diff options
Diffstat (limited to 'Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb')
-rw-r--r-- | Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb | 837 |
1 files changed, 837 insertions, 0 deletions
diff --git a/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb b/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb new file mode 100644 index 0000000..017aef8 --- /dev/null +++ b/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb @@ -0,0 +1,837 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Excess Carriers In Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_10: Ratio_of_donot_atoms_to_Si_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Rho = 9.6 * 10^-2;// in ohm-m\n", +"Sigma_n = 1/Rho;// in (ohm-m)^-1\n", +"q = 1.6 * 10^-19;// in C\n", +"Mu_n = 1300 * 10^-4;// in m^2/v-s\n", +"N_D = Sigma_n / (Mu_n * q);// in atoms/m^3\n", +"A_D = N_D;// Atom density in atoms/cm^3\n", +"A_D = A_D * 10^6;// atoms/m^3\n", +"R_si = N_D/A_D;// ratio\n", +"disp(R_si,'the ratio of donor atom to silicon atom is');\n", +"\n", +"// Note: In the book the wrong value of N_D (5*10^22) is putted to evaluate the value of Atom Density (A_D) whereas the value of N_D is calculated as 5*10^20.\n", +"// So the answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_11: Equilibrium_electron_and_hole_densities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10^10;// in per cm^3\n", +"n_n = 2.25 * 10^15;// in per cm^3\n", +"p_n = (n_i)^2/n_n;// in per cm^3\n", +"disp(p_n,'The equilibrium electron per cm^3 is');\n", +"h_n = n_n;// in cm^3\n", +"disp(h_n,'Hole densities in per cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_12: Carrier_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"N_A = 2 * 10^16;// in atoms/cm^3\n", +"N_D = 10^16;// in atoms/cm^3\n", +"C_c = N_A-N_D;// C_c stands for Carrier concentration in /cm^3\n", +"disp(C_c,'Carrier concentration per cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_13: Generation_rate_due_to_irradiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_n = 10^15;// in cm^3\n", +"Torque_p = 10 * 10^-6;// in sec\n", +"R_g = del_n/Torque_p;// in hole pairs/sec/cm^3\n", +"disp(R_g,'The rate of generation of minority carrier in electron hole pairs/sec/cm^3 is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_14: Mobility_of_minority_charge_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"v = 1/(20 * 10^-6);// in cm/sec\n", +"E = 10;// in V/cm\n", +"Mu= v/E;// in cm^2/V-sec\n", +"disp(Mu,'The mobility of minority charge carrier in cm^2/V-sec is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_15: Hole_and_electron_diffusion_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"N_D = 4.5 * 10^15;// in /cm^3\n", +"del_p = 10^21;\n", +"e=10;// in cm\n", +"A = 1;// in mm^2\n", +"A = A * 10^-14;// cm^2\n", +"l = 10;// in cm\n", +"Torque_p = 1;// in microsec\n", +"Torque_p = Torque_p * 10^-6;// in sec\n", +"Torque_n = 1;// in microsec\n", +"Torque_n = Torque_n * 10^-6;// in sec\n", +"n_i = 1.5 * 10^10;// in /cm^3\n", +"D_n = 30;// in cm^2/sec\n", +"D_p = 12;// in cm^2/sec\n", +"n_o = N_D;// in /cm^3\n", +"p_o = (n_i)^2/n_o;// in /cm^3\n", +"disp(p_o,'Hole concentration at thermal equilibrium per cm^3 is');\n", +"l_n = sqrt(D_n * Torque_n);// in cm\n", +"disp(l_n,'Diffusion length of electron in cm is');\n", +"l_p = sqrt(D_p * Torque_p);// in cm\n", +"disp(l_p,'Diffusion length of holes in cm is');\n", +"x=34.6*10^-4;// in cm\n", +"dpBYdx = del_p *e;// in cm^4\n", +"disp(dpBYdx,'Concentration gradient of holes at distance in cm^4 is');\n", +"e1 = 1.88 * 10^1;// in cm\n", +"dnBYdx = del_p * e1;// in cm^4 check this also...........................