summaryrefslogtreecommitdiff
path: root/Elementary_Fluid_Mechanics_by_J_K_Vennard
diff options
context:
space:
mode:
Diffstat (limited to 'Elementary_Fluid_Mechanics_by_J_K_Vennard')
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/1-Fundamentals.ipynb193
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/11-Fluid_Measurements.ipynb207
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/12-Elementary_Hydrodynamics.ipynb64
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/13-Fluid_Flow_about_Immersed_Objects.ipynb167
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb378
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/3-Kinematics_of_Fluid_Motion.ipynb194
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/4-Flow_of_an_Incompressible_Ideal_Fluid.ipynb393
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/5-Flow_of_a_Compressible_Ideal_Fluid.ipynb247
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/6-The_Impulse_Momentum_Principle.ipynb515
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/7-Flow_of_a_Real_Fluid.ipynb202
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/8-Similitude_and_Dimensional_Analysis.ipynb157
-rw-r--r--Elementary_Fluid_Mechanics_by_J_K_Vennard/9-Fluid_Flow_in_Pipes.ipynb558
12 files changed, 3275 insertions, 0 deletions
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/1-Fundamentals.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/1-Fundamentals.ipynb
new file mode 100644
index 0000000..683a9e2
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/1-Fundamentals.ipynb
@@ -0,0 +1,193 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Fundamentals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Chapter_1_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no.8\n",
+"T = 80;//temperature of chlorine gas in degree F\n",
+"p = 100;//pressure in psia\n",
+"W = 2*35.45;//molecular weight of chlorine \n",
+"R = 1545/W;//specific gas constant in ft-lb/lb-degreeR\n",
+"gam = p*(144/R)*(1/(460+T));//specific weight of chlorine in lb/cuft\n",
+"Spec_vol = 1/gam;//specific volume in cuft/lb\n",
+"rho = gam/32.2;//density of chlorine in slug/cuft\n",
+"printf('Spec. weight = %.3f lb/cuft\n Spec. volume = %.3f cuft/lb\n density = %.4f slug/cuft',gam,Spec_vol,rho);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Chapter_1_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 12\n",
+"\n",
+"funcprot(0);\n",
+"gamma = 1.4;\n",
+"T1 = 60;//temperature of air in degree F\n",
+"p1 = 14.7;//pressure in psia\n",
+"k = 0.5;//(final volume/initial volume) = k\n",
+"R = 53.3;//Engineering gas constant\n",
+"gam1 = p1*(144/R)*(1/(460+T1));//lb/cuft\n",
+"gam2 = gam1/k;//lb/cuft\n",
+"p2 = (p1/(gam1^(gamma)))*(gam2^(gamma));// in psia\n",
+"T2 = p2*(144/R)*(1/gam2);//in degree F\n",
+"a1 = sqrt(gamma*32.2*R*(460+T1));// in fps\n",
+"a2 = sqrt(gamma*32.2*R*(T2));// in fps\n",
+"printf('Final pressure = %.1f psia\n Final temperature = %d degreeR \n Sonic velocity before compression = %d fps\n Sonic velocity after compression = %d fps',p2,T2,a1,a2);\n",
+"\n",
+"//there are small errors in the answers given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Chapter_1_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 17\n",
+"\n",
+"r1 = 0.25;// radius of cylinder in feet\n",
+"l = 2;//length of cylnider in feet\n",
+"r2 = 0.30;// radius of co-axial cylinder in feet\n",
+"mu = 0.018;//lb-sec/ft^2\n",
+"torque = 0.25;// in ft-lb\n",
+"dv_dy1 = torque/(4*%pi*mu*r1^2);//velocity gradient at radius = 0.25 in fps/ft\n",
+"dv_dy2 = torque/(4*%pi*mu*r2^2);//velocity gradient at radius = 0.30 in fps/ft\n",
+"V1 = integrate('-torque/(4*%pi*mu*r^2)','r',r2,r1);// velocity in fps\n",
+"rpm1 = V1*60/(2*%pi*r1);\n",
+"V2 = torque*(r2-r1)/(4*%pi*mu*r1^2);//in fps\n",
+"rpm2 = V2*60/(2*%pi*r1);\n",
+"hp = 2*%pi*r1*(rpm1/(550*60));\n",
+"printf('Velocity gradient at the inner cylinder wall is %.1f fps/ft and \n at the outer cylinder wall is %.1f fps/ft',dv_dy1,dv_dy2);\n",
+"printf('\n rpm = %.1f and approximate rpm = %.1f \n hp = %.5f ',rpm1,rpm2,hp);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Chapter_1_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.20\n",
+"\n",
+"T = 70;//degreeF\n",
+"del_p = 0.1;// in psi\n",
+"sigma = 0.00498;// lb/ft\n",
+"R = (sigma*2)/(del_p*144);//in ft\n",
+"d = 12*2*R;// in inches\n",
+"printf('Diameter of the droplet of water, d = %.4f in',d);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Chapter_1_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 20\n",
+"\n",
+"l = 12;// length of the cylinder\n",
+"T = 150;//temperature of water in degreeF\n",
+"p1 = 14.52;//atmospheric pressure in psia\n",
+"p2 = 3.72;//the pressure on the inside of the piston in psia\n",
+"F = 0.25*(p1-p2)*%pi*l^2;//Force on the piston in lb\n",
+"printf('Minimum force on the piston to be applied is, F = %d lb.',F);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/11-Fluid_Measurements.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/11-Fluid_Measurements.ipynb
new file mode 100644
index 0000000..917e82d
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/11-Fluid_Measurements.ipynb
@@ -0,0 +1,207 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Fluid Measurements"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.1: Chapter_11_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no.409\n",
+"C_I = 0.98;//coefficient of pitot tube\n",
+"d = 3;//in\n",
+"del_p = (d/12)*(13.55-0.88)/0.88;\n",
+"v_c = C_I*sqrt(2*32.2*del_p);\n",
+"printf('The velocity at the centerline of the pipe = %.1f fps',v_c);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Chapter_11_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 411\n",
+"\n",
+"P = 25;//in. of mercury\n",
+"p = 18;//in. of mercury\n",
+"T = 150;//degreeF\n",
+"\n",
+"k = P/p;\n",
+"if k < (1.893) then\n",
+" V = sqrt(2*32.2*186.5*(T+460)*(1-(1/k)^0.286));\n",
+"end\n",
+"\n",
+"printf('The local velocity just upstream from the pitot static tube = %d fps',V);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3: Chapter_11_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 411\n",
+"\n",
+"P = 20;//in. of mercury\n",
+"p = 5;//in. of mercury\n",
+"T = 150;//degreeF\n",
+"\n",
+"k = P/p;\n",
+"\n",
+"if k >1.893 then\n",
+" M_0 = 1.645;\n",
+"end\n",
+"V_0 = sqrt(2*32.2*186.5*(T+460)/(1+ (2*186.5)/(53.3*1.4*M_0^2)));\n",
+"\n",
+"printf('The speed of this airplane = %d fps',V_0);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.4: Chapter_11_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 420\n",
+"\n",
+"b = 6;//in\n",
+"d = 3;//in\n",
+"p = 20;//psi\n",
+"del_p = 6;//in. of mercury\n",
+"p_bar = 14.70;//psia\n",
+"T = 60;//degreeF\n",
+"\n",
+"k = (p + p_bar - b*(p_bar/29.92))/(p+p_bar);\n",
+"gam1 = (p+p_bar)*144/53.3 /(T+460);\n",
+"A2 = 0.0491;//sqft\n",
+"Y = 0.949;\n",
+"Cv = 0.98;\n",
+"G = Y*Cv*A2*gam1*sqrt(2*32.2*b*10*A2*144/gam1) /(sqrt(1-0.25^2));\n",
+"Cv_true = 0.981;\n",
+"G_true = G*Cv_true/Cv;\n",
+"\n",
+"printf('G = %.2f lb/sec',G);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.5: Chapter_11_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 422\n",
+"\n",
+"d = 3;//in\n",
+"l = 6;//in\n",
+"h = 6;//in\n",
+"T = 60;//degreeF\n",
+"\n",
+"Cv= 0.99;\n",
+"A1 = 0.25*%pi*(d/12)^2;\n",
+"Q = Cv*A1*sqrt(2*32.2*(h/12)*(13.55-1)) /(sqrt(1-0.25^2));\n",
+"Cv_true = 0.988;\n",
+"Q_true = Q*Cv_true/Cv;\n",
+"h_L = 3.8;\n",
+"\n",
+"printf('Q = %.3f cfs',Q);\n",
+"printf('\n True Q = %.3f cfs',Q_true);\n",
+"printf('\n Total head loss is about %.1f ft of water',h_L);\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/12-Elementary_Hydrodynamics.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/12-Elementary_Hydrodynamics.ipynb
new file mode 100644
index 0000000..b8ced07
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/12-Elementary_Hydrodynamics.ipynb
@@ -0,0 +1,64 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 12: Elementary Hydrodynamics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 12.2: Chapter_12_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 491\n",
+"\n",
+"Q = 0.00010;//cfs\n",
+"t = 0.1;//ft\n",
+"h = 3;//ft\n",
+"d = 6;//in\n",
+"\n",
+"K = Q*h/(t*0.25*%pi*(d/12)^2);\n",
+"\n",
+"printf('K = %.5f fps',K);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/13-Fluid_Flow_about_Immersed_Objects.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/13-Fluid_Flow_about_Immersed_Objects.ipynb
new file mode 100644
index 0000000..37e90f7
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/13-Fluid_Flow_about_Immersed_Objects.ipynb
@@ -0,0 +1,167 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 13: Fluid Flow about Immersed Objects"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.1: Chapter_13_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 502\n",
+"b = 50;//ft\n",
+"c = 7;//ft\n",
+"CL = 0.6;//lift coefficient\n",
+"CD = 0.05;//drag coefficient\n",
+"alpha = 7;//degrees\n",
+"V = 150/0.681818;//coverting mph to fps\n",
+"H = 10000;//ft\n",
+"rho = 0.001756;//slug/cuft\n",
+"D = CD*b*c*rho*0.5*V^2;\n",
+"hp = D*V/550;\n",
+"L = CL*b*c*rho*0.5*V^2;\n",
+"mu = 3.534*10^-7;//lb-sec/sqft\n",
+"R = V*c*rho/mu;\n",
+"a = sqrt(1.4*33.2*53.3*(23.4+459.6));\n",
+"M = V/a;\n",
+"printf('hp = %d hp,\n L = %.2f lb,\n R = %d,\n M = %.3f',hp,L,R,M);\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.2: Chapter_13_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 511\n",
+"\n",
+"l = 5;//ft\n",
+"d = 0.5;//ft\n",
+"v = 1;//fps\n",
+"T = 60;//degreeF\n",
+"D = 0.04;//lb\n",
+"k = 1/64;//model scale\n",
+"\n",
+"nu = 0.00001217;\n",
+"R = v*l/nu;\n",
+"Cf1 = 0.0020;\n",
+"Cf2 = 0.0052;\n",
+"Dx1 = 2*Cf1*l*d*1.938*0.5*v^2;\n",
+"Dx2 = 2*Cf2*l*d*1.938*0.5*v^2; \n",
+"delta1 = l*5.20/sqrt(R);\n",
+"delta2 = l*0.38/(R^0.2);\n",
+"V_0 = sqrt((v^2 /l)*(l*(1/k)));\n",
+"R_p = V_0*l*(1/k)/nu;\n",
+"Cf = 0.00185;\n",
+"Dx = 2*Cf*l*d*(1/k)^2 *1.938*0.5*V_0^2;\n",
+"Dw = D-Dx2;\n",
+"Dw_p = (1/k)^2 *d*l*V_0^2 *Dw/(l*d);\n",
+"D = Dw_p + Dx;\n",
+"\n",
+"printf('Total drag of the prototype = %d lb',D);\n",
+"\n",
+"//there is an error in the answer given in textbbok"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 13.3: Chapter_13_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 524\n",
+"\n",
+"c = 6;//ft\n",
+"b = 36;//ft\n",
+"AR1 = 6;//aspect ratio\n",
+"Cd = 0.0543;//drag coefficient\n",
+"Cl = 0.960;//lift coefficient\n",
+"alpha1 = 7.2;//degrees\n",
+"AR2 = 8;\n",
+"\n",
+"//for aspect ratio = 8\n",
+"CL = 0.960;//negligible change of lift coefficient\n",
+"//for aspect ratio = 6\n",
+"C_Di = Cl^2 /(%pi*AR1);\n",
+"//for aspect ratio = infinity\n",
+"C_D0 = Cd - C_Di;\n",
+"//for AR = 8\n",
+"C_D = C_D0 + Cl^2 /(%pi*AR2);\n",
+"//for AR = 6\n",
+"alpha_i = (180/%pi)*Cl/(%pi*AR1);\n",
+"//for AR = infinty\n",
+"alpha_0 = alpha1 - alpha_i;\n",
+"//for AR = 8\n",
+"alpha = alpha_0 + Cl/(AR2*%pi) *(360/(2*%pi));\n",
+"\n",
+"printf('Lift coefficient = %.3f (negligible change of lift coefficient)',CL);\n",
+"printf('\n Drag coefficient = %.4f',C_D);\n",
+"printf('\n Angle of attack = %.1f degress',alpha);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb
new file mode 100644
index 0000000..0e05e8c
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/2-Fluid_Statics.ipynb
@@ -0,0 +1,378 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Fluid Statics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Chapter_2_Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 52\n",
+"\n",
+"m = -0.229;//slope\n",
+"a_z = 1.96;// ft/sec^2\n",
+"a_x = 4*a_z;// ft/sec^2\n",
+"a = sqrt(a_x^2 + a_z^2);// ft/sec^2\n",
+"p = integrate('-(32.2 + a_z)*(62.4/32.2)','z',0,-2.75);\n",
+"printf('p = %.1f psf',p);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: Chapter_2_Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 54\n",
+"\n",
+"l1 = 2;// feet\n",
+"l2 = 3;// feet\n",
+"rpm = 100;\n",
+"p_A = (l1+l2)-(2/3)*(2*%pi*rpm/60)^2 /(2*32.2);\n",
+"p_B = (l1+l2)+(1/3)*(2*%pi*rpm/60)^2 /(2*32.2);\n",
+"printf('Pressure heads at point A and point B respectively are %.2f ft, %.2f ft',p_A,p_B);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Chapter_2_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no.32\n",
+"T = 68;//degreeF\n",
+"p = 10;// psi\n",
+"d = 15;// feet\n",
+"rho = 1.59;//specific gravity\n",
+"gam = rho*62.4;//lb/cuft\n",
+"p1 = gam*d + p*144;//psf\n",
+"printf('p1 = %d psf = %.1f psi ',p1,p1*0.00694);\n",
+"//there is an error in the answer given in the textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Chapter_2_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.32\n",
+"h = 35000;// feet\n",
+"p1 = 14.7;// psia\n",
+"T1 = 519;// degreeR\n",
+"gam1 = 0.0765;// lb/cuft\n",
+"p2 = 504;// psfa\n",
+"T2 = T1 - h*0.00356;// degreeR\n",
+"gam2 = p2/(53.3*T2);// lb/cuft\n",
+"printf('p2 = %d psfa = %.2f psia\n specific weight = %.3f lb/cuft',p2,p2*0.00695,gam2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Chapter_2_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.35\n",
+"\n",
+"h1 = 12.5;// inches\n",
+"p1 = 14.50;// psia\n",
+"p = p1 - h1*14.70/29.92;//absolute pressure in psia\n",
+"printf('Absolute pressure = %.2f psia',p);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Chapter_2_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.37\n",
+"gam1 = 0.9*62.4;\n",
+"gam2 = 13.55*62.4;\n",
+"l1 = 10;// feet\n",
+"l2 = 15/12;// feet\n",
+"p_x = gam2*l2 - gam1*l1;// psf\n",
+"printf('The gauge reading = %d psf = %.2f psi',p_x,0.00694*p_x);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Chapter_2_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 42\n",
+"\n",
+"l1 = 4;// feet\n",
+"b1 = 6;// feet\n",
+"b2 = 6;// feet\n",
+"l2 = 2.55;// feet\n",
+"t = 1;// feet\n",
+"F1 = 0.5*l1*b1*62.4*(0.5*l1 + t) ;// lb\n",
+"F2 = 0.25*%pi*b2^2 *62.4*(l2 + t);// lb\n",
+"a1 = l1*b2^3 /(36*0.5*b2*0.5*l1*b1);// feet\n",
+"a2 = 70/((0.5*l2 + t)*28.3);// feet\n",
+"l_p = (F1*(0.5*l1 + a1)+F2*(l2+a2))/(F1+F2) +1;//feet\n",
+"x_p1 = (0.5*l1-a1) - a1*2/b2;// feet\n",
+"M = integrate('(62.4/2)*(36-y^2)*(y+1)','y',0,6);// ft-lb\n",
+"x_p2 = M/F2;// feet\n",
+"x_p = (x_p2*F2 - F1*x_p1)/(F1+F2);// feet\n",
+"printf('Total force on composite area is %d lb',F1+F2); \n",
+"printf('\n Vertical location of resultant force is %.2f ft below the water surface',l_p);\n",
+"printf('\n Horizontal location of resultant force is %.3f ft right of the water surface',x_p);\n",
+"\n",
+"//there are errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Chapter_2_Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.45\n",
+"\n",
+"l = 8;//feet\n",
+"b = 10;// feet\n",
+"F_h = 0.5*l*b*62.4*(b+2.5);// lb\n",
+"x = 83.2/(40*(b+2.5));// feet\n",
+"F_v = (b+5)*62.4*40-(l*62.4*(25 - 0.25*%pi*25));// lb\n",
+"F = sqrt(F_h^2 + F_v^2);// lb\n",
+"e = (2680*3.91 + 37440*(0.25*b))/F_v ;// feet\n",
+"theta = 180*atan(F_v/F_h) /%pi;// degrees\n",
+"x_p = 0.25*b-x;// feet\n",
+"printf('Magnitude of resultant force is %d lb',F);\n",
+"printf('\n Theta = %d degrees',theta);\n",
+"printf('\n Location is %.3f feet above and %.2f feet to the right of B',x_p,e);\n",
+"\n",
+"//there are errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Chapter_2_Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.48\n",
+"\n",
+"A = 4000;// sq.ft\n",
+"d1 = 10;// feet\n",
+"d2 = 2;// inches\n",
+"rho = 64;// lb/cuft\n",
+"W = A*(d2/12)*rho;// lb\n",
+"printf('Weight of cargo = %d lb',W);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Chapter_2_Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 48\n",
+"\n",
+"gam = 53.0;// lb/cuft\n",
+"D = 17;// inches\n",
+"d = 12;// inches\n",
+"V = (%pi/6)*(D/12)^3;\n",
+"V1 = 0.584;//cuft\n",
+"V2 = 0.711;//cuft\n",
+"W = V*gam;\n",
+"F_B = V1*62.4;\n",
+"F_ACA = (V2)*62.4;\n",
+"F = W+F_ACA-F_B;\n",
+"printf('The force exerted between sphere and orfice plate = %.1f lb',F);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Chapter_2_Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 51\n",
+"\n",
+"v = 15;// ft/sec^2\n",
+"d = 5;// ft\n",
+"p = integrate('-62.4*(v+32.2)/32.2','z',0,-5);\n",
+"printf('p = %d psf',p);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/3-Kinematics_of_Fluid_Motion.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/3-Kinematics_of_Fluid_Motion.ipynb
new file mode 100644
index 0000000..be03394
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/3-Kinematics_of_Fluid_Motion.ipynb
@@ -0,0 +1,194 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Kinematics of Fluid Motion"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Chapter_3_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 83\n",
+"v_mag = 3;\n",
+"x = 8;\n",
+"y = 6;\n",
+"s = sqrt(x^2 + y^2);\n",
+"v = v_mag*s;// fps\n",
+"a_t = v_mag*s*v_mag;// ft/sec^2\n",
+"a_r = 0;\n",
+"a = sqrt(a_r^2 + a_t^2);\n",
+"printf('v = %d fps \n a = %d ft/sec^2',v,a);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Chapter_3_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 83\n",
+"\n",
+"v = 5;// fps\n",
+"a_t = 0;\n",
+"a_r = v^2 /2;// ft/sec^2\n",
+"printf('Radial component of acceleration = %.1f ft/sec^2\n Tangential component of acceleration = %d ',a_r,a_t);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Chapter_3_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.85\n",
+"v = 5;// fps\n",
+"r = 2;\n",
+"theta = 60;// degrees\n",
+"x = 1;\n",
+"y = sqrt(3);\n",
+"v_t = v;\n",
+"v_r = 0;\n",
+"u = -v*y/(sqrt(x^2 + y^2));\n",
+"v = v*x/(sqrt(x^2 + y^2));\n",
+"a_x = -50*x/8;\n",
+"a_y = -50*y/8;\n",
+"a_r = -v_t^2 /r;\n",
+"a_t = v_r*v_t/r;\n",
+"printf('u = %.2f fps, v = %.2f fps',u,v);\n",
+"printf('\n v_r = %d, v_t = %d fps',v_r,v_t);\n",
+"printf('\n a_x = %.2f ft/sec^2, a_y = %.2f ft/sec^2',a_x,a_y);\n",
+"printf('\n a_r = %.1f ft/sec^2, a_t = %d',a_r,a_t);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Chapter_3_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 88\n",
+"\n",
+"w = 600;// pounds\n",
+"l1 = 12;//inches\n",
+"l2 = 8;//inches\n",
+"Q = w/(62.4);\n",
+"V_12 = Q/(0.25*%pi*(l1/12)^2);\n",
+"V_8 = Q/(0.25*%pi*(l2/12)^2);\n",
+"printf('Q = %.2f cfs',Q);\n",
+"printf('\n V_12 = %.2f fps\n V_8 = %.2f fps',V_12,V_8);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Chapter_3_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.89\n",
+"\n",
+"l = 12;// inches\n",
+"W = 6;// pounds\n",
+"w = 0.0624// lb/cuft\n",
+"l1 = 8;// inches\n",
+"rho = 0.050;// lb/cuft\n",
+"Q_12 = W/w ;\n",
+"Q_8 = W/rho ;\n",
+"V_12 = Q_12/(0.25*%pi*(l/12)^2);\n",
+"V_8 = Q_8/(0.25*%pi*(l1/12)^2);\n",
+"printf('Q_12 = %.1f cfs, Q_8 = %d cfs',Q_12,Q_8);\n",
+"printf('\n V_12 = %.1f fps, V_8 = %d fps',V_12,V_8);\n",
