diff options
Diffstat (limited to 'Electronic_Devices_by_K_C_Nandi')
5 files changed, 3550 insertions, 0 deletions
diff --git a/Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb b/Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb new file mode 100644 index 0000000..74f730c --- /dev/null +++ b/Electronic_Devices_by_K_C_Nandi/1-Energy_Bands_And_Charge_Carriers.ipynb @@ -0,0 +1,905 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Energy Bands And Charge Carriers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.18_1: Position_of_Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.18.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_E = 0.3;// in eV\n", +"T1 = 300;// in K\n", +"T2 = 330;// in K\n", +"// del_E = K * T1 * log(N/N_c) where del_E= E_C-E_F\n", +"// del_E1 = K * T2 * log(N/N_c) where del_E1= E_C-E_F at T= 330 °K\n", +"del_E1 = del_E*(T2/T1);// in eV \n", +"disp('The Fermi level will be '+string(del_E1)+' eV below the conduction band')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.18_2: Probability.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.18.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"N_c = 2.8 * 10^19;// in cm^-3\n", +"del_E = 0.25;// fermi energy in eV\n", +"KT = 0.0259;\n", +"f_F = exp(-(del_E)/KT);\n", +"disp(f_F,'The probbaility in the condition band is occupied by an electron is ');\n", +"n_o = N_c * exp(-(del_E)/KT);// in cm^-3\n", +"disp(n_o,'The thermal equilibrium electron concentration in cm^-3 is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.18_3: Thermal_equilibrium_hole_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa1.18.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"T1 = 300;// in K\n", +"T2 = 400;// in K\n", +"del_E = 0.27;// Fermi level in eV\n", +"KT = (0.0259) * (T2/T1);// in eV\n", +"N_v = 1.04 * 10^19;// in cm^-3\n", +"N_v = N_v * (T2/T1)^(3/2);// in cm^-3 \n", +"p_o = N_v * exp(-(del_E)/KT);// in per cm^3\n", +"disp(p_o,'The thermal equilibrium hole concentration in per cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_1: Conductivity_of_pure_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 1.21.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Mu_e = 1500;// in cm^2/volt sec\n", +"Mu_h = 500;// in cm^2/volt sec\n", +"n_i = 1.6 * 10^10;// in per cm^3\n", +"e = 1.6 * 10^-19;// in C\n", +"Sigma = n_i * (Mu_e + Mu_h) * e;// in mho/cm\n", +"disp(Sigma,'The conductivity of pure semiconductor in mho/cm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_2: Number_of_donar_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 1.21.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Rho = 10;// in Ω-cm\n", +"Mu_d = 500;// in cm^2/v.s.\n", +"e = 1.6*10^-19;\n", +"n_d = 1/(Rho * e * Mu_d);// in per cm^3\n", +"disp(n_d,'The number of donor atom must be added to achieve in per cm^3 is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_3: Conductivity_of_speciman.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.21.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"AvagadroNumber = 6.02 * 10^23;// in atoms/gm.mole\n", +"at_Ge = 72.6;// atom weight of Ge\n", +"e = 1.6 * 10^-19;// in C\n", +"D_Ge = 5.32;// density of Ge in gm/c.c\n", +"Mu = 3800;// in cm^2/v.s.\n", +"C_Ge = (AvagadroNumber/at_Ge) * D_Ge;// concentration of Ge atoms in per cm^3\n", +"n_d = C_Ge/10^8;// in per cc\n", +"Sigma = n_d * Mu * e;// in mho/cm\n", +"disp(Sigma,'The conductivity in mho/cm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_4: Mobility_of_electrons_in_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa1.21.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Rho = 0.3623 * 10^-3;// in Ohm m\n", +"Sigma = 1/Rho;//in mho/m\n", +"D = 4.42 * 10^28;// Ge density in atom/m^3\n", +"n_d = D / 10^6;// in atom/m^3\n", +"e = 1.6 * 10^-19;// in C\n", +"Mu = Sigma/(n_d * e);// in m^2/V.sec\n", +"disp(Mu,'The mobility of electron in germanium in m^2/V.sec is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_5: Density_and_mobility_of_holes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.21.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"AvagadroNumber = 6.025 * 10^26;// in kg.Mole\n", +"W = 72.59;// atomic weight of Ge\n", +"D = 5.36 * 10^3;//density of Ge in kg/m^3\n", +"Rho = 0.42;// resistivity in Ohm m\n", +"e = 1.6 * 10^-19;// in C\n", +"Sigma = 1/Rho;// in mho/m\n", +"n = (AvagadroNumber/W) * D;// number of Ge atoms present per unit volume\n", +"// Holes per unit volume, H = n*10^-6%\n", +"H= n*10^-8;\n", +"a=H;\n", +"// Formula sigma= a*e*Mu_h\n", +"Mu_h = Sigma/(a * e);// in m^2/V.sec\n", +"disp(Mu_h,'Mobility of holes in m^2/V.sec is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_6: Current_produced.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.21.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"e = 1.6 * 10^-19;// in C\n", +"n_i = 2 * 10^19;// in /m^3\n", +"Mu_e = 0.36;// in m^2/v.s\n", +"Mu_h = 0.17;// in m^2/v.s\n", +"A = 1 * 10^-4;// in m^2\n", +"V = 2;//in volts\n", +"l = 0.3;// in mm\n", +"l = l * 10^-3;// in m\n", +"E=V/l;// in volt/m\n", +"Sigma = n_i * e * (Mu_e + Mu_h);// in mho/m\n", +"// J = I/A = Sigma * E\n", +"I= Sigma*E*A;\n", +"disp(I,'The current produced in a small germanium plate in amp is');\n", +"\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_7: Resitivity_of_doped_Ge_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 1.21.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"D = 4.2 * 10^28;//density of Ge atoms in atoms/m^3\n", +"N_d = D / 10^6;// in atoms/m^3\n", +"e = 1.6 * 10^-19;// in C\n", +"Mu_e = 0.36;// in m^2/vs\n", +"Sigma_n = N_d * e * Mu_e;// in mho/m\n", +"Rho_n = 1/Sigma_n;// in ohm m\n", +"disp(Rho_n,'The resistivity of drop Ge in ohm m is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_8: Current_produced_in_Ge_sample.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 1.21.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"// given data\n", +"e = 1.6 * 10^-19;// in C\n", +"n_i = 1 * 10^19;// in per m^3\n", +"Mu_e = 0.36;// in m^2/volt.sec\n", +"Mu_h = 0.17;// in m^2/volt.sec \n", +"A = 2;// in cm^2\n", +"A = A * 10^-4;// im m^2\n", +"t = 0.1;// in mm\n", +"t = t * 10^-3;// in m\n", +"V = 4;// in volts\n", +"Sigma_i = n_i * e * (Mu_e + Mu_h);// in mho/m\n", +"J = Sigma_i * (V/t);// in Amp/m^2\n", +"I = J * A;// in Amp\n", +"disp(I,'The current produced in a Ge sample in Amp is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21_9: Conductivity_of_pure_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.21.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"e = 1.6 * 10^-19;// in C\n", +"Mu_h = 500;// in cm^2/V.s.\n", +"Mu_e = 1500;// in cm^2/V.s.\n", +"n_i = 1.6 * 10^10;// in per cm^3\n", +"Sigma_i = n_i * e * ( Mu_h + Mu_e);// in mho/cm\n", +"disp(Sigma_i,'Conductivity of pure silicon at room temperature in mho/cm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_10: Required_doping_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"N_c = 2.8 * 10^19;\n", +"N_V = 1.04 *10^19;\n", +"T1 = 550;// in K\n", +"T2 = 300;// in K\n", +"E_g = 1.12;\n", +"KT = (0.0259) ;\n", +"n_i = sqrt(N_c *N_V *(T1/T2)^3* exp(-(E_g)/KT*T2/T1));// in cm^-3\n", +"// n_o = N_d/2 + sqrt((N_d/2)^2 + (n_i)^2)\n", +"// 1.05*N_d -N_d/2= sqrt((N_d/2)^2 + (n_i)^2)\n", +"N_d=sqrt((n_i)^2/((0.55)^2-1/4));\n", +"disp(N_d,'Minimum donor concentration required in cm^-3 is'); \n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_11: Quasi_Fermi_energy_levels.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"T = 300;// in K\n", +"n_o = 10^15;// in cm^-3\n", +"n_i = 10^10;// in cm^-3\n", +"p_o = 10^5;// in cm^-3\n", +"del_n = 10^13;// in cm^-3\n", +"del_p = del_n;// in cm^-3\n", +"KT = 0.0259;// in eV\n", +"delta_E1= KT*log(n_o/n_i);// value of E_F-E_Fi in eV\n", +"delta_E2= KT*log((n_o+del_n)/n_i);// value of E_Fn-E_Fi in eV\n", +"delta_E3= KT*log((p_o+del_p)/n_i);// value of E_Fi-E_Fp in eV\n", +"disp(delta_E1,'The Fermi level for thermal equillibrium in eV is : ')\n", +"disp(delta_E2,'The quase-Fermi level for electrons in non equillibrium in eV is : ')\n", +"disp(delta_E3,'The quasi-Fermi level for holes in non equillibrium in eV is : ')\n", +"disp('The quasi-Fermi level for electrons is above E_Fi ')\n", +"disp('While the quasi-Fermi level for holes is below E_Fi')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_12: Equilibrium_hole_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 1.23.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"n_i = 1.5 * 10^10;\n", +"n_o = 10^17;\n", +"KT = 0.0259;\n", +"P_o = (n_i)^2/n_o;// in cm^-3\n", +"del_E = KT * log(n_o/n_i);// in eV\n", +"disp(del_E,'equilibrium hole concentration in eV is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_13: Current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//exa 1.23.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"Mu_n = 700;//in cm^2/v-s\n", +"n_o = 10^17;// in /cm^3\n", +"q = 1.6 * 10^-19;// in C\n", +"l = 0.1;// in cm\n", +"A = 10^-6;\n", +"V = 10;// in V\n", +"Sigma = q * Mu_n * n_o;// in (ohm cm)^-1\n", +"Rho = 1/Sigma;//in ohm cm \n", +"R = Rho * (l/A);// in ohm\n", +"I = V/R;// in A\n", +"disp(I*10^3,'The current in mA is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_1: Hall_voltage_produced.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"l= 0.50*10^-2;// width of ribbon in m\n", +"d= 0.10*10^-3;// thickness of ribbon in m\n", +"A= l*d;// area of ribbon in m^2\n", +"B = 0.8;// in Tesla\n", +"D = 10.5;//density in gm/cc\n", +"I = 2;// in amp\n", +"q = 1.6 * 10^-19;// in C\n", +"n=6*10^28;// number of elec. per m^3\n", +"V_H = ( I * B * d)/(n * q * A);// in volts\n", +"disp(V_H,'The hall Voltage produced in volts is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_2: Hall_coefficient_and_mobility_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"l = 1;// in m\n", +"d = 1;// in cm\n", +"d = d * 10^-2;// in m\n", +"W = 1;// in mm\n", +"W = W * 10^-3;// in m\n", +"A = d * W;// in m^2\n", +"I= 1;// in Amp\n", +"B = 1;// Tesla\n", +"V_H = 0.074 * 10^-6;// in Volts\n", +"Sigma = 5.8 * 10^7;// in mho/m\n", +"R_H = (V_H * A)/(B*I*d);// in m^3/c\n", +"disp(R_H,'The hall coefficient in m^3/c is');\n", +"Mu = Sigma * R_H;// in m^2/volt.sec\n", +"disp(Mu,'The mobility of electrons in copper in m^2/volt-sec is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_3: Concentration_of_holes_in_Si_crystals.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa1.23.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.4 * 10^18;// in /m^3\n", +"n_D = 1.4 * 10^24;// in /m^3\n", +"n=n_D;// in /m^3\n", +"p = n_i^2/n;// in /m^3\n", +"R = n/p;\n", +"disp(R,'The ratio of electrons to hole concentration is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_4: Hall_angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"B = 0.48;// in wb/m^2\n", +"R_H = 3.55 * 10^-4;// in m^3/c\n", +"Rho = 0.00912;// in ohm-m\n", +"Sigma = 1/Rho;// in (ohm-m)^-1\n", +"theta_H = atand( Sigma * B * R_H);// in degree\n", +"disp(theta_H,'The hall angle for a hall coefficient in degree is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_5: Mobility_and_density_of_charge_carriers.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"R = 9 * 10^-3;// in ohm-m\n", +"R_H = 3.6 * 10^-4;// in m^3\n", +"e = 1.6 * 10^-19;// in C\n", +"Sigma = 1/R;// in (ohm-m)^-1\n", +"Rho = 1/R_H;// in coulomb/m^3\n", +"n = Rho/e;// in /m^3\n", +"disp(n,'Density of charge carriers in per m^3 is');\n", +"Mu = Sigma * R_H;// in m^2/v-s\n", +"disp(Mu,'Mobility of charge carriers in m^2/V-s is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_6: Current_density_in_speciman.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"e = 1.6 * 10^-19;// in C\n", +"R_H = 0.0145;// in m^3/coulomb\n", +"Mu_e = 0.36;// in m^2/v-s\n", +"E = 100;// in V/m\n", +"n = 1/(e * R_H);// in /m^3\n", +"J = n * e * Mu_e * E;// in A/m^2\n", +"disp(J,'The current density of specimen in A/m^2 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_7: Relaxation_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"Mu_e = 7.04 * 10^-3;// in m^2/v-s\n", +"m = 9.1 * 10^-31;\n", +"E_F = 5.5;// in eV\n", +"n = 5.8 * 10^28;\n", +"e = 1.6 * 10^-19;// in C\n", +"Torque = (Mu_e/e) * m;// in sec\n", +"disp(Torque,'Relaxation Time in sec is ');\n", +"Rho = 1 /(n * e * Mu_e);// in ohm-m\n", +"disp(Rho,'Resistivity of conductor in ohm-m is ');\n", +"V_F = sqrt((2 * E_F * e)/m);// in m/s\n", +"disp(V_F,'Velocity of electrons with fermi-energy in m/s is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_8: Temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"E= 5.95;// in eV\n", +"EF= 6.25;// in eV\n", +"delE= 0.01;\n", +" // delE= 1-1/(1+exp((E-EF)/KT))\n", +"K=1.38*10^-23;// Boltzman Constant in J/K\n", +"T = ((E-EF)/log(1/(1-delE) -1)*1.6*10^-19)/K;// in K\n", +"disp(T,'The temperature in K is : ')\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23_9: Thermal_equilibrium_hole_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.23.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data \n", +"N_V = 1.04 * 10^19;// in cm^-3\n", +"T1 = 300;// in K\n", +"T2 = 400;// in K\n", +"del_E = 0.27;// in eV\n", +"N_V = N_V * (T2/T1)^1.5;// in cm^-3\n", +"KT = (0.0259) * (T2/T1);// in eV\n", +"P_o = N_V * exp(-(del_E)/KT);// in cm^-3\n", +"disp(P_o,'The thermal equilibrium hole concentration in silicon in cm^-3 is ');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7_1: Wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 1.7.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"E_g = 0.75// in eV\n", +"E_g = 0.75 * 1.6 * 10^-19;// in J\n", +"h = 6.63 * 10^-34;// in J\n", +"c = 3 * 10^8;// in m/s \n", +"// hv = E_g\n", +"//E_g = (h*c)/lambda\n", +"lambda = (h*c)/E_g;// in m\n", +"lambda = lambda * 10^10;// in A°\n", +"disp(lambda,'The wavelength at which germanium starts to absorb light in A° is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7_2: Energy_gap_of_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 1.7.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h = 6.625 * 10^-34;// in J\n", +"c = 3 * 10^8;// in J\n", +"lambda_Gr = 17760 * 10^-10;// in m\n", +"lambda_Si = 11000;// in A°\n", +"lambda_Si = lambda_Si * 10^-10;// in m\n", +"E_g = (h*c)/lambda_Si;// in J\n", +"E_g = E_g /(1.6*10^-19);// in eV\n", +"disp(E_g,'The energy gap of Si in eV is ');\n", +"E_g1 = (h*c)/lambda_Gr;// in J\n", +"E_g1 = E_g1/(1.6 * 10^-19);// in eV\n", +"disp(E_g1,'The energy gap of Germanium in eV is ');\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb b/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb new file mode 100644 index 0000000..017aef8 --- /dev/null +++ b/Electronic_Devices_by_K_C_Nandi/2-Excess_Carriers_In_Semiconductors.ipynb @@ -0,0 +1,837 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Excess Carriers In Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_10: Ratio_of_donot_atoms_to_Si_atoms.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Rho = 9.6 * 10^-2;// in ohm-m\n", +"Sigma_n = 1/Rho;// in (ohm-m)^-1\n", +"q = 1.6 * 10^-19;// in C\n", +"Mu_n = 1300 * 10^-4;// in m^2/v-s\n", +"N_D = Sigma_n / (Mu_n * q);// in atoms/m^3\n", +"A_D = N_D;// Atom density in atoms/cm^3\n", +"A_D = A_D * 10^6;// atoms/m^3\n", +"R_si = N_D/A_D;// ratio\n", +"disp(R_si,'the ratio of donor atom to silicon atom is');\n", +"\n", +"// Note: In the book the wrong value of N_D (5*10^22) is putted to evaluate the value of Atom Density (A_D) whereas the value of N_D is calculated as 5*10^20.\n", +"// So the answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_11: Equilibrium_electron_and_hole_densities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10^10;// in per cm^3\n", +"n_n = 2.25 * 10^15;// in per cm^3\n", +"p_n = (n_i)^2/n_n;// in per cm^3\n", +"disp(p_n,'The equilibrium electron per cm^3 is');\n", +"h_n = n_n;// in cm^3\n", +"disp(h_n,'Hole densities in per cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_12: Carrier_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"N_A = 2 * 10^16;// in atoms/cm^3\n", +"N_D = 10^16;// in atoms/cm^3\n", +"C_c = N_A-N_D;// C_c stands for Carrier concentration in /cm^3\n", +"disp(C_c,'Carrier concentration per cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_13: Generation_rate_due_to_irradiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_n = 10^15;// in cm^3\n", +"Torque_p = 10 * 10^-6;// in sec\n", +"R_g = del_n/Torque_p;// in hole pairs/sec/cm^3\n", +"disp(R_g,'The rate of generation of minority carrier in electron hole pairs/sec/cm^3 is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_14: Mobility_of_minority_charge_carrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"v = 1/(20 * 10^-6);// in cm/sec\n", +"E = 10;// in V/cm\n", +"Mu= v/E;// in cm^2/V-sec\n", +"disp(Mu,'The mobility of minority charge carrier in cm^2/V-sec is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_15: Hole_and_electron_diffusion_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"N_D = 4.5 * 10^15;// in /cm^3\n", +"del_p = 10^21;\n", +"e=10;// in cm\n", +"A = 1;// in mm^2\n", +"A = A * 10^-14;// cm^2\n", +"l = 10;// in cm\n", +"Torque_p = 1;// in microsec\n", +"Torque_p = Torque_p * 10^-6;// in sec\n", +"Torque_n = 1;// in microsec\n", +"Torque_n = Torque_n * 10^-6;// in sec\n", +"n_i = 1.5 * 10^10;// in /cm^3\n", +"D_n = 30;// in cm^2/sec\n", +"D_p = 12;// in cm^2/sec\n", +"n_o = N_D;// in /cm^3\n", +"p_o = (n_i)^2/n_o;// in /cm^3\n", +"disp(p_o,'Hole concentration at thermal equilibrium per cm^3 is');\n", +"l_n = sqrt(D_n * Torque_n);// in cm\n", +"disp(l_n,'Diffusion length of electron in cm is');\n", +"l_p = sqrt(D_p * Torque_p);// in cm\n", +"disp(l_p,'Diffusion length of holes in cm is');\n", +"x=34.6*10^-4;// in cm\n", +"dpBYdx = del_p *e;// in cm^4\n", +"disp(dpBYdx,'Concentration gradient of holes at distance in cm^4 is');\n", +"e1 = 1.88 * 10^1;// in cm\n", +"dnBYdx = del_p * e1;// in cm^4 check this also...........................\n", +"disp(dnBYdx,'Concentration gradient of electrons in per cm^4 is');\n", +"J_P = -(q) * D_p * dpBYdx;// in A/cm^2\n", +"disp(J_P,'Current density of holes due to diffusion in A/cm^2 is');\n", +"J_n = q * D_n * dnBYdx;// in A/cm^2\n", +"disp(J_n,'Current density of electrons due to diffusion in A/cm^2 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_16: Energy_band_gap_of_semiconductor_material_used.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"e= 1.6*10^-19;// electron charge in C\n", +"h = 6.626 * 10^-34;// in J-s\n", +"h= h/e;// in eV\n", +"c = 3 * 10^8;// in m/s\n", +"lembda = 5490 * 10^-10;// in m\n", +"f = c/lembda;\n", +"E = h * f;// in eV\n", +"disp(E,'The energy band gap of the semiconductor material in eV is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_17: Current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"y2 = 6 * 10^16;// in /cm^3\n", +"y1 = 10^17;// in /cm^3\n", +"x2 = 2;// in µm\n", +"x1 = 0;// in µm\n", +"D_n = 35;// in cm^2/sec\n", +"q = 1.6 *10^-19;// in C\n", +"dnBYdx = (y2 - y1)/((x2-x1) * 10^-4);\n", +"J_n = q * D_n * dnBYdx;// in A/cm^2\n", +"disp(J_n,'The current density in silicon in A/cm^2 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_18: Resistance_of_the_bar.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"n_n = 5 * 10^20;// in /m^3\n", +"n_n = n_n * 10^-6;// in cm^3\n", +"Mu_n = 0.13;// in m^2/V-sec\n", +"Mu_n = Mu_n * 10^4;// in cm^2/V-sec\n", +"Sigma_n = q * n_n * Mu_n;// in (ohm-cm)^-1\n", +"Rho = 1/Sigma_n;// in Ω-cm\n", +"l = 0.1;// in cm\n", +"A = 100;// µm^2\n", +"A = A * 10^-8;// in cm^2\n", +"R = Rho * (l/A);// in Ohm\n", +"R=round(R*10^-6);// in MΩ\n", +"disp(R,'The resistance of the bar in MΩ is'); " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_19: Depletion_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t_d = 3;// total depletion in µm\n", +"D = t_d/9;// in µm\n", +"disp(D,'Depletion width in µm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_1: Hole_concentration_at_equilibrium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"N_d = 10^17;// atoms/cm^3\n", +"n_i = 1.5 * 10^10;// in /cm^3\n", +"n_o = 10^17;// in cm^3\n", +"// p_o * n_o = (n_i)^2\n", +"p_o = (n_i)^2 / n_o;//in holes/cm^3\n", +"disp(p_o,'The holes concentration at equilibrium in holes/cm^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_20: Majority_carrier_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10^16;// in /m^3\n", +"n_n = 5 * 10^20;// in /m^3\n", +"p_n = (n_i)^2/n_n;// in /m^3\n", +"disp(p_n,'The majority carrier density per m^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_21: Collector_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"D_n = 25;// in cm^2/sec\n", +"q = 1.6 * 10^-19;// in C\n", +"y2 = 10^14;// in /cm^3\n", +"y1 = 0;// in /cm^3\n", +"x2 = 0;//in µm\n", +"x1 = 0.5;// in µm\n", +"x1 = x1 * 10^-4;// in cm\n", +"dnBYdx = abs((y2-y1)/(x2-x1));// in /cm^4 \n", +"J_n = q * D_n * (dnBYdx);// in /cm^4\n", +"J_n = J_n * 10^-1;// in A/cm^2\n", +"disp(J_n,'the collector current density in A/cm^2 is');\n", +"\n", +"// Note: In the book, the calculated value of dn by dx (2*10^19) is wrong. Correct value is 2*10^18 so the answer in the book is wrong." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_22: Band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 2.21.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"h = 6.64 * 10^-34;// in J-s\n", +"e= 1.6*10^-19;// electron charge in C\n", +"c= 3 * 10^8;// in m/s\n", +"lembda = 0.87;// in µm\n", +"lembda = lembda * 10^-6;// in m\n", +"E_g = (h * c)/lembda;// in J-s\n", +"E_g= E_g/e;// in eV\n", +"disp(E_g,'The band gap of the material in eV is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_23: Rate_of_excess_thermal_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.23\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 10;// in mW\n", +"e = 1.6 * 10^-19;// in J/eV\n", +"hv = 2;// in eV\n", +"hv1=1.43;// in eV\n", +"alpha = 5 * 10^4;// in cm^-1\n", +"l = 46;// in µm\n", +"l = l * 10^-6;// in m\n", +"I_t = round(I_o * exp(-(alpha) * l));// in mW\n", +"AbsorbedPower= I_o-I_t;// in mW\n", +"AbsorbedPower=AbsorbedPower*10^-3;// in W or J/s\n", +"disp(AbsorbedPower,'The absorbed power in watt or J/s is');\n", +"F= (hv-hv1)/hv;// fraction of each photon energy unit\n", +"EnergyConToHeat= AbsorbedPower*F;// in J/s\n", +"disp(EnergyConToHeat,'The amount of energy converted to heat per second in J/s is : ')\n", +"A= AbsorbedPower/(e*hv1);\n", +"disp(A,'the number of photon per sec given off from recombination events in photons/s is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_24: Hole_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.24\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"format('v',13)\n", +"Mu_p = 500;// in cm^2/v-s\n", +"kT = 0.0259;\n", +"Toh_p = 10^-10;// in sec\n", +"p_o = 10^17;// in cm^-3\n", +"q= 1.6*10^-19;// in C\n", +"A=0.5;// in square meter\n", +"del_p = 5 * 10^16;// in cm^-3\n", +"n_i= 1.5*10^10;// in cm^-3 \n", +"D_p = kT * Mu_p;// in cm/s\n", +"L_p = sqrt(D_p * Toh_p);// in cm\n", +"x = 10^-5;// in cm\n", +"p = p_o+del_p* %e^(x/L_p);// in cm^-3\n", +"// p= n_i*%e^(Eip)/kT where Eip=E_i-F_p\n", +"Eip= log(p/n_i)*kT;// in eV\n", +"Ecp= 1.1/2-Eip;// value of E_c-E_p in eV\n", +"Ip= q*A*D_p/L_p*del_p*%e^(x/L_p);// in A\n", +"disp(Ip,'The hole current in A is : ')\n", +"Qp= q*A*del_p*L_p;// in C\n", +"disp(Qp,'The value of Qp in C is : ')\n", +"\n", +"// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.\n", +"// Hence the value of hole current in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_25: Hole_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.25\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"format('v',13)\n", +"KT = 0.0259;\n", +"A = 0.5;// in cm^2\n", +"Toh_p = 10^-10;// in sec\n", +"p_o = 10^17;// in per cm^3\n", +"del_p = 5 * 10^16;// in per cm^3\n", +"x = 10^-5;// in cm\n", +"Mu_p = 500;// in cm^2/V-S\n", +"q = 1.6 * 10^-19;// in C\n", +"D_p = KT * Mu_p;// in cm/s\n", +"L_p = sqrt(D_p * Toh_p);// in cm\n", +"p = p_o * del_p * (%e^(x/L_p));// in per cm^3\n", +"I_p =q * A * (D_p/L_p) * del_p * (%e^(x/L_p));// in A\n", +"disp(I_p,'The hole current in A is');\n", +"Q_p = q * A * del_p * L_p;// in C \n", +"disp(Q_p,'The hole charge in C is');\n", +"\n", +"// Note: There is a calculation error to evalaute the value of hole current but they putted correct value of it to evaluate the value of Qp.\n", +"// Hence the value of hole current in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_3: Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 1.5 * 10 ^10;// in /cm^3 for silicon\n", +"N_d = 10^17;// in atoms/cm^3\n", +"n_o = 10^17;// electrons/cm^3\n", +"KT = 0.0259;\n", +"// E_r - E_i = KT * log(n_o/n_i)\n", +"del_E = KT * log(n_o/n_i);// in eV\n", +"disp('The energy band for this type material is Ei + '+string(del_E)+' eV');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_4: Diffusion_coefficients_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"K = 1.38 * 10^-23;// in J/K\n", +"T = 27;// in degree\n", +"T = T + 273;// in K\n", +"e = 1.6 * 10^-19;// in C\n", +"Mu_e = 0.17;// in m^2/v-s\n", +"Mu_e1 = 0.025;// in m^2/v-s\n", +"D_n = ((K * T)/e) * Mu_e;// in m^2/s\n", +"disp(D_n,'The diffusion coefficient of electrons in m^2/s is');\n", +"D_p = ((K * T)/e) * Mu_e1;// in m^2/s\n", +"disp(D_p,'The diffusion coefficient of holes in m^2/s is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_5: Diffusion_length.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Mu_n = 0.15;// in m^2/v-s\n", +"K = 1.38 * 10^-23; // in J/K\n", +"T = 300;// in K\n", +"del_n = 10^20;// in per m^3\n", +"Toh_n = 10^-7;// in s\n", +"e = 1.6 * 10^-19;// in C\n", +"D_n = Mu_n * ((K * T)/e);// in m^2/s\n", +"disp(D_n,'The diffusion coefficient in m^2/s is');\n", +"L_n = sqrt(D_n * Toh_n);// in m \n", +"disp(L_n,'The Diffusion length in m is');\n", +"J_n = (e * D_n * del_n)/L_n;// in A/m^2\n", +"disp(J_n,'The diffusion current density in A/m^2 is'); \n", +"// Note : The value of diffusion coefficient in the book is wrong.\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_6: Concentration_of_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Sigma = 0.1;// in (ohm-m)^-1\n", +"Mu_n = 1300;\n", +"n_i = 1.5 * 10^10;\n", +"q = 1.6 * 10^-19;// in C\n", +"n_n = Sigma/(Mu_n * q);// in electrons/cm^3\n", +"disp(n_n*10^6,'The concentration of electrons per m^3 is');\n", +"p_n = (n_i)^2/n_n;// in per cm^3\n", +"p_n = p_n * 10^6;// in perm^3\n", +"disp(p_n,'The concentration of holes per m^3 is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_7: Electron_transit_time.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Mu_e = 0.13;// in m^2/v-s\n", +"Mu_h = 0.05;// in m^2/v-s\n", +"Toh_h = 10^-6;// in s\n", +"L = 100;// in µm\n", +"L = L * 10^-6;// in m\n", +"V = 2;// in V\n", +"t_n =L^2/(Mu_e * V);// in s\n", +"disp(t_n,'Electron transit time in seconds is');\n", +"p_g = (Toh_h/t_n) * (1 + Mu_h/Mu_e);//photo conductor gain \n", +"disp(p_g,'Photo conductor gain is');\n", +"\n", +"// Note: There is a calculation error to evaluate the value of t_n. So the answer in the book is wrong" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_8: Resistivity_of_intrinsic_Ge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"n_i = 2.5 * 10^13;\n", +"Mu_n = 3800;\n", +"Mu_p = 1800;\n", +"q = 1.6 * 10^-19;// in C\n", +"Sigma = n_i * (Mu_n + Mu_p) * q;// in (ohm-cm)^-1\n", +"Rho = 1/Sigma;// in ohm-cm\n", +"Rho= round(Rho);\n", +"disp(Rho,'The resistivity of intrinsic germanium in ohm-cm is');\n", +"N_D = 4.4 * 10^22/(1*10^8);// in atoms/cm^3\n", +"Sigma_n = N_D * Mu_n * q;// in (ohm-cm)^-1\n", +"Rho_n = 1/Sigma_n;// in ohm-cm\n", +"disp(Rho_n,'If a donor type impurity is added to the extent of 1 atom per 10^8 Ge atoms, then the resistivity drops in ohm-cm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21_9: Hole_and_electron_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 2.21.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"n_i = 10^16;// in /m3\n", +"N_D = 10^22;// in /m^3\n", +"n = N_D;// in /m^3\n", +"disp(n,'Electron concentration per m^3 is');\n", +"p = (n_i)^2/n;// in /m^3\n", +"disp(p,'Hole concentration per m^3 is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb b/Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb new file mode 100644 index 0000000..86810dc --- /dev/null +++ b/Electronic_Devices_by_K_C_Nandi/3-Junction_Properties.ipynb @@ -0,0 +1,831 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Junction Properties" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_10: Forward_biasing_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 2.4 * 10^-14;\n", +"I = 1.5;// in mA\n", +"I=I*10^-3;// in A\n", +"Eta = 1;\n", +"V_T = 26;// in mV\n", +"V_T= V_T*10^-3;// in V\n", +"v =log((I + I_o)/I_o) * V_T;// in V\n", +"disp(v,'The forward biasing voltage across the junction in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_11: Theoretical_diode_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 10;// in nA\n", +"// I = I_o * ((e^(v/(Eta * V_T))) - 1)\n", +"// e^(v/(Eta * V_T)<< 1, so neglecting it\n", +"I = I_o * (-1);// in nA\n", +"disp(I,'The Diode current in nA is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_12: Diode_dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R = 4.5;// in ohm\n", +"I = 44.4;// in mA\n", +"I=I*10^-3;// in A\n", +"V = R * I;// in V\n", +"Eta = 1;\n", +"V_T = 26;//in mV\n", +"V_T=V_T*10^-3;// in V\n", +"I_o = I/((%e^(V/(Eta * V_T))) -1);// in A\n", +"// At\n", +"V = 0.1;// in V\n", +"r_f = (Eta * V_T)/(I_o * ((%e^(V/(Eta * V_T)))-1));// in ohm\n", +"disp(r_f,'The diode dynamic resistance in Ω is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_13: Q_point.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.13\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_D = 10;// in V\n", +"// V_S = i*R_L + V_D\n", +"V_S = V_D;// in V (i * R_L = 0)\n", +"disp(V_S,'when diode is OFF, the voltage in volts is : ');\n", +"R_L = 250;// in ohm\n", +"I = V_S/R_L;// in A\n", +"disp(I*10^3,'when diode is ON, the current in mA is');\n", +"V_D= 0:0.1:10;// in V\n", +"I= (V_S-V_D)/R_L*1000;// in mA\n", +"plot(V_D,I)\n", +"xlabel('V_D in volts');\n", +"ylabel('Current in mA')\n", +"title('DC load line');\n", +"disp('DC load line shown in figure')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_14: AC_resistance_of_a_Ge_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.14\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V = 0.25;// in V\n", +"I_o = 1.2;// in µA\n", +"I_o = I_o * 10^-6;// in A\n", +"V_T = 26;// in mV\n", +"V_T = V_T * 10^-3;// in V\n", +"Eta = 1;\n", +"r = (Eta * V_T)/(I_o * (%e^(V/(Eta * V_T))));// in ohm\n", +"disp(r,'The ac resistance of the diode in ohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_15: Junction_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.15\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t = 4.4 * 10^22;// in total number of atoms/cm^3\n", +"n = 1 * 10^8;// number of impurity\n", +"N_A = t/n;// in atoms/cm^3\n", +"N_A = N_A * 10^6;// in atoms/m^3\n", +"N_D = N_A * 10^3;// in atoms/m^3\n", +"V_T = 26;// in mV\n", +"V_T = V_T * 10^-3;// in V\n", +"n_i = 2.5 * 10^19;// in /cm^3\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'The junction potential in V is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_16: Dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.16\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Eta = 1;\n", +"I_o = 30;// in MuA\n", +"I_o = I_o * 10^-6;// in A\n", +"v = 0.2;// in V\n", +"K = 1.381 * 10^-23;// in J/degree K \n", +"T = 125;// in °C\n", +"T = T + 273;// in K\n", +"q = 1.6 * 10^-19;// in C\n", +"V_T = (K*T)/q;// in V\n", +"r_f = (Eta * V_T)/(I_o * (%e^(v/(Eta * V_T))));// in ohm\n", +"disp(r_f,'The forward dynamic resistance in ohm is');\n", +"r_f1 = (Eta * V_T)/(I_o * (%e^(-(v)/(Eta * V_T))));// in ohm\n", +"disp(r_f1*10^-3,'The Reverse dynamic resistance in kΩ is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_17: Width_of_the_depletion_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.17\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"N_A = 3 * 10^20;// in /m^3\n", +"A = 1;// in µm^2\n", +"A = A * 10^-6;// in m^2\n", +"V = -10;// in V\n", +"V_J = 0.25;// in V\n", +"V_B = V_J - V;// in V\n", +"epsilon_o = 8.854;// in pF/m\n", +"epsilon_o = epsilon_o * 10^-12;// in F/m\n", +"epsilon_r = 16;\n", +"epsilon = epsilon_o * epsilon_r;\n", +"W = sqrt((V_B * 2 * epsilon)/(q * N_A));// in m \n", +"disp(W*10^6,'The width of depletion layer in µm is');\n", +"C_T = (epsilon * A)/W;// in pF\n", +"disp(C_T*10^12,'the space charge capacitance in pF is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_18: Barrier_capacitance_of_a_Ge_pn_junction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.18\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"W = 2 * 10^-4;// in cm\n", +"W = W * 10^-2;// in m\n", +"A = 1;// in mm^2\n", +"A = A * 10^-6;// in m^2\n", +"epsilon_r = 16;\n", +"epsilon_o = 8.854 * 10^-12;// in F/m\n", +"epsilon = epsilon_r * epsilon_o;\n", +"C_T = (epsilon * A)/W;// in F\n", +"disp(C_T*10^12,'The barrier capacitance in pF is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_19: Diameter.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.19\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"C_T = 100;// in pF\n", +"C_T=C_T*10^-12;// in F\n", +"epsilon_r = 12;\n", +"epsilon_o = 8.854 * 10^-12;// in F/m\n", +"epsilon = epsilon_r * epsilon_o;\n", +"Rho_p = 5;// in ohm-cm\n", +"Rho_p = Rho_p * 10^-2;// in ohm-m\n", +"V_j = 0.5;// in V\n", +"V = -4.5;// in V\n", +"Mu_p = 500;// in cm^2\n", +"Mu_p = Mu_p * 10^-4;// in m^2\n", +"Sigma_p = 1/Rho_p;// in per ohm-m\n", +"qN_A = Sigma_p/ Mu_p;\n", +"V_B = V_j - V;\n", +"W = sqrt((V_B * 2 * epsilon)/qN_A);// in m\n", +"//C_T = (epsilon * A)/W;\n", +"A = (C_T * W)/ epsilon;// in m\n", +"D = sqrt(A * (4/%pi));// in m\n", +"D = D * 10^3;// in mm\n", +"disp(D,'The diameter in mm is');\n", +" " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_1: Contect_difference_of_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// EXa 3.10.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"t = 4.4 * 10^22;// total number of Ge atoms/cm^3\n", +"n = 1 * 10^8;// number of impurity atoms\n", +"N_A = t/n;// in atoms/cm^3\n", +"N_A = N_A * 10^6;// in atoms/m^3\n", +"N_D = N_A * 10^3;// in atoms/m^3\n", +"n_i = 2.5 * 10^13;// in atoms/cm^3\n", +"n_i = n_i * 10^6;// in atoms/m^3\n", +"V_T = 26;//in mV\n", +"V_T= V_T*10^-3;// in V\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'The contact potential in V is');\n", +"// Part (b)\n", +"t = 5* 10^22;// total number of Si atoms/cm^3\n", +"N_A = t/n;// in atoms/cm^3\n", +"N_A = N_A * 10^6;// in atoms/m^3\n", +"N_D = N_A * 10^3;// in atoms/m^3\n", +"n_i = 1.5 * 10^10;// in atoms/cm^3\n", +"n_i = n_i * 10^6;// in atoms/m^3\n", +"V_T = 26;//in mV\n", +"V_T= V_T*10^-3;// in V\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'The contact potential in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_20: Temperature_of_junction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.20\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"Mu_p = 500;// in cm^2/V-sec\n", +"Rho_p = 3.5;// in ohm-cm\n", +"Mu_n = 1500;// in cm^2/V-sec\n", +"Rho_n = 10;// in ohm-cm\n", +"N_A = 1/(Rho_p * Mu_p * q);// in /cm^3\n", +"N_D = 1/(Rho_n * Mu_n * q);// in /cm^3\n", +"V_J = 0.56;// in V\n", +"n_i = 1.5 * 10^10;// in /cm^3\n", +"V_T = V_J/log((N_A * N_D)/(n_i)^2);// in V\n", +"// V_T = T/11600\n", +"T = V_T * 11600;// in K\n", +"T = T - 273;// in °C\n", +"disp(T,'The Temperature of junction in °C is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_21: Voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.21\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_T = 26;// in mV\n", +"V_T = V_T * 10^-3;// in V\n", +"Eta = 1;\n", +"// I = -90% for Io, so\n", +"IbyIo= 0.1;\n", +"// I = I_o * ((e^(v/(Eta * V_T)))-1)\n", +"V = log(IbyIo) * V_T;// in V\n", +"disp(V,'The reverse bias voltage in volts is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_22: Reverse_saturation_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.22\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"R = 5;// in ohm\n", +"I = 50;// in mA\n", +"I=I*10^-3;// in A\n", +"V = R * I;// in V\n", +"Eta = 1;\n", +"V_T = 26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"I_o = I/((%e^(V/(Eta * V_T))) - 1);// in A\n", +"disp(I_o*10^6,'Reverse saturation current in µA is');\n", +"v1 = 0.2;// in V\n", +"r = (Eta * V_T)/(I_o * (%e^(v1/(Eta * V_T))));// in ohm\n", +"disp(r,'Dynamic resistance of the diode in Ω is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_2: Height_of_the_potential_energy_barrier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_T = 26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"n_i = 2.5 * 10^13;\n", +"Sigma_p = 1;\n", +"Sigma_n = 1;\n", +"Mu_n = 3800;\n", +"q = 1.6 * 10^-19;// in C\n", +"Mu_p = 1800;\n", +"N_A = Sigma_p/(2* q * Mu_p);// in /cm^3\n", +"N_D = Sigma_n /(q * Mu_n);// in /cm^3\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'For Ge the height of the energy barrier in V is');\n", +"// For Si p-n juction\n", +"n_i = 1.5 * 10^10;\n", +"Mu_n = 1300;\n", +"Mu_p = 500;\n", +"N_A = Sigma_p/(2* q * Mu_p);// in /cm^3\n", +"N_D = Sigma_n /(q * Mu_n);// in /cm^3\n", +"V_J = V_T * log((N_A * N_D)/(n_i)^2);// in V\n", +"disp(V_J,'For Si p-n junction the height of the energy barrier in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_3: Ratio_of_current_for_a_forward_bias_to_reverse_bias.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 3.10.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Eta = 1;\n", +"V_T = 26;// in mV\n", +"V_T= V_T*10^-3;// in V\n", +"// I = I_o * (%e^(V/(Eta*V_T)) - 1) and I = -(0.9) * I_o;\n", +"V= log(1-0.9)*V_T;// in V\n", +"disp(V,'The voltage in volts is : ')\n", +"// Part (ii)\n", +"V1=0.05;// in V\n", +"V2= -0.05;// in V\n", +"ratio= (%e^(V1/(Eta*V_T))-1)/(%e^(V2/(Eta*V_T))-1)\n", +"disp(ratio,'The ratio of the current for a forward bias to reverse bias is : ')\n", +"// Part (iii)\n", +"Io= 10;// in µA\n", +"Io=Io*10^-3;// in mA\n", +"//For \n", +"V=0.1;// in V\n", +"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n", +"disp(I,'For v=0.1 V , the value of I in mA is : ')\n", +"//For \n", +"V=0.2;// in V\n", +"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n", +"disp(I,'For v=0.2 V , the value of I in mA is : ')\n", +"//For \n", +"V=0.3;// in V\n", +"I = Io * (%e^(V/(Eta*V_T)) - 1);// in mA\n", +"disp(I*10^-3,'For v=0.3 V , the value of I in A is : ')\n", +"disp('From three value of I, for small rise in forward voltage, the diode current increase rapidly')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_4: Anticipated_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 3.10.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"// Part (i)\n", +"T1= 25;// in °C\n", +"T2= 80;// in °C\n", +"// Formula Io2= Io1*2^((T2-T1)/10)\n", +"AntiFactor= 2^((T2-T1)/10);\n", +"disp(round(AntiFactor),'Anticipated factor for Ge is : ')\n", +"// Part (ii)\n", +"T1= 25;// in °C\n", +"T2= 150;// in °C\n", +"AntiFactor= 2^((T2-T1)/10);\n", +"disp(round(AntiFactor),'Anticipated factor for Si is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_5: Leakage_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 3.10.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I=5;// in µA\n", +"V=10;// in V\n", +"T1= 0.11;// in °C^-1\n", +"T2= 0.07;// in °C^-1\n", +"// Io+I_R=I (i)\n", +"// dI_by_dT= dIo_by_dT (ii)\n", +"// 1/Io*dIo_by_dT = T1 and 1/I*dI_by_dT = T2, So\n", +"Io= T2*I/T1;// in µA\n", +"I_R= I-Io;// in µA\n", +"R= V/I_R;// in MΩ\n", +"disp(R,'The leakage resistance in MΩ is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_6: Dynamic_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 3.10.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"Eta = 1;\n", +"T = 125;// in °C\n", +"T = T + 273;// in K\n", +"V_T = 8.62 * 10^-5 * 398;// in V\n", +"I_o = 30;// in µA\n", +"I_o= I_o*10^-6;// in A\n", +"v = 0.2;// in V\n", +"r_f = (Eta * V_T)/(I_o * %e^(v/(Eta* V_T)));// in ohm\n", +"disp(r_f,'The dynamic resistance in the forward direction in ohm is ');\n", +"r_r = (Eta * V_T)/(I_o * %e^(-v/(Eta* V_T)));// in ohm\n", +"disp(r_r*10^-3,'The dynamic resistance in the reverse direction in kohm is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_7: Barrier_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"epsilon = 16/(36 * %pi * 10^11);// in F/cm\n", +"A = 1 * 10^-2;\n", +"W = 2 * 10^-4;\n", +"C_T = (epsilon * A)/W;// in F\n", +"disp(C_T*10^12,'The barrier capacitance in pF is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_8: Width_of_the_depletion_layer.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 3.10.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"A = 1;// in mm^2\n", +"A = A * 10^-6;// in m^2\n", +"N_A = 3 * 10^20;// in atoms/m^3\n", +"q = 1.6 *10^-19;// in C\n", +"V_o = 0.2;// in V\n", +"epsilon_r=16;\n", +"epsilon_o= 8.854*10^-12;// in F/m\n", +"epsilon=epsilon_r*epsilon_o;\n", +"// Part (a)\n", +"V=-10;// in V\n", +"// V_o - V = 1/2*((q * N_A )/epsilon) * W^2\n", +"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n", +"C_T1 = (epsilon * A)/W;// in F\n", +"disp(W*10^6,'The width of the depletion layer for an applied reverse voltage of 10V in µm is ');\n", +"// Part (b)\n", +"V=-0.1;// in V\n", +"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n", +"C_T2 = (epsilon * A)/W;// in F\n", +"disp(W*10^6,'The width of the depletion layer for an applied reverse voltage of 0.1V in µm is ');\n", +"// Part (c)\n", +"V=0.1;// in V\n", +"W = sqrt(((V_o - V) * 2 * epsilon)/(q * N_A));// m\n", +"disp(W*10^6,'The width of the depletion layer for an applied for a forward bias of 0.1V in µm is ');\n", +"// Part (d)\n", +"disp(C_T1*10^12,'The space charge capacitance for an applied reverse voltage of 10V in pF is');\n", +"disp(C_T2*10^12,'The space charge capacitance for an applied reverse voltage of 0.1V in pF is');\n", +"\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10_9: Current_in_the_junction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 3.10.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_o = 1.8 * 10^-9;// A\n", +"v = 0.6;// in V\n", +"Eta = 2;\n", +"V_T = 26;// in mV\n", +"V_T=V_T*10^-3;// in V\n", +"I = I_o *(%e^(v/(Eta * V_T)));// in A\n", +"disp(I*10^3,'The current in the junction in mA is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb b/Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb new file mode 100644 index 0000000..b4ce7a6 --- /dev/null +++ b/Electronic_Devices_by_K_C_Nandi/4-Junction_Contd.ipynb @@ -0,0 +1,190 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Junction Contd" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12_1: Pinch_off_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.12.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"q = 1.6 * 10^-19;// in C\n", +"N_D = 10^15;// in electrons/cm^3\n", +"N_D = N_D * 10^6;// in electrons/m^3\n", +"epsilon_r = 12;\n", +"epsilon_o = (36 * %pi * 10^9)^-1;\n", +"epsilon = epsilon_o * epsilon_r;\n", +"a = 3 * 10^-4;// in cm\n", +"a = a * 10^-2;// in m\n", +"V_P = (q * N_D * a^2)/( 2 * epsilon);// in V\n", +"disp(V_P,'The Pinch off voltage in V is');\n", +"// V_GS = V_P * (1-(b/a))^2\n", +"b = (1-0.707) *a;// in m\n", +"disp(b*10^6,'The value of b in µm is : ')\n", +"disp('Hence the channel width has been reduced to about one third of its value for V_GS = 0');//\n", +"// Note : The unit of b in the book is wrong since the value of b is calculated in µm." + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12_2: Value_of_VGS_and_VDS.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.12.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_DSS = 8;// in mA\n", +"V_P = -4;// in V\n", +"I_D = 3;// in mA\n", +"V_GS = V_P * (1 - sqrt(I_D/I_DSS));// in V\n", +"disp(V_GS,'The value of V_GS in V is');\n", +"V_DS = V_GS - V_P;// in V\n", +"disp(V_DS,'The value of V_DS in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12_3: Drain_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.12.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_P = -4;// in V\n", +"I_DSS = 9;// in mA\n", +"I_DSS = I_DSS * 10^-3;// in A\n", +"V_GS = -2;// in V\n", +"I_D = I_DSS * ((1 - (V_GS/V_P))^2);// in A\n", +"disp(I_D*10^3,'The drain current in mA is ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12_4: Value_of_transconductance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 4.12.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_DSS = 12;// in mA\n", +"I_DSS = I_DSS * 10^-3;// in A\n", +"V_P = -(6);// in V\n", +"V_GS = -(1);// in V\n", +"g_mo = (-2 * I_DSS)/V_P;// in A/V\n", +"g_m = g_mo * (1 - (V_GS/V_P));// in S\n", +"disp(g_m*10^3,'The value of transconductance in mS is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12_5: Transconductance_and_drain_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 4.12.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_DSS = 10;// in mA \n", +"I_DSS = I_DSS * 10^-3;// in A\n", +"V_P = -(5);// in V\n", +"V_GS = -(2.5);// in V\n", +"g_m = ((-2 * I_DSS)/V_P) * (1 -(V_GS/V_P));// in S\n", +"g_m = g_m * 10^3;// in mS\n", +"disp(g_m,'The Transconductance in mS is');\n", +"I_D = I_DSS * ((1 - (V_GS/V_P))^2);// in A\n", +"disp(I_D*10^3,'The drain current in mA is'); " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb b/Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb new file mode 100644 index 0000000..0aaff66 --- /dev/null +++ b/Electronic_Devices_by_K_C_Nandi/5-Bipolar_Junction_Transistors.ipynb @@ -0,0 +1,787 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Bipolar Junction Transistors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_1a: Base_and_emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.10.1(a)\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"beta_dc = 90;\n", +"I_C = 15;// in mA\n", +"I_C = I_C * 10^-3;// in A\n", +"I_B = I_C/beta_dc;// in A\n", +"disp(I_B*10^6,'The base current in µA is');\n", +"I_E = I_C + I_B;// in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The Emitter current in mA is');\n", +"alpha_dc = beta_dc/(1+beta_dc);\n", +"disp(alpha_dc,'The value of alpha_dc is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_1: Emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.10.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita = 50;\n", +"I_B= 20;// in µA\n", +"I_B=I_B*10^-6;// in A\n", +"I_C= bita*I_B;// in A\n", +"I_E= I_C+I_B;// in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The Emitter current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_3: Change_in_base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.10.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_ic = 1.8;// in mA\n", +"del_ie = 1.89;// in mA\n", +"alpha = del_ic / del_ie;\n", +"bita = alpha/(1 - alpha);\n", +"del_ib = del_ic/bita;// in mA\n", +"del_ib = del_ib * 10^3;// in µA\n", +"disp(del_ib,'The change in I_B in µA is'); \n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_4: Transistor_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.10.4\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CC = 10;// in V\n", +"R_C = 3;// in k Ω\n", +"R_C= R_C*10^3;// in Ω\n", +"bita = 100;\n", +"I_CO = 20;// in nA\n", +"I_CO = I_CO * 10^-9;// in A\n", +"V_BB = 5;// in V\n", +"R_B = 200;// in kΩ\n", +"R_B= R_B*10^3;// in Ω\n", +"V_BE = 0.7;// in V\n", +"// Applying KVL to the base circuit, V_BB= I_B*R_B+V_BE\n", +"I_B = (V_BB - V_BE)/R_B;// in A\n", +"disp(I_B*10^6,'The base current in µA is');\n", +"I_C = (bita * I_B) + I_CO;// in A\n", +"disp(I_C*10^3,'The collector current in mA is');\n", +"I_E = I_C + I_B;// in A\n", +"disp(I_E*10^3,'Emitter current in mA is');\n", +"V_CE = V_CC - (I_C * R_C);// in V\n", +"disp(V_CE,'Collector emitter voltage in V is');\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_5: Collector_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.10.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita = 100;\n", +"I_CBO = 4;// in µA\n", +"I_B = 40;// in µA\n", +"I_C = (bita * I_B) + ((1+bita) * I_CBO);// in µA\n", +"I_C = I_C * 10^-3;// in msA\n", +"disp(I_C,'The collector current in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_6: Current_gain.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.10.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"del_IC = 1 * 10^-3;// in A\n", +"del_IB = 10 * 10^-6;// in A\n", +"CurrentGain= del_IC/del_IB;\n", +"disp(CurrentGain,'The current gain is');\n", +"del_IC= del_IC*10^3;// in mA\n", +"del_IB= del_IB*10^6;// in µA\n", +"I_B=0:0.1:50;// in µA\n", +"I_C= I_B/del_IB+del_IC;// in mA\n", +"plot(I_B,I_C)\n", +"xlabel('Base current in µA');\n", +"ylabel('Collector current in mA')\n", +"title('Transfer Characteristics ')\n", +"disp('Transfer Characteristics is shown in figure')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10_7: Value_of_alphaDC_and_bitaDC.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.10.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"I_CEo = 21;// in µA\n", +"I_CBO = 1.1;// in µA\n", +"beta_dc = (I_CEo/I_CBO) - 1;\n", +"disp(beta_dc,'Value of beta_dc is');\n", +"alpha_dc = beta_dc/(1 + beta_dc);\n", +"disp(alpha_dc,'The value of alpha_dc is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_10: Minimum_value_of_RC_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.13.10\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_ECsat= 0.2;// in V\n", +"V_CC= 10;// in V\n", +"V_EBsat= 0.8;// in V\n", +"\n", +"// Part (i)\n", +"bita= 100;\n", +"R_B= 220;// in kΩ\n", +"// Applying KVL to collector circuit, V_CC= V_EC+ICRC\n", +"ICRC= V_CC-V_ECsat;// in V\n", +"// Applying KVL to input loop, V_CC= V_EBsat+I_B*R_B (i)\n", +"I_B= (V_CC-V_EBsat)/R_B;// in mA\n", +"I_C= bita*I_B;// in mA\n", +"R_Cmin= ICRC/I_C;// in kΩ\n", +"disp(R_Cmin,'The minimum value of R_C in kΩ is : ')\n", +"// Part (ii)\n", +"R_C= 1.2;// in kΩ\n", +"I_Csat= ICRC/R_C;// in mA\n", +"I_B= I_Csat/bita;// in mA\n", +"// From eq (i)\n", +"R_B= (V_CC-V_EBsat)/I_B;// in kΩ\n", +"disp(R_B,'The maximum value of R_B in kΩ is : ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_11: Value_of_RE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.11\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita= 100;\n", +"V_BEsat= 0.8;// in V\n", +"V_CEsat= 0.2;// in V\n", +"V_BEact= 0.7;// in V\n", +"V_CC = 10;// in V\n", +"R_E = 1;// in kΩ\n", +"R_C = 2;// in kΩ\n", +"R_B= 100;// in kΩ\n", +"bita=100;\n", +"alpha= bita/(1+bita);\n", +"// Applying KVL to collector circuit\n", +"// V_CC= I_Csat*R_C +V_CE +R_E*I_E\n", +"// but I_E= alpha*I_Csat\n", +"I_Csat= (V_CC-V_CEsat)/(R_C+R_E*alpha);// in mA\n", +"I_Bmin= I_Csat/bita;// in mA\n", +"// Applying KVL to base loop\n", +"// V_CC= I_B*R_B +V_BEsat +I_E*R_E\n", +"// but I_E= I_Csat+I_B\n", +"I_B= (V_CC-V_BEsat-I_Csat*R_E)/(R_B+R_E);// in mA\n", +"disp(I_B*10^3,'The value of I_B in µA is : ')\n", +"disp(I_Bmin*10^3,'The minimum value of I_B in µA is : ')\n", +"if I_B>I_Bmin then\n", +" disp('Since the value of I_B is greater than the value of I_Bmin, ')\n", +" disp('Hence the transistor is in saturation .')\n", +"end\n", +"I_E= (1+bita)*I_Bmin;// in mA\n", +"R_E= (V_CC-V_BEact-I_Bmin*R_B)/I_E;// in kΩ\n", +"disp(R_E,'The value of R_E in kΩ is : ')\n", +"disp('So R_E should be greater than this value in order to bring the transistor just out of saturation ')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_12: Collector_voltage_and_minimum_value_of_bita.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.13.12\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_CC = 9;// in V\n", +"V_BE = 0.8;// in V\n", +"V_CE = 0.2;// in V\n", +"R_B = 50;// in kΩ\n", +"R_C=2;// in kΩ\n", +"R_E = 1;// in kΩ\n", +"bita=70;\n", +"// Applying KVL to input loop, V_CC= I_B*R_B +V_BE +I_E*R_E\n", +"// V_CC- V_BE= (R_B+R_E)*I_B + R_E*I_C (i)\n", +"// Applying KVL to output loop, V_CC= R_C*I_C +V_CE +I_C*R_E +I_B*R_E\n", +"//I_B = ((V_CC- V_CE)-(R_C+R_E)*I_C)/R_E (ii)\n", +"// From eq (i) and (ii)\n", +"I_C= ( (V_CC- V_BE)-(R_B+R_E)* (V_CC- V_CE)/R_E)/(1-(R_B+R_E)*(R_C+R_E));// in mA\n", +"I_B = ((V_CC- V_CE)-(R_C+R_E)*I_C)/R_E// in mA\n", +"I_Bmin= I_C/bita;// in mA\n", +"if I_B>I_Bmin then\n", +" disp('Since the value of I_B ('+string(I_B)+' mA) is greater than the value of I_Bmin ('+string(I_Bmin)+' mA)')\n", +" disp('So the transistor is in saturation ')\n", +"end\n", +"V_C= V_CC-I_C*R_C;// in V\n", +"disp(V_C,'The value of collector voltage in volts is : ')\n", +"bita= I_C/I_B;\n", +"disp(bita,'The minimum value of bita that will change the state of the trasistor is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_1: Value_of_alphaDC_and_emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.13.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"I_CBO = 3;//in µA\n", +"I_CBO= I_CBO*10^-3;// in mA \n", +"I_C= 15;// in mA\n", +"// But it is given that I_C= 99.5% of I_E, SO\n", +"I_E= I_C/99.5*100;// in mA\n", +"alpha_dc= I_C/I_E;\n", +"disp(alpha_dc,'The value of alpha_dc is : ')\n", +"disp(I_E,'The value of I_E in mA is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_2: Base_and_emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"alpha_dc = 0.99;\n", +"I_CBO = 10;// in µA\n", +"I_CBO= I_CBO*10^-6;// in A\n", +"I_E = 10;// in mA\n", +"I_E= I_E*10^-3;// in A\n", +"I_C = (alpha_dc * I_E) + I_CBO;// in A\n", +"disp(I_C*10^3,'The value of I_C in mA is');\n", +"I_B = I_E - I_C;// in A\n", +"I_B = I_B * 10^6;// in µA\n", +"disp(I_B,'The value of I_B in µA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_3: Base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.13.3\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"alpha_dc = 0.99;\n", +"I_C = 6;// in mA\n", +"I_C= I_C*10^-3;// in A\n", +"I_CBO = 15;// in µA\n", +"I_CBO= I_CBO*10^-6;// in A\n", +"I_E = (I_C - I_CBO)/alpha_dc;// in A\n", +"I_B = I_E - I_C;// in A \n", +"disp(I_B*10^6,'The value of I_B in µA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_5: Emitter_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.5\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"alpha_dc = 0.98;\n", +"I_CBO = 12;// in µA\n", +"I_CBO = I_CBO * 10^-6;// in A\n", +"I_B = 120;// in µA\n", +"I_B = I_B * 10^-6;// in A\n", +"beta_dc = alpha_dc/(1-alpha_dc);\n", +"I_E = ((1 + beta_dc) * I_B) + ((1 + beta_dc) * I_CBO);//in A\n", +"I_E = I_E * 10^3;// in mA\n", +"disp(I_E,'The value of I_E in mA is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_6: Region_of_operation_of_Si_transistor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.6\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita= 100;\n", +"V_BEsat= 0.8;// in V\n", +"V_CEsat= 0.2;// in V\n", +"V_BEact= 0.7;// in V\n", +"V_CC = 10;// in V\n", +"V_BB=5;// in V\n", +"R_E = 2;// in kΩ\n", +"R_C = 3;// in kΩ\n", +"R_B= 50;// in kΩ\n", +"// Applying KVL to collector loop\n", +"// V_CC= I_Csat*R_C +V_CEsat +I_E*R_E and I_E= I_Csat+I_B, So\n", +"//I_B= ((V_CC-V_CEsat)-(R_C+R_E)*I_Csat)/R_E; (i)\n", +"// Applying KVL to base loop\n", +"// V_BB-I_B*R_B -V_BEsat-I_E*R_E =0 and I_E= I_Csat+I_B, So\n", +"//V_BB-V_BEsat= R_E*I_Csat + (R_B+R_E)*I_B (ii)\n", +"// From eq (i) and (ii)\n", +"I_B = ((V_BB-V_BEsat)*5- (V_CC-V_CEsat)*2) / ((R_B+R_E)*5 - R_E*2) ;// in mA\n", +"I_Csat= ((V_CC-V_CEsat)-R_E*I_B)/(R_C+R_E);// in mA\n", +"I_Bmin= I_Csat/bita;// in mA\n", +"if I_B<I_Bmin then\n", +" disp('Since the value of I_B ('+string(I_B*10^3)+'µA) is less than the value of I_Bmin ('+string(I_Bmin*10^3)+'µA)');\n", +" disp('So the transistor is not in the saturation region. But it is conducting hence it can not be in cutoff.')\n", +" disp('Therefore the transistor is in the active region')\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_7: Value_of_IB_IC_and_VCE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.7\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"bita= 100;\n", +"V_BEsat= 0.8;// in V\n", +"V_CEsat= 0.2;// in V\n", +"V_BEact= 0.7;// in V\n", +"V_CC = 10;// in V\n", +"V_BB=5;// in V\n", +"R_E = 2;// in kΩ\n", +"R_C = 3;// in kΩ\n", +"R_B= 50;// in kΩ\n", +"// Applying KVL to input loop\n", +"// V_BB= I_B*R_B+(1+bita)*I_B*R_E+V_BEact or \n", +"I_B= (V_BB-V_BEact)/(R_B+(1+bita)*R_E);// in mA\n", +"I_C= bita*I_B;// in mA\n", +"// Applying KVL to collector circuit\n", +"// V_CC= I_Csat*R_C +V_CEsat +(I_C+I_B)*R_E\n", +"V_CEact= V_CC-I_B*R_E-I_C*(R_C+R_E);// in V\n", +"disp(I_B*10^3,'The value of I_B in µA is : ')\n", +"disp(I_C,'The value of I_C in mA is : ')\n", +"disp(V_CEact,'The value of V_CE in volts is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_8: Region_of_operation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.8\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"bita = 100;\n", +"V_CEsat = 0.2;// in V\n", +"R_B = 150;// in kohm\n", +"R_C = 2;// in kohm\n", +"V_CC = 10;// in V\n", +"V_BEsat = 0.8;// in V\n", +"I_B = (V_CC - V_BEsat)/R_B;// in mA\n", +"I_C = (V_CC - V_CEsat)/R_C;// in mA\n", +"I_Bmin = I_C/bita;// in mA\n", +"if I_B>I_Bmin then\n", +" disp('Since the value of I_B ('+string(I_B*10^3)+'µA) is greater than the value of I_Bmin ('+string(I_Bmin*10^3)+'µA)');\n", +" disp('So the transistor is in the saturation region.')\n", +"end" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13_9: Value_of_VBB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Exa 5.13.9\n", +"clc;\n", +"clear;\n", +"close;\n", +"//Given data\n", +"bita = 100;\n", +"V_CE = 0.2;//in V\n", +"V_BE = 0.8;// in V\n", +"R_C= 500;// in Ω\n", +"R_B= 44*10^3;// in Ω\n", +"R_E= 1*10^3;// in Ω\n", +"V_CC= 15;// in V\n", +"V_GE= -15;// in V\n", +"// Applying KVL to collector circuit\n", +"// V_CC-V_GE - I_Csat*R_C-V_CE-I_E*R_E=0, but I_Csat= bita*I_Bmin and I_E= 1+bita\n", +"I_Bmin= (V_CC-V_GE-V_CE)/(R_C*bita+(1+bita)*R_E);// in A\n", +"// Applying KVL to the base emitter circuit\n", +"// V_BB-I_Bmin*R_B-V_BE-I_E*R_E + V_CC=0\n", +"V_BB= I_Bmin*R_B + V_BE + (1+bita)*I_Bmin*R_E-V_CC;// in V\n", +"disp(I_Bmin*10^3,'The value of I_B(min) in mA is : ')\n", +"disp(V_BB,'The value of V_BB in volts is : ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.21_1: Inductor_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.21.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"O_V = 5;// output voltage in V\n", +"V_D = 1.5;//voltage drop in V\n", +"R = (O_V - V_D)/O_V;\n", +"R = R * 10^3;// in ohm\n", +"disp(R,'The resistance value in Ω is');\n", +"disp('As this is not standard value, use R=680 Ω which is a standard value')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8_1: Value_of_collector_current_and_VCB.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.8.1\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"V_EE = 8;// in V\n", +"V_BE = 0.7;// in V\n", +"R_E = 1.5;// in k ohm\n", +"I_E = (V_EE - V_BE)/R_E;// in mA\n", +"I_C = I_E;// in mA\n", +"disp(I_C,'The value of I_C in mA is');\n", +"V_CC = 18;// in V\n", +"R_C = 1.2;// in kΩ\n", +"V_CB = V_CC - (I_C * R_C);// in V\n", +"disp(V_CB,'The value of V_CB in V is');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8_2: Base_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Exa 5.8.2\n", +"clc;\n", +"clear;\n", +"close;\n", +"// Given data\n", +"alpha = 0.9;\n", +"I_E = 1;// mA\n", +"I_C = alpha * I_E;// in mA\n", +"I_B = I_E - I_C;// in mA\n", +"disp(I_B,'The value of base current in mA is');" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |