summaryrefslogtreecommitdiff
path: root/Electronic_Devices_by_K_C_Nandi
diff options
context:
space:
mode:
Diffstat (limited to 'Electronic_Devices_by_K_C_Nandi')
-rw-r--r--Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb905
-rw-r--r--Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb837
-rw-r--r--Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb831
-rw-r--r--Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb190
-rw-r--r--Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb787
5 files changed, 3550 insertions, 0 deletions
diff --git a/Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb b/Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb
new file mode 100644
index 0000000..74f730c
--- /dev/null
+++ b/Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb
@@ -0,0 +1,905 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Energy Bands And Charge Carriers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18_1: Position_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.18.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"del_E = 0.3;// in eV\n",
+"T1 = 300;// in K\n",
+"T2 = 330;// in K\n",
+"// del_E = K * T1 * log(N/N_c) where del_E= E_C-E_F\n",
+"// del_E1 = K * T2 * log(N/N_c) where del_E1= E_C-E_F at T= 330 °K\n",
+"del_E1 = del_E*(T2/T1);// in eV \n",
+"disp('The Fermi level will be '+string(del_E1)+' eV below the conduction band')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18_2: Probability.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.18.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_c = 2.8 * 10^19;// in cm^-3\n",
+"del_E = 0.25;// fermi energy in eV\n",
+"KT = 0.0259;\n",
+"f_F = exp(-(del_E)/KT);\n",
+"disp(f_F,'The probbaility in the condition band is occupied by an electron is ');\n",
+"n_o = N_c * exp(-(del_E)/KT);// in cm^-3\n",
+"disp(n_o,'The thermal equilibrium electron concentration in cm^-3 is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18_3: Thermal_equilibrium_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa1.18.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"T1 = 300;// in K\n",
+"T2 = 400;// in K\n",
+"del_E = 0.27;// Fermi level in eV\n",
+"KT = (0.0259) * (T2/T1);// in eV\n",
+"N_v = 1.04 * 10^19;// in cm^-3\n",
+"N_v = N_v * (T2/T1)^(3/2);// in cm^-3 \n",
+"p_o = N_v * exp(-(del_E)/KT);// in per cm^3\n",
+"disp(p_o,'The thermal equilibrium hole concentration in per cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_1: Conductivity_of_pure_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.21.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Mu_e = 1500;// in cm^2/volt sec\n",
+"Mu_h = 500;// in cm^2/volt sec\n",
+"n_i = 1.6 * 10^10;// in per cm^3\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Sigma = n_i * (Mu_e + Mu_h) * e;// in mho/cm\n",
+"disp(Sigma,'The conductivity of pure semiconductor in mho/cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_2: Number_of_donar_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.21.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 10;// in Ω-cm\n",
+"Mu_d = 500;// in cm^2/v.s.\n",
+"e = 1.6*10^-19;\n",
+"n_d = 1/(Rho * e * Mu_d);// in per cm^3\n",
+"disp(n_d,'The number of donor atom must be added to achieve in per cm^3 is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_3: Conductivity_of_speciman.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.21.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"AvagadroNumber = 6.02 * 10^23;// in atoms/gm.mole\n",
+"at_Ge = 72.6;// atom weight of Ge\n",
+"e = 1.6 * 10^-19;// in C\n",
+"D_Ge = 5.32;// density of Ge in gm/c.c\n",
+"Mu = 3800;// in cm^2/v.s.\n",
+"C_Ge = (AvagadroNumber/at_Ge) * D_Ge;// concentration of Ge atoms in per cm^3\n",
+"n_d = C_Ge/10^8;// in per cc\n",
+"Sigma = n_d * Mu * e;// in mho/cm\n",
+"disp(Sigma,'The conductivity in mho/cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_4: Mobility_of_electrons_in_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa1.21.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 0.3623 * 10^-3;// in Ohm m\n",
+"Sigma = 1/Rho;//in mho/m\n",
+"D = 4.42 * 10^28;// Ge density in atom/m^3\n",
+"n_d = D / 10^6;// in atom/m^3\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Mu = Sigma/(n_d * e);// in m^2/V.sec\n",
+"disp(Mu,'The mobility of electron in germanium in m^2/V.sec is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_5: Density_and_mobility_of_holes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.21.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"AvagadroNumber = 6.025 * 10^26;// in kg.Mole\n",
+"W = 72.59;// atomic weight of Ge\n",
+"D = 5.36 * 10^3;//density of Ge in kg/m^3\n",
+"Rho = 0.42;// resistivity in Ohm m\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Sigma = 1/Rho;// in mho/m\n",
+"n = (AvagadroNumber/W) * D;// number of Ge atoms present per unit volume\n",
+"// Holes per unit volume, H = n*10^-6%\n",
+"H= n*10^-8;\n",
+"a=H;\n",
+"// Formula sigma= a*e*Mu_h\n",
+"Mu_h = Sigma/(a * e);// in m^2/V.sec\n",
+"disp(Mu_h,'Mobility of holes in m^2/V.sec is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_6: Current_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.21.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e = 1.6 * 10^-19;// in C\n",
+"n_i = 2 * 10^19;// in /m^3\n",
+"Mu_e = 0.36;// in m^2/v.s\n",
+"Mu_h = 0.17;// in m^2/v.s\n",
+"A = 1 * 10^-4;// in m^2\n",
+"V = 2;//in volts\n",
+"l = 0.3;// in mm\n",
+"l = l * 10^-3;// in m\n",
+"E=V/l;// in volt/m\n",
+"Sigma = n_i * e * (Mu_e + Mu_h);// in mho/m\n",
+"// J = I/A = Sigma * E\n",
+"I= Sigma*E*A;\n",
+"disp(I,'The current produced in a small germanium plate in amp is');\n",
+"\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_7: Resitivity_of_doped_Ge_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.21.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"D = 4.2 * 10^28;//density of Ge atoms in atoms/m^3\n",
+"N_d = D / 10^6;// in atoms/m^3\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Mu_e = 0.36;// in m^2/vs\n",
+"Sigma_n = N_d * e * Mu_e;// in mho/m\n",
+"Rho_n = 1/Sigma_n;// in ohm m\n",
+"disp(Rho_n,'The resistivity of drop Ge in ohm m is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_8: Current_produced_in_Ge_sample.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.21.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// given data\n",
+"e = 1.6 * 10^-19;// in C\n",
+"n_i = 1 * 10^19;// in per m^3\n",
+"Mu_e = 0.36;// in m^2/volt.sec\n",
+"Mu_h = 0.17;// in m^2/volt.sec \n",
+"A = 2;// in cm^2\n",
+"A = A * 10^-4;// im m^2\n",
+"t = 0.1;// in mm\n",
+"t = t * 10^-3;// in m\n",
+"V = 4;// in volts\n",
+"Sigma_i = n_i * e * (Mu_e + Mu_h);// in mho/m\n",
+"J = Sigma_i * (V/t);// in Amp/m^2\n",
+"I = J * A;// in Amp\n",
+"disp(I,'The current produced in a Ge sample in Amp is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21_9: Conductivity_of_pure_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.21.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Mu_h = 500;// in cm^2/V.s.\n",
+"Mu_e = 1500;// in cm^2/V.s.\n",
+"n_i = 1.6 * 10^10;// in per cm^3\n",
+"Sigma_i = n_i * e * ( Mu_h + Mu_e);// in mho/cm\n",
+"disp(Sigma_i,'Conductivity of pure silicon at room temperature in mho/cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_10: Required_doping_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"N_c = 2.8 * 10^19;\n",
+"N_V = 1.04 *10^19;\n",
+"T1 = 550;// in K\n",
+"T2 = 300;// in K\n",
+"E_g = 1.12;\n",
+"KT = (0.0259) ;\n",
+"n_i = sqrt(N_c *N_V *(T1/T2)^3* exp(-(E_g)/KT*T2/T1));// in cm^-3\n",
+"// n_o = N_d/2 + sqrt((N_d/2)^2 + (n_i)^2)\n",
+"// 1.05*N_d -N_d/2= sqrt((N_d/2)^2 + (n_i)^2)\n",
+"N_d=sqrt((n_i)^2/((0.55)^2-1/4));\n",
+"disp(N_d,'Minimum donor concentration required in cm^-3 is'); \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_11: Quasi_Fermi_energy_levels.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"T = 300;// in K\n",
+"n_o = 10^15;// in cm^-3\n",
+"n_i = 10^10;// in cm^-3\n",
+"p_o = 10^5;// in cm^-3\n",
+"del_n = 10^13;// in cm^-3\n",
+"del_p = del_n;// in cm^-3\n",
+"KT = 0.0259;// in eV\n",
+"delta_E1= KT*log(n_o/n_i);// value of E_F-E_Fi in eV\n",
+"delta_E2= KT*log((n_o+del_n)/n_i);// value of E_Fn-E_Fi in eV\n",
+"delta_E3= KT*log((p_o+del_p)/n_i);// value of E_Fi-E_Fp in eV\n",
+"disp(delta_E1,'The Fermi level for thermal equillibrium in eV is : ')\n",
+"disp(delta_E2,'The quase-Fermi level for electrons in non equillibrium in eV is : ')\n",
+"disp(delta_E3,'The quasi-Fermi level for holes in non equillibrium in eV is : ')\n",
+"disp('The quasi-Fermi level for electrons is above E_Fi ')\n",
+"disp('While the quasi-Fermi level for holes is below E_Fi')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_12: Equilibrium_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.23.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"n_i = 1.5 * 10^10;\n",
+"n_o = 10^17;\n",
+"KT = 0.0259;\n",
+"P_o = (n_i)^2/n_o;// in cm^-3\n",
+"del_E = KT * log(n_o/n_i);// in eV\n",
+"disp(del_E,'equilibrium hole concentration in eV is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_13: Current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//exa 1.23.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"Mu_n = 700;//in cm^2/v-s\n",
+"n_o = 10^17;// in /cm^3\n",
+"q = 1.6 * 10^-19;// in C\n",
+"l = 0.1;// in cm\n",
+"A = 10^-6;\n",
+"V = 10;// in V\n",
+"Sigma = q * Mu_n * n_o;// in (ohm cm)^-1\n",
+"Rho = 1/Sigma;//in ohm cm \n",
+"R = Rho * (l/A);// in ohm\n",
+"I = V/R;// in A\n",
+"disp(I*10^3,'The current in mA is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_1: Hall_voltage_produced.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"l= 0.50*10^-2;// width of ribbon in m\n",
+"d= 0.10*10^-3;// thickness of ribbon in m\n",
+"A= l*d;// area of ribbon in m^2\n",
+"B = 0.8;// in Tesla\n",
+"D = 10.5;//density in gm/cc\n",
+"I = 2;// in amp\n",
+"q = 1.6 * 10^-19;// in C\n",
+"n=6*10^28;// number of elec. per m^3\n",
+"V_H = ( I * B * d)/(n * q * A);// in volts\n",
+"disp(V_H,'The hall Voltage produced in volts is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_2: Hall_coefficient_and_mobility_of_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"l = 1;// in m\n",
+"d = 1;// in cm\n",
+"d = d * 10^-2;// in m\n",
+"W = 1;// in mm\n",
+"W = W * 10^-3;// in m\n",
+"A = d * W;// in m^2\n",
+"I= 1;// in Amp\n",
+"B = 1;// Tesla\n",
+"V_H = 0.074 * 10^-6;// in Volts\n",
+"Sigma = 5.8 * 10^7;// in mho/m\n",
+"R_H = (V_H * A)/(B*I*d);// in m^3/c\n",
+"disp(R_H,'The hall coefficient in m^3/c is');\n",
+"Mu = Sigma * R_H;// in m^2/volt.sec\n",
+"disp(Mu,'The mobility of electrons in copper in m^2/volt-sec is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_3: Concentration_of_holes_in_Si_crystals.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa1.23.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.4 * 10^18;// in /m^3\n",
+"n_D = 1.4 * 10^24;// in /m^3\n",
+"n=n_D;// in /m^3\n",
+"p = n_i^2/n;// in /m^3\n",
+"R = n/p;\n",
+"disp(R,'The ratio of electrons to hole concentration is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_4: Hall_angle.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"B = 0.48;// in wb/m^2\n",
+"R_H = 3.55 * 10^-4;// in m^3/c\n",
+"Rho = 0.00912;// in ohm-m\n",
+"Sigma = 1/Rho;// in (ohm-m)^-1\n",
+"theta_H = atand( Sigma * B * R_H);// in degree\n",
+"disp(theta_H,'The hall angle for a hall coefficient in degree is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_5: Mobility_and_density_of_charge_carriers.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"R = 9 * 10^-3;// in ohm-m\n",
+"R_H = 3.6 * 10^-4;// in m^3\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Sigma = 1/R;// in (ohm-m)^-1\n",
+"Rho = 1/R_H;// in coulomb/m^3\n",
+"n = Rho/e;// in /m^3\n",
+"disp(n,'Density of charge carriers in per m^3 is');\n",
+"Mu = Sigma * R_H;// in m^2/v-s\n",
+"disp(Mu,'Mobility of charge carriers in m^2/V-s is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_6: Current_density_in_speciman.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e = 1.6 * 10^-19;// in C\n",
+"R_H = 0.0145;// in m^3/coulomb\n",
+"Mu_e = 0.36;// in m^2/v-s\n",
+"E = 100;// in V/m\n",
+"n = 1/(e * R_H);// in /m^3\n",
+"J = n * e * Mu_e * E;// in A/m^2\n",
+"disp(J,'The current density of specimen in A/m^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_7: Relaxation_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"Mu_e = 7.04 * 10^-3;// in m^2/v-s\n",
+"m = 9.1 * 10^-31;\n",
+"E_F = 5.5;// in eV\n",
+"n = 5.8 * 10^28;\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Torque = (Mu_e/e) * m;// in sec\n",
+"disp(Torque,'Relaxation Time in sec is ');\n",
+"Rho = 1 /(n * e * Mu_e);// in ohm-m\n",
+"disp(Rho,'Resistivity of conductor in ohm-m is ');\n",
+"V_F = sqrt((2 * E_F * e)/m);// in m/s\n",
+"disp(V_F,'Velocity of electrons with fermi-energy in m/s is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_8: Temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"E= 5.95;// in eV\n",
+"EF= 6.25;// in eV\n",
+"delE= 0.01;\n",
+" // delE= 1-1/(1+exp((E-EF)/KT))\n",
+"K=1.38*10^-23;// Boltzman Constant in J/K\n",
+"T = ((E-EF)/log(1/(1-delE) -1)*1.6*10^-19)/K;// in K\n",
+"disp(T,'The temperature in K is : ')\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23_9: Thermal_equilibrium_hole_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.23.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data \n",
+"N_V = 1.04 * 10^19;// in cm^-3\n",
+"T1 = 300;// in K\n",
+"T2 = 400;// in K\n",
+"del_E = 0.27;// in eV\n",
+"N_V = N_V * (T2/T1)^1.5;// in cm^-3\n",
+"KT = (0.0259) * (T2/T1);// in eV\n",
+"P_o = N_V * exp(-(del_E)/KT);// in cm^-3\n",
+"disp(P_o,'The thermal equilibrium hole concentration in silicon in cm^-3 is ');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7_1: Wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 1.7.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"E_g = 0.75// in eV\n",
+"E_g = 0.75 * 1.6 * 10^-19;// in J\n",
+"h = 6.63 * 10^-34;// in J\n",
+"c = 3 * 10^8;// in m/s \n",
+"// hv = E_g\n",
+"//E_g = (h*c)/lambda\n",
+"lambda = (h*c)/E_g;// in m\n",
+"lambda = lambda * 10^10;// in A°\n",
+"disp(lambda,'The wavelength at which germanium starts to absorb light in A° is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7_2: Energy_gap_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 1.7.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"h = 6.625 * 10^-34;// in J\n",
+"c = 3 * 10^8;// in J\n",
+"lambda_Gr = 17760 * 10^-10;// in m\n",
+"lambda_Si = 11000;// in A°\n",
+"lambda_Si = lambda_Si * 10^-10;// in m\n",
+"E_g = (h*c)/lambda_Si;// in J\n",
+"E_g = E_g /(1.6*10^-19);// in eV\n",
+"disp(E_g,'The energy gap of Si in eV is ');\n",
+"E_g1 = (h*c)/lambda_Gr;// in J\n",
+"E_g1 = E_g1/(1.6 * 10^-19);// in eV\n",
+"disp(E_g1,'The energy gap of Germanium in eV is ');\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb b/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb
new file mode 100644
index 0000000..017aef8
--- /dev/null
+++ b/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb
@@ -0,0 +1,837 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Excess Carriers In Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_10: Ratio_of_donot_atoms_to_Si_atoms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Rho = 9.6 * 10^-2;// in ohm-m\n",
+"Sigma_n = 1/Rho;// in (ohm-m)^-1\n",
+"q = 1.6 * 10^-19;// in C\n",
+"Mu_n = 1300 * 10^-4;// in m^2/v-s\n",
+"N_D = Sigma_n / (Mu_n * q);// in atoms/m^3\n",
+"A_D = N_D;// Atom density in atoms/cm^3\n",
+"A_D = A_D * 10^6;// atoms/m^3\n",
+"R_si = N_D/A_D;// ratio\n",
+"disp(R_si,'the ratio of donor atom to silicon atom is');\n",
+"\n",
+"// Note: In the book the wrong value of N_D (5*10^22) is putted to evaluate the value of Atom Density (A_D) whereas the value of N_D is calculated as 5*10^20.\n",
+"// So the answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_11: Equilibrium_electron_and_hole_densities.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.5 * 10^10;// in per cm^3\n",
+"n_n = 2.25 * 10^15;// in per cm^3\n",
+"p_n = (n_i)^2/n_n;// in per cm^3\n",
+"disp(p_n,'The equilibrium electron per cm^3 is');\n",
+"h_n = n_n;// in cm^3\n",
+"disp(h_n,'Hole densities in per cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_12: Carrier_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_A = 2 * 10^16;// in atoms/cm^3\n",
+"N_D = 10^16;// in atoms/cm^3\n",
+"C_c = N_A-N_D;// C_c stands for Carrier concentration in /cm^3\n",
+"disp(C_c,'Carrier concentration per cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_13: Generation_rate_due_to_irradiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"del_n = 10^15;// in cm^3\n",
+"Torque_p = 10 * 10^-6;// in sec\n",
+"R_g = del_n/Torque_p;// in hole pairs/sec/cm^3\n",
+"disp(R_g,'The rate of generation of minority carrier in electron hole pairs/sec/cm^3 is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_14: Mobility_of_minority_charge_carrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"v = 1/(20 * 10^-6);// in cm/sec\n",
+"E = 10;// in V/cm\n",
+"Mu= v/E;// in cm^2/V-sec\n",
+"disp(Mu,'The mobility of minority charge carrier in cm^2/V-sec is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_15: Hole_and_electron_diffusion_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"N_D = 4.5 * 10^15;// in /cm^3\n",
+"del_p = 10^21;\n",
+"e=10;// in cm\n",
+"A = 1;// in mm^2\n",
+"A = A * 10^-14;// cm^2\n",
+"l = 10;// in cm\n",
+"Torque_p = 1;// in microsec\n",
+"Torque_p = Torque_p * 10^-6;// in sec\n",
+"Torque_n = 1;// in microsec\n",
+"Torque_n = Torque_n * 10^-6;// in sec\n",
+"n_i = 1.5 * 10^10;// in /cm^3\n",
+"D_n = 30;// in cm^2/sec\n",
+"D_p = 12;// in cm^2/sec\n",
+"n_o = N_D;// in /cm^3\n",
+"p_o = (n_i)^2/n_o;// in /cm^3\n",
+"disp(p_o,'Hole concentration at thermal equilibrium per cm^3 is');\n",
+"l_n = sqrt(D_n * Torque_n);// in cm\n",
+"disp(l_n,'Diffusion length of electron in cm is');\n",
+"l_p = sqrt(D_p * Torque_p);// in cm\n",
+"disp(l_p,'Diffusion length of holes in cm is');\n",
+"x=34.6*10^-4;// in cm\n",
+"dpBYdx = del_p *e;// in cm^4\n",
+"disp(dpBYdx,'Concentration gradient of holes at distance in cm^4 is');\n",
+"e1 = 1.88 * 10^1;// in cm\n",
+"dnBYdx = del_p * e1;// in cm^4 check this also...........................\n",
+"disp(dnBYdx,'Concentration gradient of electrons in per cm^4 is');\n",
+"J_P = -(q) * D_p * dpBYdx;// in A/cm^2\n",
+"disp(J_P,'Current density of holes due to diffusion in A/cm^2 is');\n",
+"J_n = q * D_n * dnBYdx;// in A/cm^2\n",
+"disp(J_n,'Current density of electrons due to diffusion in A/cm^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_16: Energy_band_gap_of_semiconductor_material_used.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"e= 1.6*10^-19;// electron charge in C\n",
+"h = 6.626 * 10^-34;// in J-s\n",
+"h= h/e;// in eV\n",
+"c = 3 * 10^8;// in m/s\n",
+"lembda = 5490 * 10^-10;// in m\n",
+"f = c/lembda;\n",
+"E = h * f;// in eV\n",
+"disp(E,'The energy band gap of the semiconductor material in eV is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_17: Current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"y2 = 6 * 10^16;// in /cm^3\n",
+"y1 = 10^17;// in /cm^3\n",
+"x2 = 2;// in µm\n",
+"x1 = 0;// in µm\n",
+"D_n = 35;// in cm^2/sec\n",
+"q = 1.6 *10^-19;// in C\n",
+"dnBYdx = (y2 - y1)/((x2-x1) * 10^-4);\n",
+"J_n = q * D_n * dnBYdx;// in A/cm^2\n",
+"disp(J_n,'The current density in silicon in A/cm^2 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_18: Resistance_of_the_bar.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"n_n = 5 * 10^20;// in /m^3\n",
+"n_n = n_n * 10^-6;// in cm^3\n",
+"Mu_n = 0.13;// in m^2/V-sec\n",
+"Mu_n = Mu_n * 10^4;// in cm^2/V-sec\n",
+"Sigma_n = q * n_n * Mu_n;// in (ohm-cm)^-1\n",
+"Rho = 1/Sigma_n;// in Ω-cm\n",
+"l = 0.1;// in cm\n",
+"A = 100;// µm^2\n",
+"A = A * 10^-8;// in cm^2\n",
+"R = Rho * (l/A);// in Ohm\n",
+"R=round(R*10^-6);// in MΩ\n",
+"disp(R,'The resistance of the bar in MΩ is'); "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_19: Depletion_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"t_d = 3;// total depletion in µm\n",
+"D = t_d/9;// in µm\n",
+"disp(D,'Depletion width in µm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_1: Hole_concentration_at_equilibrium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"N_d = 10^17;// atoms/cm^3\n",
+"n_i = 1.5 * 10^10;// in /cm^3\n",
+"n_o = 10^17;// in cm^3\n",
+"// p_o * n_o = (n_i)^2\n",
+"p_o = (n_i)^2 / n_o;//in holes/cm^3\n",
+"disp(p_o,'The holes concentration at equilibrium in holes/cm^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_20: Majority_carrier_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.5 * 10^16;// in /m^3\n",
+"n_n = 5 * 10^20;// in /m^3\n",
+"p_n = (n_i)^2/n_n;// in /m^3\n",
+"disp(p_n,'The majority carrier density per m^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_21: Collector_current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"D_n = 25;// in cm^2/sec\n",
+"q = 1.6 * 10^-19;// in C\n",
+"y2 = 10^14;// in /cm^3\n",
+"y1 = 0;// in /cm^3\n",
+"x2 = 0;//in µm\n",
+"x1 = 0.5;// in µm\n",
+"x1 = x1 * 10^-4;// in cm\n",
+"dnBYdx = abs((y2-y1)/(x2-x1));// in /cm^4 \n",
+"J_n = q * D_n * (dnBYdx);// in /cm^4\n",
+"J_n = J_n * 10^-1;// in A/cm^2\n",
+"disp(J_n,'the collector current density in A/cm^2 is');\n",
+"\n",
+"// Note: In the book, the calculated value of dn by dx (2*10^19) is wrong. Correct value is 2*10^18 so the answer in the book is wrong."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_22: Band_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 2.21.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"h = 6.64 * 10^-34;// in J-s\n",
+"e= 1.6*10^-19;// electron charge in C\n",
+"c= 3 * 10^8;// in m/s\n",
+"lembda = 0.87;// in µm\n",
+"lembda = lembda * 10^-6;// in m\n",
+"E_g = (h * c)/lembda;// in J-s\n",
+"E_g= E_g/e;// in eV\n",
+"disp(E_g,'The band gap of the material in eV is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_23: Rate_of_excess_thermal_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.23\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 10;// in mW\n",
+"e = 1.6 * 10^-19;// in J/eV\n",
+"hv = 2;// in eV\n",
+"hv1=1.43;// in eV\n",
+"alpha = 5 * 10^4;// in cm^-1\n",
+"l = 46;// in µm\n",
+"l = l * 10^-6;// in m\n",
+"I_t = round(I_o * exp(-(alpha) * l));// in mW\n",
+"AbsorbedPower= I_o-I_t;// in mW\n",
+"AbsorbedPower=AbsorbedPower*10^-3;// in W or J/s\n",
+"disp(AbsorbedPower,'The absorbed power in watt or J/s is');\n",
+"F= (hv-hv1)/hv;// fraction of each photon energy unit\n",
+"EnergyConToHeat= AbsorbedPower*F;// in J/s\n",
+"disp(EnergyConToHeat,'The amount of energy converted to heat per second in J/s is : ')\n",
+"A= AbsorbedPower/(e*hv1);\n",
+"disp(A,'the number of photon per sec given off from recombination events in photons/s is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_24: Hole_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.24\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"format('v',13)\n",
+"Mu_p = 500;// in cm^2/v-s\n",
+"kT = 0.0259;\n",
+"Toh_p = 10^-10;// in sec\n",
+"p_o = 10^17;// in cm^-3\n",
+"q= 1.6*10^-19;// in C\n",
+"A=0.5;// in square meter\n",
+"del_p = 5 * 10^16;// in cm^-3\n",
+"n_i= 1.5*10^10;// in cm^-3 \n",
+"D_p = kT * Mu_p;// in cm/s\n",
+"L_p = sqrt(D_p * Toh_p);// in cm\n",
+"x = 10^-5;// in cm\n",
+"p = p_o+del_p* %e^(x/L_p);// in cm^-3\n",
+"// p= n_i*%e^(Eip)/kT where Eip=E_i-F_p\n",
+"Eip= log(p/n_i)*kT;// in eV\n",
+"Ecp= 1.1/2-Eip;// value of E_c-E_p in eV\n",
+"Ip= q*A*D_p/L_p*del_p*%e^(x/L_p);// in A\n",
+"disp(Ip,'The hole current in A is : ')\n",
+"Qp= q*A*del_p*L_p;// in C\n",
+"disp(Qp,'The value of Qp in C is : ')\n",
+"\n",
+"// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.\n",
+"// Hence the value of hole current in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_25: Hole_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.25\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"format('v',13)\n",
+"KT = 0.0259;\n",
+"A = 0.5;// in cm^2\n",
+"Toh_p = 10^-10;// in sec\n",
+"p_o = 10^17;// in per cm^3\n",
+"del_p = 5 * 10^16;// in per cm^3\n",
+"x = 10^-5;// in cm\n",
+"Mu_p = 500;// in cm^2/V-S\n",
+"q = 1.6 * 10^-19;// in C\n",
+"D_p = KT * Mu_p;// in cm/s\n",
+"L_p = sqrt(D_p * Toh_p);// in cm\n",
+"p = p_o * del_p * (%e^(x/L_p));// in per cm^3\n",
+"I_p =q * A * (D_p/L_p) * del_p * (%e^(x/L_p));// in A\n",
+"disp(I_p,'The hole current in A is');\n",
+"Q_p = q * A * del_p * L_p;// in C \n",
+"disp(Q_p,'The hole charge in C is');\n",
+"\n",
+"// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.\n",
+"// Hence the value of hole current in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_3: Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 1.5 * 10 ^10;// in /cm^3 for silicon\n",
+"N_d = 10^17;// in atoms/cm^3\n",
+"n_o = 10^17;// electrons/cm^3\n",
+"KT = 0.0259;\n",
+"// E_r - E_i = KT * log(n_o/n_i)\n",
+"del_E = KT * log(n_o/n_i);// in eV\n",
+"disp('The energy band for this type material is Ei + '+string(del_E)+' eV');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_4: Diffusion_coefficients_of_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"K = 1.38 * 10^-23;// in J/K\n",
+"T = 27;// in degree\n",
+"T = T + 273;// in K\n",
+"e = 1.6 * 10^-19;// in C\n",
+"Mu_e = 0.17;// in m^2/v-s\n",
+"Mu_e1 = 0.025;// in m^2/v-s\n",
+"D_n = ((K * T)/e) * Mu_e;// in m^2/s\n",
+"disp(D_n,'The diffusion coefficient of electrons in m^2/s is');\n",
+"D_p = ((K * T)/e) * Mu_e1;// in m^2/s\n",
+"disp(D_p,'The diffusion coefficient of holes in m^2/s is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_5: Diffusion_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Mu_n = 0.15;// in m^2/v-s\n",
+"K = 1.38 * 10^-23; // in J/K\n",
+"T = 300;// in K\n",
+"del_n = 10^20;// in per m^3\n",
+"Toh_n = 10^-7;// in s\n",
+"e = 1.6 * 10^-19;// in C\n",
+"D_n = Mu_n * ((K * T)/e);// in m^2/s\n",
+"disp(D_n,'The diffusion coefficient in m^2/s is');\n",
+"L_n = sqrt(D_n * Toh_n);// in m \n",
+"disp(L_n,'The Diffusion length in m is');\n",
+"J_n = (e * D_n * del_n)/L_n;// in A/m^2\n",
+"disp(J_n,'The diffusion current density in A/m^2 is'); \n",
+"// Note : The value of diffusion coefficient in the book is wrong.\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_6: Concentration_of_holes_and_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Sigma = 0.1;// in (ohm-m)^-1\n",
+"Mu_n = 1300;\n",
+"n_i = 1.5 * 10^10;\n",
+"q = 1.6 * 10^-19;// in C\n",
+"n_n = Sigma/(Mu_n * q);// in electrons/cm^3\n",
+"disp(n_n*10^6,'The concentration of electrons per m^3 is');\n",
+"p_n = (n_i)^2/n_n;// in per cm^3\n",
+"p_n = p_n * 10^6;// in perm^3\n",
+"disp(p_n,'The concentration of holes per m^3 is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_7: Electron_transit_time.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Mu_e = 0.13;// in m^2/v-s\n",
+"Mu_h = 0.05;// in m^2/v-s\n",
+"Toh_h = 10^-6;// in s\n",
+"L = 100;// in µm\n",
+"L = L * 10^-6;// in m\n",
+"V = 2;// in V\n",
+"t_n =L^2/(Mu_e * V);// in s\n",
+"disp(t_n,'Electron transit time in seconds is');\n",
+"p_g = (Toh_h/t_n) * (1 + Mu_h/Mu_e);//photo conductor gain \n",
+"disp(p_g,'Photo conductor gain is');\n",
+"\n",
+"// Note: There is a calculation error to evaluate the value of t_n. So the answer in the book is wrong"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_8: Resistivity_of_intrinsic_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"n_i = 2.5 * 10^13;\n",
+"Mu_n = 3800;\n",
+"Mu_p = 1800;\n",
+"q = 1.6 * 10^-19;// in C\n",
+"Sigma = n_i * (Mu_n + Mu_p) * q;// in (ohm-cm)^-1\n",
+"Rho = 1/Sigma;// in ohm-cm\n",
+"Rho= round(Rho);\n",
+"disp(Rho,'The resistivity of intrinsic germanium in ohm-cm is');\n",
+"N_D = 4.4 * 10^22/(1*10^8);// in atoms/cm^3\n",
+"Sigma_n = N_D * Mu_n * q;// in (ohm-cm)^-1\n",
+"Rho_n = 1/Sigma_n;// in ohm-cm\n",
+"disp(Rho_n,'If a donor type impurity is added to the extent of 1 atom per 10^8 Ge atoms, then the resistivity drops in ohm-cm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21_9: Hole_and_electron_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 2.21.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"n_i = 10^16;// in /m3\n",
+"N_D = 10^22;// in /m^3\n",
+"n = N_D;// in /m^3\n",
+"disp(n,'Electron concentration per m^3 is');\n",
+"p = (n_i)^2/n;// in /m^3\n",
+"disp(p,'Hole concentration per m^3 is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb b/Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb
new file mode 100644
index 0000000..86810dc
--- /dev/null
+++ b/Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb
@@ -0,0 +1,831 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Junction Properties"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_10: Forward_biasing_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 2.4 * 10^-14;\n",
+"I = 1.5;// in mA\n",
+"I=I*10^-3;// in A\n",
+"Eta = 1;\n",
+"V_T = 26;// in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"v =log((I + I_o)/I_o) * V_T;// in V\n",
+"disp(v,'The forward biasing voltage across the junction in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_11: Theoretical_diode_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 10;// in nA\n",
+"// I = I_o * ((e^(v/(Eta * V_T))) - 1)\n",
+"// e^(v/(Eta * V_T)<< 1, so neglecting it\n",
+"I = I_o * (-1);// in nA\n",
+"disp(I,'The Diode current in nA is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_12: Diode_dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R = 4.5;// in ohm\n",
+"I = 44.4;// in mA\n",
+"I=I*10^-3;// in A\n",
+"V = R * I;// in V\n",
+"Eta = 1;\n",
+"V_T = 26;//in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I_o = I/((%e^(V/(Eta * V_T))) -1);// in A\n",
+"// At\n",
+"V = 0.1;// in V\n",
+"r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));// in ohm\n",
+"disp(r_f,'The diode dynamic resistance in Ω is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_13: Q_point.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.13\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_D = 10;// in V\n",
+"// V_S = i*R_L + V_D\n",
+"V_S = V_D;// in V (i * R_L = 0)\n",
+"disp(V_S,'when diode is OFF, the voltage in volts is : ');\n",
+"R_L = 250;// in ohm\n",
+"I = V_S/R_L;// in A\n",
+"disp(I*10^3,'when diode is ON, the current in mA is');\n",
+"V_D= 0:0.1:10;// in V\n",
+"I= (V_S-V_D)/R_L*1000;// in mA\n",
+"plot(V_D,I)\n",
+"xlabel('V_D in volts');\n",
+"ylabel('Current in mA')\n",
+"title('DC load line');\n",
+"disp('DC load line shown in figure')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_14: AC_resistance_of_a_Ge_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.14\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V = 0.25;// in V\n",
+"I_o = 1.2;// in µA\n",
+"I_o = I_o * 10^-6;// in A\n",
+"V_T = 26;// in mV\n",
+"V_T = V_T * 10^-3;// in V\n",
+"Eta = 1;\n",
+"r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm\n",
+"disp(r,'The ac resistance of the diode in ohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_15: Junction_potential.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.15\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"t = 4.4 * 10^22;// in total number of atoms/cm^3\n",
+"n = 1 * 10^8;// number of impurity\n",
+"N_A = t/n;// in atoms/cm^3\n",
+"N_A = N_A * 10^6;// in atoms/m^3\n",
+"N_D = N_A * 10^3;// in atoms/m^3\n",
+"V_T = 26;// in mV\n",
+"V_T = V_T * 10^-3;// in V\n",
+"n_i = 2.5 * 10^19;// in /cm^3\n",
+"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n",
+"disp(V_J,'The junction potential in V is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_16: Dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.16\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Eta = 1;\n",
+"I_o = 30;// in MuA\n",
+"I_o = I_o * 10^-6;// in A\n",
+"v = 0.2;// in V\n",
+"K = 1.381 * 10^-23;// in J/degree K \n",
+"T = 125;// in °C\n",
+"T = T + 273;// in K\n",
+"q = 1.6 * 10^-19;// in C\n",
+"V_T = (K*T)/q;// in V\n",
+"r_f = (Eta * V_T)/(I_o * (%e^(v/(Eta * V_T))));// in ohm\n",
+"disp(r_f,'The forward dynamic resistance in ohm is');\n",
+"r_f1 = (Eta * V_T)/(I_o * (%e^(-(v)/(Eta * V_T))));// in ohm\n",
+"disp(r_f1*10^-3,'The Reverse dynamic resistance in kΩ is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_17: Width_of_the_depletion_layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.17\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"N_A = 3 * 10^20;// in /m^3\n",
+"A = 1;// in µm^2\n",
+"A = A * 10^-6;// in m^2\n",
+"V = -10;// in V\n",
+"V_J = 0.25;// in V\n",
+"V_B = V_J - V;// in V\n",
+"epsilon_o = 8.854;// in pF/m\n",
+"epsilon_o = epsilon_o * 10^-12;// in F/m\n",
+"epsilon_r = 16;\n",
+"epsilon = epsilon_o * epsilon_r;\n",
+"W = sqrt((V_B * 2 * epsilon)/(q * N_A));// in m \n",
+"disp(W*10^6,'The width of depletion layer in µm is');\n",
+"C_T = (epsilon * A)/W;// in pF\n",
+"disp(C_T*10^12,'the space charge capacitance in pF is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_18: Barrier_capacitance_of_a_Ge_pn_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.18\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"W = 2 * 10^-4;// in cm\n",
+"W = W * 10^-2;// in m\n",
+"A = 1;// in mm^2\n",
+"A = A * 10^-6;// in m^2\n",
+"epsilon_r = 16;\n",
+"epsilon_o = 8.854 * 10^-12;// in F/m\n",
+"epsilon = epsilon_r * epsilon_o;\n",
+"C_T = (epsilon * A)/W;// in F\n",
+"disp(C_T*10^12,'The barrier capacitance in pF is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_19: Diameter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.19\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"C_T = 100;// in pF\n",
+"C_T=C_T*10^-12;// in F\n",
+"epsilon_r = 12;\n",
+"epsilon_o = 8.854 * 10^-12;// in F/m\n",
+"epsilon = epsilon_r * epsilon_o;\n",
+"Rho_p = 5;// in ohm-cm\n",
+"Rho_p = Rho_p * 10^-2;// in ohm-m\n",
+"V_j = 0.5;// in V\n",
+"V = -4.5;// in V\n",
+"Mu_p = 500;// in cm^2\n",
+"Mu_p = Mu_p * 10^-4;// in m^2\n",
+"Sigma_p = 1/Rho_p;// in per ohm-m\n",
+"qN_A = Sigma_p/ Mu_p;\n",
+"V_B = V_j - V;\n",
+"W = sqrt((V_B * 2 * epsilon)/qN_A);// in m\n",
+"//C_T = (epsilon * A)/W;\n",
+"A = (C_T * W)/ epsilon;// in m\n",
+"D = sqrt(A * (4/%pi));// in m\n",
+"D = D * 10^3;// in mm\n",
+"disp(D,'The diameter in mm is');\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_1: Contect_difference_of_potential.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// EXa 3.10.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"t = 4.4 * 10^22;// total number of Ge atoms/cm^3\n",
+"n = 1 * 10^8;// number of impurity atoms\n",
+"N_A = t/n;// in atoms/cm^3\n",
+"N_A = N_A * 10^6;// in atoms/m^3\n",
+"N_D = N_A * 10^3;// in atoms/m^3\n",
+"n_i = 2.5 * 10^13;// in atoms/cm^3\n",
+"n_i = n_i * 10^6;// in atoms/m^3\n",
+"V_T = 26;//in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n",
+"disp(V_J,'The contact potential in V is');\n",
+"// Part (b)\n",
+"t = 5* 10^22;// total number of Si atoms/cm^3\n",
+"N_A = t/n;// in atoms/cm^3\n",
+"N_A = N_A * 10^6;// in atoms/m^3\n",
+"N_D = N_A * 10^3;// in atoms/m^3\n",
+"n_i = 1.5 * 10^10;// in atoms/cm^3\n",
+"n_i = n_i * 10^6;// in atoms/m^3\n",
+"V_T = 26;//in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n",
+"disp(V_J,'The contact potential in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_20: Temperature_of_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.20\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"Mu_p = 500;// in cm^2/V-sec\n",
+"Rho_p = 3.5;// in ohm-cm\n",
+"Mu_n = 1500;// in cm^2/V-sec\n",
+"Rho_n = 10;// in ohm-cm\n",
+"N_A = 1/(Rho_p * Mu_p * q);// in /cm^3\n",
+"N_D = 1/(Rho_n * Mu_n * q);// in /cm^3\n",
+"V_J = 0.56;// in V\n",
+"n_i = 1.5 * 10^10;// in /cm^3\n",
+"V_T = V_J/log((N_A * N_D)/(n_i)^2);// in V\n",
+"// V_T = T/11600\n",
+"T = V_T * 11600;// in K\n",
+"T = T - 273;// in °C\n",
+"disp(T,'The Temperature of junction in °C is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_21: Voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.21\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_T = 26;// in mV\n",
+"V_T = V_T * 10^-3;// in V\n",
+"Eta = 1;\n",
+"// I = -90% for Io, so\n",
+"IbyIo= 0.1;\n",
+"// I = I_o * ((e^(v/(Eta * V_T)))-1)\n",
+"V = log(IbyIo) * V_T;// in V\n",
+"disp(V,'The reverse bias voltage in volts is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_22: Reverse_saturation_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.22\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"R = 5;// in ohm\n",
+"I = 50;// in mA\n",
+"I=I*10^-3;// in A\n",
+"V = R * I;// in V\n",
+"Eta = 1;\n",
+"V_T = 26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A\n",
+"disp(I_o*10^6,'Reverse saturation current in µA is');\n",
+"v1 = 0.2;// in V\n",
+"r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm\n",
+"disp(r,'Dynamic resistance of the diode in Ω is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_2: Height_of_the_potential_energy_barrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_T = 26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"n_i = 2.5 * 10^13;\n",
+"Sigma_p = 1;\n",
+"Sigma_n = 1;\n",
+"Mu_n = 3800;\n",
+"q = 1.6 * 10^-19;// in C\n",
+"Mu_p = 1800;\n",
+"N_A = Sigma_p/(2* q * Mu_p);// in /cm^3\n",
+"N_D = Sigma_n /(q * Mu_n);// in /cm^3\n",
+"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n",
+"disp(V_J,'For Ge the height of the energy barrier in V is');\n",
+"// For Si p-n juction\n",
+"n_i = 1.5 * 10^10;\n",
+"Mu_n = 1300;\n",
+"Mu_p = 500;\n",
+"N_A = Sigma_p/(2* q * Mu_p);// in /cm^3\n",
+"N_D = Sigma_n /(q * Mu_n);// in /cm^3\n",
+"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n",
+"disp(V_J,'For Si p-n junction the height of the energy barrier in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_3: Ratio_of_current_for_a_forward_bias_to_reverse_bias.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 3.10.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Eta = 1;\n",
+"V_T = 26;// in mV\n",
+"V_T= V_T*10^-3;// in V\n",
+"// I = I_o * (%e^(V/(Eta*V_T)) - 1) and I = -(0.9) * I_o;\n",
+"V= log(1-0.9)*V_T;// in V\n",
+"disp(V,'The voltage in volts is : ')\n",
+"// Part (ii)\n",
+"V1=0.05;// in V\n",
+"V2= -0.05;// in V\n",
+"ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)\n",
+"disp(ratio,'The ratio of the current for a forward bias to reverse bias is : ')\n",
+"// Part (iii)\n",
+"Io= 10;// in µA\n",
+"Io=Io*10^-3;// in mA\n",
+"//For \n",
+"V=0.1;// in V\n",
+"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n",
+"disp(I,'For v=0.1 V , the value of I in mA is : ')\n",
+"//For \n",
+"V=0.2;// in V\n",
+"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n",
+"disp(I,'For v=0.2 V , the value of I in mA is : ')\n",
+"//For \n",
+"V=0.3;// in V\n",
+"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n",
+"disp(I*10^-3,'For v=0.3 V , the value of I in A is : ')\n",
+"disp('From three value of I, for small rise in forward voltage, the diode current increase rapidly')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_4: Anticipated_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 3.10.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"// Part (i)\n",
+"T1= 25;// in °C\n",
+"T2= 80;// in °C\n",
+"// Formula Io2= Io1*2^((T2-T1)/10)\n",
+"AntiFactor= 2^((T2-T1)/10);\n",
+"disp(round(AntiFactor),'Anticipated factor for Ge is : ')\n",
+"// Part (ii)\n",
+"T1= 25;// in °C\n",
+"T2= 150;// in °C\n",
+"AntiFactor= 2^((T2-T1)/10);\n",
+"disp(round(AntiFactor),'Anticipated factor for Si is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_5: Leakage_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 3.10.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I=5;// in µA\n",
+"V=10;// in V\n",
+"T1= 0.11;// in °C^-1\n",
+"T2= 0.07;// in °C^-1\n",
+"// Io+I_R=I (i)\n",
+"// dI_by_dT= dIo_by_dT (ii)\n",
+"// 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So\n",
+"Io= T2*I/T1;// in µA\n",
+"I_R= I-Io;// in µA\n",
+"R= V/I_R;// in MΩ\n",
+"disp(R,'The leakage resistance in MΩ is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_6: Dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 3.10.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"Eta = 1;\n",
+"T = 125;// in °C\n",
+"T = T + 273;// in K\n",
+"V_T = 8.62 * 10^-5 * 398;// in V\n",
+"I_o = 30;// in µA\n",
+"I_o= I_o*10^-6;// in A\n",
+"v = 0.2;// in V\n",
+"r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T)));// in ohm\n",
+"disp(r_f,'The dynamic resistance in the forward direction in ohm is ');\n",
+"r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T)));// in ohm\n",
+"disp(r_r*10^-3,'The dynamic resistance in the reverse direction in kohm is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_7: Barrier_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"epsilon = 16/(36 * %pi * 10^11);// in F/cm\n",
+"A = 1 * 10^-2;\n",
+"W = 2 * 10^-4;\n",
+"C_T = (epsilon * A)/W;// in F\n",
+"disp(C_T*10^12,'The barrier capacitance in pF is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_8: Width_of_the_depletion_layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 3.10.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"A = 1;// in mm^2\n",
+"A = A * 10^-6;// in m^2\n",
+"N_A = 3 * 10^20;// in atoms/m^3\n",
+"q = 1.6 *10^-19;// in C\n",
+"V_o = 0.2;// in V\n",
+"epsilon_r=16;\n",
+"epsilon_o= 8.854*10^-12;// in F/m\n",
+"epsilon=epsilon_r*epsilon_o;\n",
+"// Part (a)\n",
+"V=-10;// in V\n",
+"// V_o - V = 1/2*((q * N_A )/epsilon) * W^2\n",
+"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n",
+"C_T1 = (epsilon * A)/W;// in F\n",
+"disp(W*10^6,'The width of the depletion layer for an applied reverse voltage of 10V in µm is ');\n",
+"// Part (b)\n",
+"V=-0.1;// in V\n",
+"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n",
+"C_T2 = (epsilon * A)/W;// in F\n",
+"disp(W*10^6,'The width of the depletion layer for an applied reverse voltage of 0.1V in µm is ');\n",
+"// Part (c)\n",
+"V=0.1;// in V\n",
+"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n",
+"disp(W*10^6,'The width of the depletion layer for an applied for a forward bias of 0.1V in µm is ');\n",
+"// Part (d)\n",
+"disp(C_T1*10^12,'The space charge capacitance for an applied reverse voltage of 10V in pF is');\n",
+"disp(C_T2*10^12,'The space charge capacitance for an applied reverse voltage of 0.1V in pF is');\n",
+"\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10_9: Current_in_the_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 3.10.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_o = 1.8 * 10^-9;// A\n",
+"v = 0.6;// in V\n",
+"Eta = 2;\n",
+"V_T = 26;// in mV\n",
+"V_T=V_T*10^-3;// in V\n",
+"I = I_o *(%e^(v/(Eta * V_T)));// in A\n",
+"disp(I*10^3,'The current in the junction in mA is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb b/Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb
new file mode 100644
index 0000000..b4ce7a6
--- /dev/null
+++ b/Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb
@@ -0,0 +1,190 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Junction Contd"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12_1: Pinch_off_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.12.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"q = 1.6 * 10^-19;// in C\n",
+"N_D = 10^15;// in electrons/cm^3\n",
+"N_D = N_D * 10^6;// in electrons/m^3\n",
+"epsilon_r = 12;\n",
+"epsilon_o = (36 * %pi * 10^9)^-1;\n",
+"epsilon = epsilon_o * epsilon_r;\n",
+"a = 3 * 10^-4;// in cm\n",
+"a = a * 10^-2;// in m\n",
+"V_P = (q * N_D * a^2)/( 2 * epsilon);// in V\n",
+"disp(V_P,'The Pinch off voltage in V is');\n",
+"// V_GS = V_P * (1-(b/a))^2\n",
+"b = (1-0.707) *a;// in m\n",
+"disp(b*10^6,'The value of b in µm is : ')\n",
+"disp('Hence the channel width has been reduced to about one third of its value for V_GS = 0');//\n",
+"// Note : The unit of b in the book is wrong since the value of b is calculated in µm."
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12_2: Value_of_VGS_and_VDS.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.12.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 8;// in mA\n",
+"V_P = -4;// in V\n",
+"I_D = 3;// in mA\n",
+"V_GS = V_P * (1 - sqrt(I_D/I_DSS));// in V\n",
+"disp(V_GS,'The value of V_GS in V is');\n",
+"V_DS = V_GS - V_P;// in V\n",
+"disp(V_DS,'The value of V_DS in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12_3: Drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.12.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_P = -4;// in V\n",
+"I_DSS = 9;// in mA\n",
+"I_DSS = I_DSS * 10^-3;// in A\n",
+"V_GS = -2;// in V\n",
+"I_D = I_DSS * ((1 - (V_GS/V_P))^2);// in A\n",
+"disp(I_D*10^3,'The drain current in mA is ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12_4: Value_of_transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 4.12.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 12;// in mA\n",
+"I_DSS = I_DSS * 10^-3;// in A\n",
+"V_P = -(6);// in V\n",
+"V_GS = -(1);// in V\n",
+"g_mo = (-2 * I_DSS)/V_P;// in A/V\n",
+"g_m = g_mo * (1 - (V_GS/V_P));// in S\n",
+"disp(g_m*10^3,'The value of transconductance in mS is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.12_5: Transconductance_and_drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 4.12.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_DSS = 10;// in mA \n",
+"I_DSS = I_DSS * 10^-3;// in A\n",
+"V_P = -(5);// in V\n",
+"V_GS = -(2.5);// in V\n",
+"g_m = ((-2 * I_DSS)/V_P) * (1 -(V_GS/V_P));// in S\n",
+"g_m = g_m * 10^3;// in mS\n",
+"disp(g_m,'The Transconductance in mS is');\n",
+"I_D = I_DSS * ((1 - (V_GS/V_P))^2);// in A\n",
+"disp(I_D*10^3,'The drain current in mA is'); "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb b/Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb
new file mode 100644
index 0000000..0aaff66
--- /dev/null
+++ b/Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb
@@ -0,0 +1,787 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Bipolar Junction Transistors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_1a: Base_and_emitter_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.10.1(a)\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"beta_dc = 90;\n",
+"I_C = 15;// in mA\n",
+"I_C = I_C * 10^-3;// in A\n",
+"I_B = I_C/beta_dc;// in A\n",
+"disp(I_B*10^6,'The base current in µA is');\n",
+"I_E = I_C + I_B;// in A\n",
+"I_E = I_E * 10^3;// in mA\n",
+"disp(I_E,'The Emitter current in mA is');\n",
+"alpha_dc = beta_dc/(1+beta_dc);\n",
+"disp(alpha_dc,'The value of alpha_dc is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_1: Emitter_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.10.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"bita = 50;\n",
+"I_B= 20;// in µA\n",
+"I_B=I_B*10^-6;// in A\n",
+"I_C= bita*I_B;// in A\n",
+"I_E= I_C+I_B;// in A\n",
+"I_E = I_E * 10^3;// in mA\n",
+"disp(I_E,'The Emitter current in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_3: Change_in_base_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.10.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"del_ic = 1.8;// in mA\n",
+"del_ie = 1.89;// in mA\n",
+"alpha = del_ic / del_ie;\n",
+"bita = alpha/(1 - alpha);\n",
+"del_ib = del_ic/bita;// in mA\n",
+"del_ib = del_ib * 10^3;// in µA\n",
+"disp(del_ib,'The change in I_B in µA is'); \n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_4: Transistor_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.10.4\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_CC = 10;// in V\n",
+"R_C = 3;// in k Ω\n",
+"R_C= R_C*10^3;// in Ω\n",
+"bita = 100;\n",
+"I_CO = 20;// in nA\n",
+"I_CO = I_CO * 10^-9;// in A\n",
+"V_BB = 5;// in V\n",
+"R_B = 200;// in kΩ\n",
+"R_B= R_B*10^3;// in Ω\n",
+"V_BE = 0.7;// in V\n",
+"// Applying KVL to the base circuit, V_BB= I_B*R_B+V_BE\n",
+"I_B = (V_BB - V_BE)/R_B;// in A\n",
+"disp(I_B*10^6,'The base current in µA is');\n",
+"I_C = (bita * I_B) + I_CO;// in A\n",
+"disp(I_C*10^3,'The collector current in mA is');\n",
+"I_E = I_C + I_B;// in A\n",
+"disp(I_E*10^3,'Emitter current in mA is');\n",
+"V_CE = V_CC - (I_C * R_C);// in V\n",
+"disp(V_CE,'Collector emitter voltage in V is');\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_5: Collector_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.10.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"bita = 100;\n",
+"I_CBO = 4;// in µA\n",
+"I_B = 40;// in µA\n",
+"I_C = (bita * I_B) + ((1+bita) * I_CBO);// in µA\n",
+"I_C = I_C * 10^-3;// in msA\n",
+"disp(I_C,'The collector current in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_6: Current_gain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.10.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"del_IC = 1 * 10^-3;// in A\n",
+"del_IB = 10 * 10^-6;// in A\n",
+"CurrentGain= del_IC/del_IB;\n",
+"disp(CurrentGain,'The current gain is');\n",
+"del_IC= del_IC*10^3;// in mA\n",
+"del_IB= del_IB*10^6;// in µA\n",
+"I_B=0:0.1:50;// in µA\n",
+"I_C= I_B/del_IB+del_IC;// in mA\n",
+"plot(I_B,I_C)\n",
+"xlabel('Base current in µA');\n",
+"ylabel('Collector current in mA')\n",
+"title('Transfer Characteristics ')\n",
+"disp('Transfer Characteristics is shown in figure')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.10_7: Value_of_alphaDC_and_bitaDC.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.10.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"I_CEo = 21;// in µA\n",
+"I_CBO = 1.1;// in µA\n",
+"beta_dc = (I_CEo/I_CBO) - 1;\n",
+"disp(beta_dc,'Value of beta_dc is');\n",
+"alpha_dc = beta_dc/(1 + beta_dc);\n",
+"disp(alpha_dc,'The value of alpha_dc is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_10: Minimum_value_of_RC_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.13.10\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_ECsat= 0.2;// in V\n",
+"V_CC= 10;// in V\n",
+"V_EBsat= 0.8;// in V\n",
+"\n",
+"// Part (i)\n",
+"bita= 100;\n",
+"R_B= 220;// in kΩ\n",
+"// Applying KVL to collector circuit, V_CC= V_EC+ICRC\n",
+"ICRC= V_CC-V_ECsat;// in V\n",
+"// Applying KVL to input loop, V_CC= V_EBsat+I_B*R_B (i)\n",
+"I_B= (V_CC-V_EBsat)/R_B;// in mA\n",
+"I_C= bita*I_B;// in mA\n",
+"R_Cmin= ICRC/I_C;// in kΩ\n",
+"disp(R_Cmin,'The minimum value of R_C in kΩ is : ')\n",
+"// Part (ii)\n",
+"R_C= 1.2;// in kΩ\n",
+"I_Csat= ICRC/R_C;// in mA\n",
+"I_B= I_Csat/bita;// in mA\n",
+"// From eq (i)\n",
+"R_B= (V_CC-V_EBsat)/I_B;// in kΩ\n",
+"disp(R_B,'The maximum value of R_B in kΩ is : ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_11: Value_of_RE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.11\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"bita= 100;\n",
+"V_BEsat= 0.8;// in V\n",
+"V_CEsat= 0.2;// in V\n",
+"V_BEact= 0.7;// in V\n",
+"V_CC = 10;// in V\n",
+"R_E = 1;// in kΩ\n",
+"R_C = 2;// in kΩ\n",
+"R_B= 100;// in kΩ\n",
+"bita=100;\n",
+"alpha= bita/(1+bita);\n",
+"// Applying KVL to collector circuit\n",
+"// V_CC= I_Csat*R_C +V_CE +R_E*I_E\n",
+"// but I_E= alpha*I_Csat\n",
+"I_Csat= (V_CC-V_CEsat)/(R_C+R_E*alpha);// in mA\n",
+"I_Bmin= I_Csat/bita;// in mA\n",
+"// Applying KVL to base loop\n",
+"// V_CC= I_B*R_B +V_BEsat +I_E*R_E\n",
+"// but I_E= I_Csat+I_B\n",
+"I_B= (V_CC-V_BEsat-I_Csat*R_E)/(R_B+R_E);// in mA\n",
+"disp(I_B*10^3,'The value of I_B in µA is : ')\n",
+"disp(I_Bmin*10^3,'The minimum value of I_B in µA is : ')\n",
+"if I_B>I_Bmin then\n",
+" disp('Since the value of I_B is greater than the value of I_Bmin, ')\n",
+" disp('Hence the transistor is in saturation .')\n",
+"end\n",
+"I_E= (1+bita)*I_Bmin;// in mA\n",
+"R_E= (V_CC-V_BEact-I_Bmin*R_B)/I_E;// in kΩ\n",
+"disp(R_E,'The value of R_E in kΩ is : ')\n",
+"disp('So R_E should be greater than this value in order to bring the transistor just out of saturation ')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_12: Collector_voltage_and_minimum_value_of_bita.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.13.12\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_CC = 9;// in V\n",
+"V_BE = 0.8;// in V\n",
+"V_CE = 0.2;// in V\n",
+"R_B = 50;// in kΩ\n",
+"R_C=2;// in kΩ\n",
+"R_E = 1;// in kΩ\n",
+"bita=70;\n",
+"// Applying KVL to input loop, V_CC= I_B*R_B +V_BE +I_E*R_E\n",
+"// V_CC- V_BE= (R_B+R_E)*I_B + R_E*I_C (i)\n",
+"// Applying KVL to output loop, V_CC= R_C*I_C +V_CE +I_C*R_E +I_B*R_E\n",
+"//I_B = ((V_CC- V_CE)-(R_C+R_E)*I_C)/R_E (ii)\n",
+"// From eq (i) and (ii)\n",
+"I_C= ( (V_CC- V_BE)-(R_B+R_E)* (V_CC- V_CE)/R_E)/(1-(R_B+R_E)*(R_C+R_E));// in mA\n",
+"I_B = ((V_CC- V_CE)-(R_C+R_E)*I_C)/R_E// in mA\n",
+"I_Bmin= I_C/bita;// in mA\n",
+"if I_B>I_Bmin then\n",
+" disp('Since the value of I_B ('+string(I_B)+' mA) is greater than the value of I_Bmin ('+string(I_Bmin)+' mA)')\n",
+" disp('So the transistor is in saturation ')\n",
+"end\n",
+"V_C= V_CC-I_C*R_C;// in V\n",
+"disp(V_C,'The value of collector voltage in volts is : ')\n",
+"bita= I_C/I_B;\n",
+"disp(bita,'The minimum value of bita that will change the state of the trasistor is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_1: Value_of_alphaDC_and_emitter_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.13.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"I_CBO = 3;//in µA\n",
+"I_CBO= I_CBO*10^-3;// in mA \n",
+"I_C= 15;// in mA\n",
+"// But it is given that I_C= 99.5% of I_E, SO\n",
+"I_E= I_C/99.5*100;// in mA\n",
+"alpha_dc= I_C/I_E;\n",
+"disp(alpha_dc,'The value of alpha_dc is : ')\n",
+"disp(I_E,'The value of I_E in mA is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_2: Base_and_emitter_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"alpha_dc = 0.99;\n",
+"I_CBO = 10;// in µA\n",
+"I_CBO= I_CBO*10^-6;// in A\n",
+"I_E = 10;// in mA\n",
+"I_E= I_E*10^-3;// in A\n",
+"I_C = (alpha_dc * I_E) + I_CBO;// in A\n",
+"disp(I_C*10^3,'The value of I_C in mA is');\n",
+"I_B = I_E - I_C;// in A\n",
+"I_B = I_B * 10^6;// in µA\n",
+"disp(I_B,'The value of I_B in µA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_3: Base_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.13.3\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"alpha_dc = 0.99;\n",
+"I_C = 6;// in mA\n",
+"I_C= I_C*10^-3;// in A\n",
+"I_CBO = 15;// in µA\n",
+"I_CBO= I_CBO*10^-6;// in A\n",
+"I_E = (I_C - I_CBO)/alpha_dc;// in A\n",
+"I_B = I_E - I_C;// in A \n",
+"disp(I_B*10^6,'The value of I_B in µA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_5: Emitter_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.5\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"alpha_dc = 0.98;\n",
+"I_CBO = 12;// in µA\n",
+"I_CBO = I_CBO * 10^-6;// in A\n",
+"I_B = 120;// in µA\n",
+"I_B = I_B * 10^-6;// in A\n",
+"beta_dc = alpha_dc/(1-alpha_dc);\n",
+"I_E = ((1 + beta_dc) * I_B) + ((1 + beta_dc) * I_CBO);//in A\n",
+"I_E = I_E * 10^3;// in mA\n",
+"disp(I_E,'The value of I_E in mA is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_6: Region_of_operation_of_Si_transistor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.6\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"bita= 100;\n",
+"V_BEsat= 0.8;// in V\n",
+"V_CEsat= 0.2;// in V\n",
+"V_BEact= 0.7;// in V\n",
+"V_CC = 10;// in V\n",
+"V_BB=5;// in V\n",
+"R_E = 2;// in kΩ\n",
+"R_C = 3;// in kΩ\n",
+"R_B= 50;// in kΩ\n",
+"// Applying KVL to collector loop\n",
+"// V_CC= I_Csat*R_C +V_CEsat +I_E*R_E and I_E= I_Csat+I_B, So\n",
+"//I_B= ((V_CC-V_CEsat)-(R_C+R_E)*I_Csat)/R_E; (i)\n",
+"// Applying KVL to base loop\n",
+"// V_BB-I_B*R_B -V_BEsat-I_E*R_E =0 and I_E= I_Csat+I_B, So\n",
+"//V_BB-V_BEsat= R_E*I_Csat + (R_B+R_E)*I_B (ii)\n",
+"// From eq (i) and (ii)\n",
+"I_B = ((V_BB-V_BEsat)*5- (V_CC-V_CEsat)*2) / ((R_B+R_E)*5 - R_E*2) ;// in mA\n",
+"I_Csat= ((V_CC-V_CEsat)-R_E*I_B)/(R_C+R_E);// in mA\n",
+"I_Bmin= I_Csat/bita;// in mA\n",
+"if I_B<I_Bmin then\n",
+" disp('Since the value of I_B ('+string(I_B*10^3)+'µA) is less than the value of I_Bmin ('+string(I_Bmin*10^3)+'µA)');\n",
+" disp('So the transistor is not in the saturation region. But it is conducting hence it can not be in cutoff.')\n",
+" disp('Therefore the transistor is in the active region')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_7: Value_of_IB_IC_and_VCE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.7\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"bita= 100;\n",
+"V_BEsat= 0.8;// in V\n",
+"V_CEsat= 0.2;// in V\n",
+"V_BEact= 0.7;// in V\n",
+"V_CC = 10;// in V\n",
+"V_BB=5;// in V\n",
+"R_E = 2;// in kΩ\n",
+"R_C = 3;// in kΩ\n",
+"R_B= 50;// in kΩ\n",
+"// Applying KVL to input loop\n",
+"// V_BB= I_B*R_B+(1+bita)*I_B*R_E+V_BEact or \n",
+"I_B= (V_BB-V_BEact)/(R_B+(1+bita)*R_E);// in mA\n",
+"I_C= bita*I_B;// in mA\n",
+"// Applying KVL to collector circuit\n",
+"// V_CC= I_Csat*R_C +V_CEsat +(I_C+I_B)*R_E\n",
+"V_CEact= V_CC-I_B*R_E-I_C*(R_C+R_E);// in V\n",
+"disp(I_B*10^3,'The value of I_B in µA is : ')\n",
+"disp(I_C,'The value of I_C in mA is : ')\n",
+"disp(V_CEact,'The value of V_CE in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_8: Region_of_operation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.8\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"bita = 100;\n",
+"V_CEsat = 0.2;// in V\n",
+"R_B = 150;// in kohm\n",
+"R_C = 2;// in kohm\n",
+"V_CC = 10;// in V\n",
+"V_BEsat = 0.8;// in V\n",
+"I_B = (V_CC - V_BEsat)/R_B;// in mA\n",
+"I_C = (V_CC - V_CEsat)/R_C;// in mA\n",
+"I_Bmin = I_C/bita;// in mA\n",
+"if I_B>I_Bmin then\n",
+" disp('Since the value of I_B ('+string(I_B*10^3)+'µA) is greater than the value of I_Bmin ('+string(I_Bmin*10^3)+'µA)');\n",
+" disp('So the transistor is in the saturation region.')\n",
+"end"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13_9: Value_of_VBB.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Exa 5.13.9\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"//Given data\n",
+"bita = 100;\n",
+"V_CE = 0.2;//in V\n",
+"V_BE = 0.8;// in V\n",
+"R_C= 500;// in Ω\n",
+"R_B= 44*10^3;// in Ω\n",
+"R_E= 1*10^3;// in Ω\n",
+"V_CC= 15;// in V\n",
+"V_GE= -15;// in V\n",
+"// Applying KVL to collector circuit\n",
+"// V_CC-V_GE - I_Csat*R_C-V_CE-I_E*R_E=0, but I_Csat= bita*I_Bmin and I_E= 1+bita\n",
+"I_Bmin= (V_CC-V_GE-V_CE)/(R_C*bita+(1+bita)*R_E);// in A\n",
+"// Applying KVL to the base emitter circuit\n",
+"// V_BB-I_Bmin*R_B-V_BE-I_E*R_E + V_CC=0\n",
+"V_BB= I_Bmin*R_B + V_BE + (1+bita)*I_Bmin*R_E-V_CC;// in V\n",
+"disp(I_Bmin*10^3,'The value of I_B(min) in mA is : ')\n",
+"disp(V_BB,'The value of V_BB in volts is : ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.21_1: Inductor_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.21.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"O_V = 5;// output voltage in V\n",
+"V_D = 1.5;//voltage drop in V\n",
+"R = (O_V - V_D)/O_V;\n",
+"R = R * 10^3;// in ohm\n",
+"disp(R,'The resistance value in Ω is');\n",
+"disp('As this is not standard value, use R=680 Ω which is a standard value')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8_1: Value_of_collector_current_and_VCB.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.8.1\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"V_EE = 8;// in V\n",
+"V_BE = 0.7;// in V\n",
+"R_E = 1.5;// in k ohm\n",
+"I_E = (V_EE - V_BE)/R_E;// in mA\n",
+"I_C = I_E;// in mA\n",
+"disp(I_C,'The value of I_C in mA is');\n",
+"V_CC = 18;// in V\n",
+"R_C = 1.2;// in kΩ\n",
+"V_CB = V_CC - (I_C * R_C);// in V\n",
+"disp(V_CB,'The value of V_CB in V is');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8_2: Base_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Exa 5.8.2\n",
+"clc;\n",
+"clear;\n",
+"close;\n",
+"// Given data\n",
+"alpha = 0.9;\n",
+"I_E = 1;// mA\n",
+"I_C = alpha * I_E;// in mA\n",
+"I_B = I_E - I_C;// in mA\n",
+"disp(I_B,'The value of base current in mA is');"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}