+"\n",
+"//there is a minute error in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/4-Flow_of_an_Incompressible_Ideal_Fluid.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/4-Flow_of_an_Incompressible_Ideal_Fluid.ipynb
new file mode 100644
index 0000000..83040aa
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/4-Flow_of_an_Incompressible_Ideal_Fluid.ipynb
@@ -0,0 +1,393 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Flow of an Incompressible Ideal Fluid"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: Chapter_4_Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 126\n",
+"\n",
+"D = 6;//in\n",
+"v = 100;//fps\n",
+"p = 0;//psi\n",
+"gam = 0.08;//specific weight in lb/cuft\n",
+"R = 6;//in\n",
+"theta = 60;//degrees\n",
+"v_r = v*(1-(0.5*D/R)^2)*cos(theta*%pi/180);\n",
+"v_t = -v*(1+(0.5*D/R)^2)*sin(theta*%pi/180);\n",
+"V = sqrt(v_r^2 + v_t^2);\n",
+"p = ((v^2 /(2*32.2)) - (V^2 /(2*32.2)) - (cos(theta*%pi/180)*sin(theta*%pi/180)))*gam;\n",
+"printf('Velocity = %.1f fps\n Pressure = %.2f psf',V,p);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12: Chapter_4_Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 127\n",
+"\n",
+"p_A = 0;\n",
+"p_B = 0;\n",
+"p_C = 0;\n",
+"p_D = 0;\n",
+"//velocity heads\n",
+"V1 = 15.28;//fps\n",
+"V2 = 16.78;//fps\n",
+"V3 = 15.50;//fps\n",
+"V4 = 16.50;//fps\n",
+"\n",
+"q = sqrt(2*32.2)*integrate('h^(1/2)','h',3.771,4.229);\n",
+"\n",
+"printf('V_A = %.2f fps,\n V_B = %.2f fps,\n V_C = %.2f fps,\n V_D = %.2f fps',V1,V2,V3,V4);\n",
+"printf('\n Flow rate = %.2f cfs/ft',q);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Chapter_4_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no.103\n",
+"d = 4;//feet\n",
+"theta = 30;// degrees\n",
+"p_C = 5;// psi\n",
+"p_A = p_C-(62.4/144)*cos(theta*%pi/180) *2;\n",
+"p_B = p_C+(62.4/144)*cos(theta*%pi/180) *2;\n",
+"h = p_C*144/62.4;\n",
+"printf('The static pressures at A and B are %.2f psi and %.2f psi respectively.',p_A,p_B);\n",
+"printf('\n The hydraulic grade line is %.2f ft (vertically) above C,',h);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Chapter_4_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 105\n",
+"\n",
+"h = 100;//ft\n",
+"d1 = 5;//in\n",
+"d2 = 8;//in\n",
+"h1 = 60;// ft\n",
+"h2 = 10;//ft\n",
+"h3 = 40;//ft\n",
+"h4 = 102;//ft\n",
+"H = 300;//ft\n",
+"theta = 30;//degrees\n",
+"gam = 0.43;\n",
+"\n",
+"\n",
+"V5 = sqrt(h*2*32.2);\n",
+"Q = V5*0.25*%pi*(d1/12)^2;\n",
+"V1 = (d1/12)^4 *h;\n",
+"V2 = h*(d1/d2)^4;\n",
+"p1 = (h1-V1)*gam;\n",
+"p2 = -(h2-V2)*2.04*gam;\n",
+"p3 = (h3-V1)*gam;\n",
+"p4 = (h4-V1)*gam;\n",
+"V6 = V5*cos(theta*%pi/180);\n",
+"e = H - (V6^2)/(2*32.2);\n",
+"printf('p1 = %.1f psi\n p2 = %.1f in. of Hg vacuum\n p3 = %.1f psi\n p4 = %.1f psi',p1,p2,p3,p4);\n",
+"printf('\n elevation = %.1f ft',e);\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Chapter_4_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+" clear;\n",
+"clc;\n",
+"\n",
+"//page no. 107\n",
+"\n",
+"p = 14;//psia\n",
+"gam = 62;//lb/cuft\n",
+"l1 = 35;// ft\n",
+"l2 = 10;// ft\n",
+"d = 6;//in\n",
+"\n",
+"p_v = 2.2*gam;\n",
+"p_B = p*144;\n",
+"k_c = l1-l2+(p_B/gam)-(p_v/gam);\n",
+"K6 = l1;\n",
+"d_c = d*(K6/k_c)^0.25;\n",
+"\n",
+"printf('d = %.2f in',d_c);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Chapter_4_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 108\n",
+"\n",
+"rho = 0.00238;//slug/cuft\n",
+"h = 6;//in\n",
+"V_0 = sqrt(2*(h/12)*(62.4 - rho*32.2)/rho);\n",
+"printf('The velocity of the air stream = %d fps',V_0);\n",
+"\n",
+"//there is a small error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Chapter_4_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.110\n",
+"\n",
+"sg = 0.82;\n",
+"p1 = 20;//psia\n",
+"p2 = 10;//psia\n",
+"d1 = 6;//in\n",
+"d2 = 12;//in\n",
+"del_z = 4;//ft\n",
+"d = 18.7;//in\n",
+"\n",
+"h1 = (p1-p2)*144/(sg*62.4) - del_z;\n",
+"A1 = 0.25*%pi*(d1/12)^2;\n",
+"A2 = 0.25*%pi*(d2/12)^2;\n",
+"V2 = sqrt(-2*h1*32.2/(1-(A2/A1)^2));\n",
+"V1 = (A2/A1)*V2;\n",
+"Q = A1*V1;\n",
+"printf('Flow rate = %.2f cfs',Q);\n",
+"\n",
+"//there is a small error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Chapter_4_Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 112\n",
+"\n",
+"e1 = 100;//ft\n",
+"theta = 60;//degrees\n",
+"e2 = 98.5;//ft\n",
+"V_s2 = 20;//fps\n",
+"e3 = 95;//ft\n",
+"\n",
+"t2 = (e1-e2)/cos(theta*%pi/180);\n",
+"p2 = 3*62.4*cos(theta*%pi/180);\n",
+"V_F2 = sqrt((e1 + (V_s2^2 /(2*32.2)) - p2/62.4 -e2)*2*32.2);\n",
+"q = 3*1*V_s2;\n",
+"y = 11.22;//ft\n",
+"y1 = 10.74;//ft\n",
+"V1 = sqrt((y-y1)*2*32.2);\n",
+"\n",
+"printf('On spillwy: Pressure = %.1f psf , velocity = %d fps' ,p2,V_F2);\n",
+"printf('\n In the approach channel: Depth = %.2f ft, V1 = %.1f fps',y1,V1);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Chapter_4_Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 113\n",
+"\n",
+"d = 10;// in\n",
+"p = 40;//psi\n",
+"G = 5;//cfs\n",
+"y1 = 92.4;//ft\n",
+"k1 = -11.3;//ft\n",
+"k2 = 92.4;//ft\n",
+"k3 = 3.2;//ft\n",
+"k4 = 10.1;//ft\n",
+"\n",
+"E_p = k4+y1+d-k1-k3;\n",
+"hp = G*62.4*E_p/550;\n",
+"\n",
+"printf('Pump horsepower = %.1f hp',hp);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Chapter_4_Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 122\n",
+"\n",
+"sw = 20;// specific weight in lb/cuft\n",
+"p_B = 6;//psi\n",
+"p_A = 2;//psi\n",
+"L = 17.28;//ft\n",
+"l = 10;//ft\n",
+"V_A = sqrt(2*32.2*((p_B-p_A)*144/50 - l));\n",
+"\n",
+"printf('The mean velocity = %.2f fps',V_A);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/5-Flow_of_a_Compressible_Ideal_Fluid.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/5-Flow_of_a_Compressible_Ideal_Fluid.ipynb
new file mode 100644
index 0000000..31a011d
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/5-Flow_of_a_Compressible_Ideal_Fluid.ipynb
@@ -0,0 +1,247 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Flow of a Compressible Ideal Fluid"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Chapter_5_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 152\n",
+"v1 = 100;// fps\n",
+"p1 = 50;// psia\n",
+"T1 = 300;// degreeF\n",
+"v2 = 500;// fps\n",
+"Cp = 186.5;\n",
+"gam = 1.4;\n",
+"T2 = T1 - (v2^2 - v1^2)/(2*36.2*Cp);\n",
+"p2 = p1*(1 - (v2^2 - v1^2)/(2*36.2*53.3*(T1+460)*(gam/(gam-1))))^(1/0.286);\n",
+"printf('T2 = %d degreeF',T2);\n",
+"printf('\n p2 = %.1f psia',p2);\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Chapter_5_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 153\n",
+"\n",
+"p1 = 300;// psia\n",
+"T1 = 900;// degreeF\n",
+"p2 = 200;// psia\n",
+"T2 = 780;// degreeF\n",
+"H2 = 1414;//Btu/lb\n",
+"H1 = 1471;// Btu/lb\n",
+"V2 = sqrt(2*31.1*778*(H1-H2));\n",
+"printf('T2 = %d degreeF\n V2 = %d fps',T2,V2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Chapter_5_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 155\n",
+"\n",
+"v = 586;// fps\n",
+"p = 13;// psia\n",
+"T = 0;// degreeF\n",
+"gam = 1.4;\n",
+"rho_0 = p*144/(32.2*53.3*(460+T));\n",
+"a_0 = sqrt(gam*32.2*53.3*(T+460));\n",
+"M_0 = v/a_0;\n",
+"p_8_approx = p+(0.5/144)*rho_0*v^2 *(1+0.25*M_0^2);\n",
+"p_8_exact = p*(1+M_0^2 *(gam-1)/2)^(gam/(gam-1));\n",
+"T_8 = v^2 /(2*32.2*186.5) +460;\n",
+"rho_8 = p_8_exact*144/(T_8*32.2*53.3);\n",
+"printf('At stagnetion point, p = %.2f psia\n T = %.1f degreeR\n density = %.5f slug/cuft',p_8_exact,T_8,rho_8);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Chapter_5_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 161\n",
+"\n",
+"d = 1;// in\n",
+"p = 100;// psi\n",
+"T = 10;// degreeF\n",
+"p_i = 80;//psi\n",
+"p_b = 14.7;//psi\n",
+"p1 = 16520;// psfa\n",
+"gam1 = 0.553;// lb/cuft\n",
+"k = 0.874;\n",
+"G = (0.5*k*0.25*%pi*(d/12)^2 /(1-(2/3)^4)) *sqrt(2*32.2*(p-p_i)*144/gam1);\n",
+"printf('flow rate = %.2f lb/sec',G);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Chapter_5_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 163\n",
+"d = 1;// in\n",
+"p_r = 100;//psi\n",
+"T_r = 100;// degreeF\n",
+"p_b = 14.7;// psi\n",
+"p3 = 14.7;//psi\n",
+"G = 2.03;// lb/sec\n",
+"gam1 = 0.553;\n",
+"gam = 1.4;\n",
+"V3 = sqrt(2*32.2*(gam/(gam-1))*(p_r+p_b)*144/gam1 *(1-(p3/(p_r+p_b))^((gam-1)/gam)));\n",
+"T3 = (T_r+460) - V3^2 /(2*32.2*186.5);\n",
+"a3 = sqrt(gam*32.2*53.3*T3);\n",
+"M3 = V3/a3;\n",
+"A3 = G/(gam1*V3);\n",
+"d3 = (A3/(0.25*%pi))^(1/2);\n",
+"p3_dash = 103.3;// psia\n",
+"p_B = p3*(1+ (2*gam/(gam+1))*(M3^2 -1));\n",
+"printf('V3 = %d fps, a3 = %d fps, M3 = %.2f ',V3,a3,M3);\n",
+"printf('\n p3_dash = %.1f psia, p_B = %.1f psia',p3_dash,p_B);\n",
+"\n",
+"//there are minute errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.6: Chapter_5_Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 166\n",
+"\n",
+"V_0 = 586;// fps\n",
+"t_0 = 0;// degreeF\n",
+"P_0 = 13;// psia\n",
+"a_0 = 1052;// fps\n",
+"M_0 = 0.557;\n",
+"V_A = 800;//fps\n",
+"V_B = 900;//fps\n",
+"gam = 1.4;\n",
+"T_A = 488.5- V_A^2 /(2*32.2*186.5);\n",
+"T_B = 488.5- V_B^2 /(2*32.2*186.5); \n",
+"p_A = 16.18*(T_A/488.5)^(gam/(gam-1));\n",
+"p_B = 16.18*(T_B/488.5)^(gam/(gam-1));\n",
+"a_A = sqrt(gam*32.3*53.3*T_A);\n",
+"a_B = sqrt(gam*32.3*53.3*T_B);\n",
+"M_A = V_A/a_A;\n",
+"M_B = V_B/a_B;\n",
+"printf('At point A, p = %.2f psia, T = %.1f degreeR, a = %d fps, M = %.3f',p_A,T_A,a_A,M_A);\n",
+"printf('\n At point B, p = %.2f psia, T = %.1f degreeR, a = %d fps, M = %.3f',p_B,T_B,a_B,M_B);\n",
+"\n",
+"//there are errors in the answers given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/6-The_Impulse_Momentum_Principle.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/6-The_Impulse_Momentum_Principle.ipynb
new file mode 100644
index 0000000..9940bf8
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/6-The_Impulse_Momentum_Principle.ipynb
@@ -0,0 +1,515 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: The Impulse Momentum Principle"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: Chapter_6_Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 199\n",
+"\n",
+"P = 100;//hp\n",
+"V = 75;//fps\n",
+"V1 = 150;//fps\n",
+"d = 2;//in\n",
+"alpha1 = 60;//degrees\n",
+"\n",
+"Q = 0.25*%pi*(d/12)^2 *V1;\n",
+"F_y = 550*P/V;\n",
+"V2 = sqrt(V1^2 - P*550/(Q*1.935/2));\n",
+"alpha2 = (180/%pi)*asin((V1*sin(alpha1*%pi/180) - (F_y/(Q*1.935)))/V2);\n",
+"beta1 = 90 - (180/%pi)*atan((V1*sin(alpha1*%pi/180) - V)/(V1*cos(alpha1*%pi/180)));\n",
+"beta2 = 90 + (180/%pi)*atan((V-V2*sin(alpha2*%pi/180))/(V1*cos(alpha1*%pi/180)));\n",
+"\n",
+"printf('Beta1 = %d degrees,\n Beta2 = %d degrees',beta1,beta2);\n",
+"\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Chapter_6_Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 203\n",
+"\n",
+"r1 = 5;//ft\n",
+"r2 = 3.5;//ft\n",
+"beta1 = 60;//degrees\n",
+"beta2 = 150;//degrees\n",
+"t = 1;//ft\n",
+"alpha1 = 15;//degree\n",
+"Q = 333;//cfs\n",
+"gam = 0.434;\n",
+"\n",
+"V_r1 = Q/(2*%pi*r1);\n",
+"V_r2 = Q/(2*%pi*r2);\n",
+"V_t1 = V_r1*(1/tan(alpha1*%pi/180));\n",
+"u1 = V_t1 - V_r1*tan((90-beta1)*%pi/180);\n",
+"omega = u1/r1;\n",
+"u2 = omega*r2;\n",
+"V_t2 = u2 - V_r2*(1/tan((90-beta1)*%pi/180));\n",
+"T = Q*1.935*(V_t1*r1 - (V_t2*r2));\n",
+"hp = T*omega/550;\n",
+"E_T = hp*550/(Q*62.4);\n",
+"V1 = sqrt(V_r1^2 + V_t1^2);\n",
+"V2 = sqrt(V_r2^2 + V_t2^2);\n",
+"del_p = E_T*gam + (gam/(2*32.2))*(V2^2 - V1^2);\n",
+"\n",
+"printf('V1 = %.1f fps,\n V2 = %.1f fps,\n T = %d ft-lb,\n hp = %d lb,\n E_T = %.1f ft-lb/lb,\n p1-p2 = %.1f psi',V1,V2,T,hp,E_T,del_p);\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: Chapter_6_Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 204\n",
+"\n",
+"r1 = 3;//in\n",
+"r2 = 10;//in\n",
+"beta1 = 120;//degrees\n",
+"beta2 = 135;//degrees\n",
+"t = 1;//in\n",
+"Q = 4;//cfs\n",
+"gam = 0.434;\n",
+"\n",
+"\n",
+"V1 = Q*144/(2*%pi*r1);\n",
+"V_r1 = V1;\n",
+"V_r2 = Q*144/(2*%pi*r2);\n",
+"u1 = V1*tan((beta1-90)*%pi/180);\n",
+"omega = u1/(r1/12);\n",
+"u2 = omega*(r2/12);\n",
+"V_t2 = u2 - V_r2/tan((180-beta2)*%pi/180);\n",
+"T = Q*1.935*(V_t2*(r2/12));\n",
+"P = T*omega/547.561;//hp\n",
+"E_P = P*550/(Q*62.4);\n",
+"V2 = sqrt(V_r2^2 + V_t2^2);\n",
+"del_p = E_P*gam + (gam/(2*32.2))*(V1^2 - V2^2);\n",
+"\n",
+"printf('Rotational speed = %.1f rad/sec = %d rpm',omega,omega*60/(2*%pi));\n",
+"printf('\n T = %d ft-lb,\n P = %.1f hp',T,P);\n",
+"printf('\n The energy given to each pound of water = %d ft',E_P);\n",
+"printf('\n The pressure rise = %.1f psi',del_p);\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Chapter_6_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 176\n",
+"G = 10;//cfs\n",
+"d1 = 12;//in\n",
+"d2 = 8;//in\n",
+"p1 = 10;//psi\n",
+"V = 3;//cuft\n",
+"theta = 60;//degrees\n",
+"p2 = 3.43;// psi\n",
+"w = 187;//lb\n",
+"V1 = G/(0.25*%pi*(d1/12)^2);\n",
+"V2 = G/(0.25*%pi*(d2/12)^2);\n",
+"F1 = 0.25*%pi*(d1^2)*p1;\n",
+"F2 = 0.25*%pi*d2^2 *p2;\n",
+"Fx = F1+F2*cos(theta*%pi/180) - G*1.935*(-V2*cos(theta*%pi/180) - V1);\n",
+"Fz = F2*sin(theta*%pi/180) + w + G*1.935*(V2*sin(theta*%pi/180));\n",
+"F = sqrt(Fx^2 + Fz^2);\n",
+"alpha = (180/%pi)*atan(Fz/Fx);\n",
+"printf('The force on the bend = %d lb at %d degrees with the horizontal',F,alpha);\n",
+"//there is a small error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Chapter_6_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 178\n",
+"\n",
+"l1 = 5;//ft\n",
+"l2 = 2;//ft\n",
+"\n",
+"V1 = sqrt(2*32.2*(l2-l1)/(1-(l1/l2)^2));\n",
+"V2 = (l1/l2)*V1;\n",
+"q = l1*V1;\n",
+"F1 = 62.4*(l1^2)/2;\n",
+"F2 = 62.4*(l2^2)/2;\n",
+"Fx = F1-F2-q*1.935*(V2-V1);\n",
+"printf('Force = %d lb and direction is in downstream direction',Fx);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Chapter_6_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 182\n",
+"\n",
+"d = 2;//ft\n",
+"Q = 40;//cfs/ft\n",
+"\n",
+"\n",
+"V1 = Q/d;\n",
+"y1 = d;\n",
+"K1 = V1^2 /(32.2*y1);\n",
+"y2 = (-1 +sqrt(1+8*K1));\n",
+"V2 = Q/y2 ;\n",
+"delta = d + (V1^2 /(2*32.2)) - y2 - (V2^2 /(2*32.2));\n",
+"hp = Q*62.4*delta/550;\n",
+"printf('y2 = %.2f ft,\n delta = %.2f ft,\n Horsepower dissipated = %.1f hp',y2,delta,hp);\n",
+"\n",
+"//there are errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Chapter_6_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"funcprot(0);\n",
+"//page no. 184\n",
+"\n",
+"y1 = 2;//ft\n",
+"V1 = 20;//fps\n",
+"beta = 40;//degrees\n",
+"\n",
+"K1 = (V1^2)/(32.2*y1);\n",
+"y2 = (-1 + sqrt(1+8*K1*(sin(beta*%pi/180))^2));\n",
+"k = (y1/y2)*V1*sin(beta*%pi/180);\n",
+"del_angle = (180/%pi)*atan(sqrt((tan(beta*%pi/180)) *(1+2*k^2 /(32.2*y2))/(1+2*K1*(sin(beta*%pi/180))^2)));\n",
+"theta = beta-del_angle;\n",
+"\n",
+"printf('The required wedge angle = %d degrees',2*theta);\n",
+" \n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Chapter_6_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 186\n",
+"\n",
+"p1 = 14.7;//psia\n",
+"V1 = 1732;//pfs\n",
+"a1 = 862;//fps\n",
+"\n",
+"M1 = V1/a1;\n",
+"M2 = sqrt((1+0.4*0.5*M1^2)/(1.4*M1^2 - 0.4*0.5));\n",
+"p2 = p1*(1+2*(1.4/2.4)*(M1^2 -1));\n",
+"V2 = V1*(2+0.4*M1^2)/(2.4*M1^2);\n",
+"a2 = V2/M2;\n",
+"T2 = a2^2/(1.4*32.2*53.3);\n",
+"T1 = a1^2/(1.4*32.2*53.3);\n",
+"del_T = T2-T1;\n",
+"printf('p2 = %.1f psia,\n V2 = %d fps,\n a2 = %d fps,\n T2 = %d degreeR',p2,V2,a2,T2);\n",
+"printf('\n Rise of temperature = %d degreeF',del_T);\n",
+"\n",
+"//There are errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Chapter_6_Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"funcprot(0);\n",
+"\n",
+"//page no. 188\n",
+"\n",
+"p1 = 14.7;// psia\n",
+"v1 = 1732;// fps\n",
+"a1 = 862;// fps\n",
+"beta = 40;// degrees\n",
+"\n",
+"\n",
+"M1 = v1/a1;\n",
+"T1 = a1^2 /(1.4*32.2*53.3);\n",
+"p2 = p1*(1 + 2*(1.4/2.4)*(M1^2 *(sin(beta*%pi/180))^2 -1));\n",
+"theta = beta - (180/%pi)*atan(tan(beta*%pi/180) * (0.4*(M1*sin(beta*%pi/180))^2 +2)/(2.4*(M1*sin(beta*%pi/180))^2));\n",
+"M2 = sqrt((1/sin((beta-theta)*%pi/180))^2 *(1 + (0.4/2)*((M1*sin(beta*%pi/180))^2) )/(1.4*(M1*sin(beta*%pi/180))^2) -(0.4/2));\n",
+"v2 = v1*cos(beta*%pi/180)/cos((beta-theta)*%pi/180);\n",
+"a2 = v2/M2;\n",
+"T2 = a2^2 /(1.4*32.2*53.3);\n",
+"\n",
+"\n",
+"printf('Angle required = %.1f degrees,\n p2 = %.1f psia,\n v2 = %d fps,\n a2 = %d fps,\n T2 = %.1f degreeR',theta,p2,v2,a2,T2);\n",
+"\n",
+"//there are errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: Chapter_6_Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 190\n",
+"\n",
+"F = 1000;//lb\n",
+"H = 30000;//ft\n",
+"v1 = 500;//fps\n",
+"v2 = 4000;//fps\n",
+"p2 = 5;//psia\n",
+"A2 = 1;//sqft\n",
+"p1 = 4.37;//psia\n",
+"\n",
+"G_a = (F - (p2-p1)*A2*144)*32.2/(v2-v1);\n",
+"\n",
+"printf('Ga = %.1f lb/sec',G_a);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Chapter_6_Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 194\n",
+"\n",
+"gam = 0.0765;// lb/cuft\n",
+"V1 = 293;//fps\n",
+"hp = 1500;\n",
+"h = 10;//ft\n",
+"V4 = 338;//fps\n",
+"\n",
+"V = 0.5*(V1+V4);\n",
+"Q = hp*550/((V4-V1)*V*gam/32.2);\n",
+"d1 = sqrt(Q/(V1*0.25*%pi));\n",
+"d4 = sqrt(Q/(V4*0.25*%pi));\n",
+"F = Q*(gam/32.2)*(V4-V1);\n",
+"eta = V1/V;\n",
+"\n",
+"printf('V4 = %d fps,\n V = %.1f fps,\n d1 = %.1f ft,\n d4 = %.2f ft,\n F = %d lb,\n efficiency = %.1f percentage',V4,V,d1,d4,F,eta*100);\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: Chapter_6_Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 198\n",
+"\n",
+"D = 6;//ft\n",
+"d = 2;//in\n",
+"V1 = 200;//fps\n",
+"rpm = 250;\n",
+"theta = 150;//degrees\n",
+"\n",
+"u = (rpm/60)*2*%pi*0.5*D;\n",
+"v1 = V1-u;\n",
+"v2 = v1;\n",
+"V_2x = v1*cos(theta*%pi/180) + u;\n",
+"V_2y = v2*sin(theta*%pi/180);\n",
+"V2 = sqrt(V_2x^2 + V_2y^2);\n",
+"Q = 0.25*%pi*(d/12)^2 *V1;\n",
+"F_x = Q*1.935*(V_2x-V1);\n",
+"P = F_x*u/550;\n",
+"\n",
+"printf('The working component of force on fluid = %d lb,\n P = %d hp',F_x,-P);\n",
+"\n",
+"//thete are small errors in the answers given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/7-Flow_of_a_Real_Fluid.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/7-Flow_of_a_Real_Fluid.ipynb
new file mode 100644
index 0000000..31ad6ee
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/7-Flow_of_a_Real_Fluid.ipynb
@@ -0,0 +1,202 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Flow of a Real Fluid"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Chapter_7_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 225\n",
+"nu = 0.00001;// sqft/sec\n",
+"d = 1;//in\n",
+"R_c = 2100;\n",
+"V = R_c*nu/(d/12);\n",
+"Q = V*0.25*%pi*(d/12)^2;\n",
+"printf('Q = %.6f cfs',Q);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.4: Chapter_7_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 240\n",
+"\n",
+"G = 240;//lb/sec\n",
+"A1 = 4;//sqft\n",
+"A2 = 2;//sqft\n",
+"z1 = 30;//ft\n",
+"z2 = 80;//ft\n",
+"V1 = 600;// fps\n",
+"V2 = 800;//fps\n",
+"p1 = 20;//psia\n",
+"p2 = 35;// psia\n",
+"gam1 = G/(A1*V1);\n",
+"gam2 = G/(A2*V2);\n",
+"T1 = p1*144/(53.3*gam1);\n",
+"T2 = p2*144/(53.3*gam2);\n",
+"del_H = 186.5*(T2-T1);\n",
+"E_H1 = (V2^2)/(2*32.2) - (V1^2)/(2*32.2) +del_H+z2-z1;\n",
+"E_H2 = (V2^2)/(2*32.2) - (V1^2)/(2*32.2) +del_H;\n",
+"Q = G*E_H2/550;\n",
+"printf('T1 = %d degreeR,\n T2 = %d degreeR',T1,T2);\n",
+"printf('\n The net heat energy added = %d hp',Q);\n",
+"\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.5: Chapter_7_Example_5.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 240\n",
+"\n",
+"G = 50;//cfs\n",
+"Q = 400;//hp\n",
+"A1 = 4;//sqft\n",
+"A2 = 2;//sqft\n",
+"z1 = 30;//ft\n",
+"z2 = 80;//ft\n",
+"p1 = 20;//psi\n",
+"p2 = 10;//psi\n",
+"\n",
+"V1 = G/A1;\n",
+"V2 = G/A2;\n",
+"E_p = Q*(550/62.4)/G;\n",
+"h_L = (p1-p2)*144/62.4 + (V1^2 - V2^2)/(2*32.2) +(z1-z2)+E_p;\n",
+"printf('Head lost = %.1f ft',h_L);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Chapter_7_Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 243\n",
+"\n",
+"b = 3;//ft\n",
+"d = 2;//ft\n",
+"l = 200;//ft\n",
+"h_L = 30;//ft\n",
+"tau_0 = h_L*62.4*b*d/(10*l);//0.00694\n",
+"printf('The resistance stress exerted between fluid and conduit walls = %.2f psf = %.3f psi',tau_0,tau_0*0.00694);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Chapter_7_Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.244\n",
+"\n",
+"h_L = 30;//ft\n",
+"l = 200;//ft\n",
+"d = 2;//ft\n",
+"r = 8;//in\n",
+"//part (a)\n",
+"tau_0 = h_L*62.4/(d*l);\n",
+"\n",
+"//part(b)\n",
+"tau = (0.5*r/12)*(tau_0*0.00694);\n",
+"printf('Part(a): Shear stress = %.2f psf = %.4f psi ',tau_0,tau_0*0.00694);\n",
+"printf('\n Part(b): Shear stress = %.4f psi ',tau);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/8-Similitude_and_Dimensional_Analysis.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/8-Similitude_and_Dimensional_Analysis.ipynb
new file mode 100644
index 0000000..644a82f
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/8-Similitude_and_Dimensional_Analysis.ipynb
@@ -0,0 +1,157 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Similitude and Dimensional Analysis"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Chapter_8_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no. 266\n",
+"Tw = 32;// degreeF\n",
+"d1 = 3;// in\n",
+"v = 10;//fps\n",
+"delp = 2;//psi\n",
+"h1 = 30;// ft\n",
+"Tb = 68;//degreeF\n",
+"d2 = 1;//in\n",
+"h2 = 10;//ft\n",
+"V = v*(d1/12)*0.0000137/((d2/12)*0.88*0.0000375);\n",
+"del_p = delp/h2^2 *0.88*V^2;\n",
+"printf('V = %.2f fps\n del_p = %.2f psi',V,del_p);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Chapter_8_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 266\n",
+"\n",
+"l = 400;// ft\n",
+"h = 10;//ft\n",
+"v = 30;// fps\n",
+"D = 2;//lb\n",
+"V = sqrt((v^2 /l)*h);\n",
+"D_p = (D/V^2) *(v^2)*(l^2)/h^2;\n",
+"printf('V = %.2f fps\n Prototype drag = %d lb',V,D_p);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Chapter_8_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no.266\n",
+"\n",
+"G = 20000;//cfs\n",
+"k = 1/15;\n",
+"Q_m = G*(k)^(2+ 1/2);\n",
+"printf('Qm = %d cfs',Q_m);\n",
+"\n",
+"//there is a minute error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: Chapter_8_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 266\n",
+"\n",
+"k = 1/10;\n",
+"v = 3000;//fps\n",
+"h = 15000;//altitude\n",
+"T = 68;// degreeF\n",
+"am = 870;//fps\n",
+"ap = 1057;//fps\n",
+"Vm = v*(am/ap);\n",
+"rho_m = v*(1/k)*0.001495*0.031/(0.033*Vm);\n",
+"p_m = 32.2*rho_m*34.9*(T+460)/(144);\n",
+"printf('Vm = %d fps\n p_m = %d psia',Vm,p_m);\n",
+"\n",
+"//there is a small error in the answer given in textbook"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Elementary_Fluid_Mechanics_by_J_K_Vennard/9-Fluid_Flow_in_Pipes.ipynb b/Elementary_Fluid_Mechanics_by_J_K_Vennard/9-Fluid_Flow_in_Pipes.ipynb
new file mode 100644
index 0000000..1fdd6d8
--- /dev/null
+++ b/Elementary_Fluid_Mechanics_by_J_K_Vennard/9-Fluid_Flow_in_Pipes.ipynb
@@ -0,0 +1,558 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: Fluid Flow in Pipes"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.10: Chapter_9_Example_10.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 305\n",
+"Q = 90;//gpm\n",
+"d = 3;//in\n",
+"l = 3000;//ft\n",
+"V = Q/(60*7.48*0.25*%pi*(d/12)^2);\n",
+"R_h = (d/12)/4;\n",
+"C_hw = 140;\n",
+"S = (V/(1.318*140*R_h^0.63))^(1/0.54);\n",
+"h_L = S*l;\n",
+"printf('The loss of head = %.1f ft of water',h_L);\n",
+"\n",
+"//there is a minute error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.11: Chapter_9_Example_11.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 307\n",
+"\n",
+"G = 40;// lb/min\n",
+"d = 3;// in\n",
+"T = 100;// degreeF\n",
+"p = 50;// psia\n",
+"l = 2000;//ft\n",
+"Re = ((G/60)*(d/12))/(0.0491*32.2*4*10^-7);\n",
+"f = 0.015;\n",
+"gam1 = p*(144/(53.3*(T+460)));\n",
+"V1 = (G/60)/(gam1*0.0491);\n",
+"a = sqrt(1.4*32.2*53.3*(T+460));\n",
+"M1 = V1/a;\n",
+"M2_limit = sqrt(1/1.4);\n",
+"l = (((1-(M1/M2_limit)^2)/(1.4*M1^2)) - 2*log(M2_limit/M1))*(0.25/0.015);\n",
+"p2 = 38.9;//psia, from trial and error method \n",
+"printf('p2 = %.1f psia',p2);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.12: Chapter_9_Example_12.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 312\n",
+"\n",
+"d = 12;// in\n",
+"D = 24;//in\n",
+"theta = 20;//degrees\n",
+"G = 10;//cfs\n",
+"p = 20;//psi\n",
+"V12 = G/(0.25*%pi);\n",
+"V24 = V12/4;\n",
+"K_L = 0.43;\n",
+"p24 = ((p*144/62.4) + (V12^2 /(2*32.2)) - ((V24^2)/(2*32.2)) - K_L*(V12-V24)^2 /(2*32.2))/2.314;\n",
+"printf('Pressure in the larger pipe = %.1f psi',p24);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.13: Chapter_9_Example_13.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 322\n",
+"\n",
+"d = 12;// in\n",
+"l = 1000;//ft\n",
+"h1 = 200;//elevation\n",
+"h2 = 250;//elevation\n",
+"T = 50;//degreeF\n",
+"f1 = 0.030;\n",
+"V1 = sqrt((h2-h1)*2*32.2/(0.5+f1*l +1));\n",
+"R1 = V1/0.00000141;\n",
+"f2 = 0.019;\n",
+"V2 = sqrt((h2-h1)*2*32.2/(0.5+f2*l +1));\n",
+"R2 = V1/0.00000141;\n",
+"Q = 0.25*%pi*(d/12)^2 *V2; \n",
+"printf('Velocity = %.1f fps\n flow rate = %.1f cfs',V2,Q);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.14: Chapter_9_Example_14.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 322\n",
+"\n",
+"l = 200;//ft\n",
+"Q = 0.1;//cfs\n",
+"del_h = 5;//ft\n",
+"T = 50;//degreeF\n",
+"d = 0.187;//ft\n",
+"V = Q/(0.25*%pi*d^2);\n",
+"R = V*d/0.0000141;\n",
+"f = (del_h*2*32.2/V^2 -(1+0.5))*(d/l);\n",
+"printf('Required diameter of the pipe = %.2f in.',d*12);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.15: Chapter_9_Example_15.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 324\n",
+"\n",
+"Q = 2.5;//cfs\n",
+"T = 50;//degreeF\n",
+"d1 = 8;//in\n",
+"d2 = 6;//in\n",
+"l1 = 1000;//ft\n",
+"l2 = 2000;//ft\n",
+"V8 = Q/(0.25*%pi*(d1/12)^2);\n",
+"V6 = Q/(0.25*%pi*(d2/12)^2);\n",
+"R8 = V8*0.667/0.0000141;\n",
+"f8 = 0.020;\n",
+"R6 = V6*0.5/0.0000141;\n",
+"f6 = 0.019;\n",
+"h_L8 = f8*(l1/0.667)*(V8^2 /(2*32.2));\n",
+"h_L6 = f6*(l2/0.5)*(V6^2 /(2*32.2));\n",
+"Ep = 100+h_L8+h_L6;\n",
+"n = Q*62.4*(Ep)/550;\n",
+"V8 = sqrt((30/f8)*2*32.2/(l1/0.667));\n",
+"Q_max = V8*0.25*%pi*(d1/12)^2;\n",
+"printf('Maximum reliable flow that can be pumped = %.1f cfs',Q_max);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.16: Chapter_9_Example_16.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 327\n",
+"\n",
+"Q = 5;//cfs\n",
+"d = 12;//in\n",
+"l = 5000;//ft\n",
+"h = 70;//ft\n",
+"L = 2000;//ft\n",
+"K = (h/Q^1.85);\n",
+"a = (L/l)*K;\n",
+"b = ((l-L)/l)*K;\n",
+"Q_ = (h/((b+a*(0.5^(1.85)))))^(1/1.85);\n",
+"Q_A = Q_/2;\n",
+"Q_B = Q_/2;\n",
+"del = Q_-Q;//gain capcaity\n",
+"percent = (del/Q)*100;//gain percentage\n",
+"printf('The gain of capacity by looping the pipe is %.1f cfs or %d percentage',del,percent);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Chapter_9_Example_1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"//page no.281\n",
+"d = 6;//inches\n",
+"v = 15;//fps\n",
+"l = 100;//ft\n",
+"h_L = 17.5;//ft\n",
+"f = h_L*(d/(12*l))*(2*32.2/v^2);\n",
+"V_f = v*sqrt(f/8);\n",
+"printf('The friction velocity = %.2f fps',V_f);\n",
+"//there is an error in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Chapter_9_Example_2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 285\n",
+"\n",
+"T = 100;// degreeF\n",
+"d = 3;// inches\n",
+"Re = 80000;// Reynolds number\n",
+"e = 0.006;// inches\n",
+"l = 1000;//feet\n",
+"f1 = 0.021;//friction factor\n",
+"nu = 0.729*10^-5;// sqft/sec\n",
+"V = Re*nu/0.25;\n",
+"h_L1 = f1*(l/0.25)*(V^2 /(2*32.2));\n",
+"f = 0.316/Re^0.25;\n",
+"h_L = (f/f1)*h_L1;\n",
+"printf('Head loss expected = %.1f ft\n and head loss expected if the pipe were smooth = %.2f ft',h_L1,h_L);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.3: Chapter_9_Example_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 288\n",
+"\n",
+"T = 100;//degreeF\n",
+"d = 3;// inches\n",
+"Re = 80000;// Reynolds number\n",
+"e = 0.006;//inches\n",
+"l = 1000;//ft\n",
+"f = 0.0255;//friction factor\n",
+"V = 2.33;//fps\n",
+"h_L = f*(l/0.25)*(V^2 /(2*32.2));\n",
+"printf('Head loss expected = %.1f ft',h_L);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Chapter_9_Example_4.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 290\n",
+"\n",
+"Q = 100;//gallons per minute\n",
+"sg = 0.90;\n",
+"nu = 0.0012;// lb-sec/sqft\n",
+"d = 3;// in\n",
+"l = 1000;//ft\n",
+"r = 1;//in\n",
+"V = 4.53;//fps\n",
+"Re = V*(d/12)*sg*1.935/nu;\n",
+"h_L = (64/Re)*(12*l/d)*(V^2 /(2*32.2));\n",
+"v = 2*V*(1 - (2/d)^2);\n",
+"tau = 62.4*sg*h_L/(2*l*12);\n",
+"printf('v = %.2f fps\n h_L = %.1f ft of oil\n tau = %.3f psf',v,h_L,tau);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.6: Chapter_9_Example_6.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 295\n",
+"\n",
+"Q = 90;// gallons per minute\n",
+"T = 68;//degreeF\n",
+"d = 3;// in\n",
+"l = 3000;//ft\n",
+"r = 1;// in\n",
+"f = 0.018;\n",
+"V = Q/(60*7.48*0.25*%pi*(d/12)^2);\n",
+"Re = V*(d/12)*1.935/(0.000021);\n",
+"h_L = f*(l/0.25)*(V^2 /(2*32.2));\n",
+"tau_0 = f*1.935*V^2 /8;\n",
+"tau1 = 2*tau_0/d;\n",
+"v_c = V*(1+4.07*sqrt(f/8));\n",
+"v_ = sqrt(tau_0/1.935);\n",
+"v1 = v_*(5.50+5.75*log10(v_*(r/(2*12))/0.00001085));\n",
+"v1_ = v_c-v_*5.75*log10(0.5*d/(r/2));\n",
+"delta = d*32.8/(Re*sqrt(f));\n",
+"printf('Head lost = %.1f ft of water\n Wall shear stress = %.3f psf\n the center velocity = %.2f fps\n shearing stress = %.3f psf\n v1 = %.2f fps\n delta = %.4f in.',h_L,tau_0,v_c,tau1,v1_,delta);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.7: Chapter_9_Example_7.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 298\n",
+"\n",
+"d = 12;// in\n",
+"v = 10;//fps\n",
+"e = 2;//in\n",
+"k = 0.002;//relative roughness\n",
+"l = 1000;//ft\n",
+"f = (1/(1.14+2*log10(1/k)))^2;\n",
+"v_c = v*(1+4.07*sqrt(f/8));\n",
+"tau_0 = f*1.935*v^2 /8;\n",
+"v2 = v_c - tau_0*5.75*log10(0.5*d/e);\n",
+"v2_ = 8.48*tau_0 + tau_0*5.75*log10(e/(12*k));\n",
+"h_L = f*(l)*v^2 /(2*32.2); \n",
+"printf('f = %.4f\n v_c = %.2f fps\n v2 = %.1f fps\n h_L = %.1f ft of water',f,v_c,v2_,h_L);\n",
+"\n",
+"//there are small errors in the answer given in textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.8: Chapter_9_Example_8.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 300\n",
+"\n",
+"V = 4.08;// fps\n",
+"Re = 93800;//Reynolds number\n",
+"r = 1;//in\n",
+"m = 1/7;\n",
+"R = 3;//in\n",
+"f = 0.316/(Re^0.25);\n",
+"v_c = V/(2/((m+1)*(m+2)));\n",
+"v1 = v_c*(r/R)^(1/7);\n",
+"tau_0 = f*1.935*V^2 /8;\n",
+"printf('f = %.3f\n v_c = %.2f fps\n v1 = %.2f fps\n wall shear = %.3f ps',f,v_c,v1,tau_0);"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.9: Chapter_9_Example_9.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear;\n",
+"clc;\n",
+"\n",
+"//page no. 302\n",
+"\n",
+"p = 14.7;//psia\n",
+"T = 60;// degreeF\n",
+"l = 2000;//ft\n",
+"b = 18;//in\n",
+"h = 12;// in\n",
+"v = 10;// fps\n",
+"R_h = (b*h)/(2*12*(b+h));\n",
+"Re = v*4*R_h*0.0763/(32.2*0.000000375);\n",
+"f = 0.019;\n",
+"h_L = f*(l/(4*R_h))*v^2 /(2*32.2);\n",
+"del_p = 0.0763*h_L;\n",
+"printf('loss of head = %.1f ft of air\n and the pressure drop = %.2f psf = %.3f psi',h_L,del_p,del_p*0.0069);"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}