\n", +"disp(dnBYdx,'Concentration gradient of electrons in per cm^4 is');\n", +"J_P = -(q) * D_p * dpBYdx;// in A/cm^2\n", +"disp(J_P,'Current density of holes due to diffusion in A/cm^2 is');\n", +"J_n = q * D_n * dnBYdx;// in A/cm^2\n", +"disp(J_n,'Current density of electrons due to diffusion in A/cm^2 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_16: Energy_band_gap_of_semiconductor_material_used.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"e= 1.6*10^-19;// electron charge in C\n", +"h = 6.626 * 10^-34;// in J-s\n", +"h= h/e;// in eV\n", +"c = 3 * 10^8;// in m/s\n", +"lembda = 5490 * 10^-10;// in m\n", +"f = c/lembda;\n", +"E = h * f;// in eV\n", +"disp(E,'The energy band gap of the semiconductor material in eV is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_17: Current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"y2 = 6 * 10^16;// in /cm^3\n", +"y1 = 10^17;// in /cm^3\n", +"x2 = 2;// in µm\n", +"x1 = 0;// in µm\n", +"D_n = 35;// in cm^2/sec\n", +"q = 1.6 *10^-19;// in C\n", +"dnBYdx = (y2 - y1)/((x2-x1) * 10^-4);\n", +"J_n = q * D_n * dnBYdx;// in A/cm^2\n", +"disp(J_n,'The current density in silicon in A/cm^2 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_18: Resistance_of_the_bar.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"n_n = 5 * 10^20;// in /m^3\n", +"n_n = n_n * 10^-6;// in cm^3\n", +"Mu_n = 0.13;// in m^2/V-sec\n", +"Mu_n = Mu_n * 10^4;// in cm^2/V-sec\n", +"Sigma_n = q * n_n * Mu_n;// in (ohm-cm)^-1\n", +"Rho = 1/Sigma_n;// in Ω-cm\n", +"l = 0.1;// in cm\n", +"A = 100;// µm^2\n", +"A = A * 10^-8;// in cm^2\n", +"R = Rho * (l/A);// in Ohm\n", +"R=round(R*10^-6);// in MΩ\n", +"disp(R,'The resistance of the bar in MΩ is'); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_19: Depletion_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t_d = 3;// total depletion in µm\n", +"D = t_d/9;// in µm\n", +"disp(D,'Depletion width in µm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_1: Hole_concentration_at_equilibrium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"N_d = 10^17;// atoms/cm^3\n", +"n_i = 1.5 * 10^10;// in /cm^3\n", +"n_o = 10^17;// in cm^3\n", +"// p_o * n_o = (n_i)^2\n", +"p_o = (n_i)^2 / n_o;//in holes/cm^3\n", +"disp(p_o,'The holes concentration at equilibrium in holes/cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_20: Majority_carrier_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10^16;// in /m^3\n", +"n_n = 5 * 10^20;// in /m^3\n", +"p_n = (n_i)^2/n_n;// in /m^3\n", +"disp(p_n,'The majority carrier density per m^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_21: Collector_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"D_n = 25;// in cm^2/sec\n", +"q = 1.6 * 10^-19;// in C\n", +"y2 = 10^14;// in /cm^3\n", +"y1 = 0;// in /cm^3\n", +"x2 = 0;//in µm\n", +"x1 = 0.5;// in µm\n", +"x1 = x1 * 10^-4;// in cm\n", +"dnBYdx = abs((y2-y1)/(x2-x1));// in /cm^4 \n", +"J_n = q * D_n * (dnBYdx);// in /cm^4\n", +"J_n = J_n * 10^-1;// in A/cm^2\n", +"disp(J_n,'the collector current density in A/cm^2 is');\n", +"\n", +"// Note: In the book, the calculated value of dn by dx (2*10^19) is wrong. Correct value is 2*10^18 so the answer in the book is wrong." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_22: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 2.21.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h = 6.64 * 10^-34;// in J-s\n", +"e= 1.6*10^-19;// electron charge in C\n", +"c= 3 * 10^8;// in m/s\n", +"lembda = 0.87;// in µm\n", +"lembda = lembda * 10^-6;// in m\n", +"E_g = (h * c)/lembda;// in J-s\n", +"E_g= E_g/e;// in eV\n", +"disp(E_g,'The band gap of the material in eV is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_23: Rate_of_excess_thermal_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 10;// in mW\n", +"e = 1.6 * 10^-19;// in J/eV\n", +"hv = 2;// in eV\n", +"hv1=1.43;// in eV\n", +"alpha = 5 * 10^4;// in cm^-1\n", +"l = 46;// in µm\n", +"l = l * 10^-6;// in m\n", +"I_t = round(I_o * exp(-(alpha) * l));// in mW\n", +"AbsorbedPower= I_o-I_t;// in mW\n", +"AbsorbedPower=AbsorbedPower*10^-3;// in W or J/s\n", +"disp(AbsorbedPower,'The absorbed power in watt or J/s is');\n", +"F= (hv-hv1)/hv;// fraction of each photon energy unit\n", +"EnergyConToHeat= AbsorbedPower*F;// in J/s\n", +"disp(EnergyConToHeat,'The amount of energy converted to heat per second in J/s is : ')\n", +"A= AbsorbedPower/(e*hv1);\n", +"disp(A,'the number of photon per sec given off from recombination events in photons/s is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_24: Hole_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"format('v',13)\n", +"Mu_p = 500;// in cm^2/v-s\n", +"kT = 0.0259;\n", +"Toh_p = 10^-10;// in sec\n", +"p_o = 10^17;// in cm^-3\n", +"q= 1.6*10^-19;// in C\n", +"A=0.5;// in square meter\n", +"del_p = 5 * 10^16;// in cm^-3\n", +"n_i= 1.5*10^10;// in cm^-3 \n", +"D_p = kT * Mu_p;// in cm/s\n", +"L_p = sqrt(D_p * Toh_p);// in cm\n", +"x = 10^-5;// in cm\n", +"p = p_o+del_p* %e^(x/L_p);// in cm^-3\n", +"// p= n_i*%e^(Eip)/kT where Eip=E_i-F_p\n", +"Eip= log(p/n_i)*kT;// in eV\n", +"Ecp= 1.1/2-Eip;// value of E_c-E_p in eV\n", +"Ip= q*A*D_p/L_p*del_p*%e^(x/L_p);// in A\n", +"disp(Ip,'The hole current in A is : ')\n", +"Qp= q*A*del_p*L_p;// in C\n", +"disp(Qp,'The value of Qp in C is : ')\n", +"\n", +"// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.\n", +"// Hence the value of hole current in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_25: Hole_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.25\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"format('v',13)\n", +"KT = 0.0259;\n", +"A = 0.5;// in cm^2\n", +"Toh_p = 10^-10;// in sec\n", +"p_o = 10^17;// in per cm^3\n", +"del_p = 5 * 10^16;// in per cm^3\n", +"x = 10^-5;// in cm\n", +"Mu_p = 500;// in cm^2/V-S\n", +"q = 1.6 * 10^-19;// in C\n", +"D_p = KT * Mu_p;// in cm/s\n", +"L_p = sqrt(D_p * Toh_p);// in cm\n", +"p = p_o * del_p * (%e^(x/L_p));// in per cm^3\n", +"I_p =q * A * (D_p/L_p) * del_p * (%e^(x/L_p));// in A\n", +"disp(I_p,'The hole current in A is');\n", +"Q_p = q * A * del_p * L_p;// in C \n", +"disp(Q_p,'The hole charge in C is');\n", +"\n", +"// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.\n", +"// Hence the value of hole current in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_3: Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10 ^10;// in /cm^3 for silicon\n", +"N_d = 10^17;// in atoms/cm^3\n", +"n_o = 10^17;// electrons/cm^3\n", +"KT = 0.0259;\n", +"// E_r - E_i = KT * log(n_o/n_i)\n", +"del_E = KT * log(n_o/n_i);// in eV\n", +"disp('The energy band for this type material is Ei + '+string(del_E)+' eV');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_4: Diffusion_coefficients_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"K = 1.38 * 10^-23;// in J/K\n", +"T = 27;// in degree\n", +"T = T + 273;// in K\n", +"e = 1.6 * 10^-19;// in C\n", +"Mu_e = 0.17;// in m^2/v-s\n", +"Mu_e1 = 0.025;// in m^2/v-s\n", +"D_n = ((K * T)/e) * Mu_e;// in m^2/s\n", +"disp(D_n,'The diffusion coefficient of electrons in m^2/s is');\n", +"D_p = ((K * T)/e) * Mu_e1;// in m^2/s\n", +"disp(D_p,'The diffusion coefficient of holes in m^2/s is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_5: Diffusion_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Mu_n = 0.15;// in m^2/v-s\n", +"K = 1.38 * 10^-23; // in J/K\n", +"T = 300;// in K\n", +"del_n = 10^20;// in per m^3\n", +"Toh_n = 10^-7;// in s\n", +"e = 1.6 * 10^-19;// in C\n", +"D_n = Mu_n * ((K * T)/e);// in m^2/s\n", +"disp(D_n,'The diffusion coefficient in m^2/s is');\n", +"L_n = sqrt(D_n * Toh_n);// in m \n", +"disp(L_n,'The Diffusion length in m is');\n", +"J_n = (e * D_n * del_n)/L_n;// in A/m^2\n", +"disp(J_n,'The diffusion current density in A/m^2 is'); \n", +"// Note : The value of diffusion coefficient in the book is wrong.\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_6: Concentration_of_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Sigma = 0.1;// in (ohm-m)^-1\n", +"Mu_n = 1300;\n", +"n_i = 1.5 * 10^10;\n", +"q = 1.6 * 10^-19;// in C\n", +"n_n = Sigma/(Mu_n * q);// in electrons/cm^3\n", +"disp(n_n*10^6,'The concentration of electrons per m^3 is');\n", +"p_n = (n_i)^2/n_n;// in per cm^3\n", +"p_n = p_n * 10^6;// in perm^3\n", +"disp(p_n,'The concentration of holes per m^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_7: Electron_transit_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Mu_e = 0.13;// in m^2/v-s\n", +"Mu_h = 0.05;// in m^2/v-s\n", +"Toh_h = 10^-6;// in s\n", +"L = 100;// in µm\n", +"L = L * 10^-6;// in m\n", +"V = 2;// in V\n", +"t_n =L^2/(Mu_e * V);// in s\n", +"disp(t_n,'Electron transit time in seconds is');\n", +"p_g = (Toh_h/t_n) * (1 + Mu_h/Mu_e);//photo conductor gain \n", +"disp(p_g,'Photo conductor gain is');\n", +"\n", +"// Note: There is a calculation error to evaluate the value of t_n. So the answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_8: Resistivity_of_intrinsic_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"n_i = 2.5 * 10^13;\n", +"Mu_n = 3800;\n", +"Mu_p = 1800;\n", +"q = 1.6 * 10^-19;// in C\n", +"Sigma = n_i * (Mu_n + Mu_p) * q;// in (ohm-cm)^-1\n", +"Rho = 1/Sigma;// in ohm-cm\n", +"Rho= round(Rho);\n", +"disp(Rho,'The resistivity of intrinsic germanium in ohm-cm is');\n", +"N_D = 4.4 * 10^22/(1*10^8);// in atoms/cm^3\n", +"Sigma_n = N_D * Mu_n * q;// in (ohm-cm)^-1\n", +"Rho_n = 1/Sigma_n;// in ohm-cm\n", +"disp(Rho_n,'If a donor type impurity is added to the extent of 1 atom per 10^8 Ge atoms, then the resistivity drops in ohm-cm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_9: Hole_and_electron_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 10^16;// in /m3\n", +"N_D = 10^22;// in /m^3\n", +"n = N_D;// in /m^3\n", +"disp(n,'Electron concentration per m^3 is');\n", +"p = (n_i)^2/n;// in /m^3\n", +"disp(p,'Hole concentration per m^3 is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |