.5*l1-a1) - a1*2/b2;// feet\n", +"M = integrate('(62.4/2)*(36-y^2)*(y+1)','y',0,6);// ft-lb\n", +"x_p2 = M/F2;// feet\n", +"x_p = (x_p2*F2 - F1*x_p1)/(F1+F2);// feet\n", +"printf('Total force on composite area is %d lb',F1+F2); \n", +"printf('\n Vertical location of resultant force is %.2f ft below the water surface',l_p);\n", +"printf('\n Horizontal location of resultant force is %.3f ft right of the water surface',x_p);\n", +"\n", +"//there are errors in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Chapter_2_Example_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no.45\n", +"\n", +"l = 8;//feet\n", +"b = 10;// feet\n", +"F_h = 0.5*l*b*62.4*(b+2.5);// lb\n", +"x = 83.2/(40*(b+2.5));// feet\n", +"F_v = (b+5)*62.4*40-(l*62.4*(25 - 0.25*%pi*25));// lb\n", +"F = sqrt(F_h^2 + F_v^2);// lb\n", +"e = (2680*3.91 + 37440*(0.25*b))/F_v ;// feet\n", +"theta = 180*atan(F_v/F_h) /%pi;// degrees\n", +"x_p = 0.25*b-x;// feet\n", +"printf('Magnitude of resultant force is %d lb',F);\n", +"printf('\n Theta = %d degrees',theta);\n", +"printf('\n Location is %.3f feet above and %.2f feet to the right of B',x_p,e);\n", +"\n", +"//there are errors in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Chapter_2_Example_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no.48\n", +"\n", +"A = 4000;// sq.ft\n", +"d1 = 10;// feet\n", +"d2 = 2;// inches\n", +"rho = 64;// lb/cuft\n", +"W = A*(d2/12)*rho;// lb\n", +"printf('Weight of cargo = %d lb',W);\n", +"\n", +"//there is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Chapter_2_Example_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no. 48\n", +"\n", +"gam = 53.0;// lb/cuft\n", +"D = 17;// inches\n", +"d = 12;// inches\n", +"V = (%pi/6)*(D/12)^3;\n", +"V1 = 0.584;//cuft\n", +"V2 = 0.711;//cuft\n", +"W = V*gam;\n", +"F_B = V1*62.4;\n", +"F_ACA = (V2)*62.4;\n", +"F = W+F_ACA-F_B;\n", +"printf('The force exerted between sphere and orfice plate = %.1f lb',F);\n", +"\n", +"//there is an error in the answer given in textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Chapter_2_Example_9.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear;\n", +"clc;\n", +"\n", +"//page no. 51\n", +"\n", +"v = 15;// ft/sec^2\n", +"d = 5;// ft\n", +"p = integrate('-62.4*(v+32.2)/32.2','z',0,-5);\n", +"printf('p = %d psf',p);" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |