summaryrefslogtreecommitdiff
path: root/Electric_Machinery_by_A_E_Fitzgerald
diff options
context:
space:
mode:
Diffstat (limited to 'Electric_Machinery_by_A_E_Fitzgerald')
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb228
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb91
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb136
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb239
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb187
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb64
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb206
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb82
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb132
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb58
-rw-r--r--Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb114
11 files changed, 1537 insertions, 0 deletions
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb
new file mode 100644
index 0000000..8a13bd6
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb
@@ -0,0 +1,228 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Magnetic Circuits and Magnetic Materials"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Finding_reluctances_and_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding reluctances and flux\n",
+"\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"U_r=70000;\n",
+"U_o=4*%pi*10^-7;\n",
+"\n",
+"function [R_c]=reluctance_core(l,A)\n",
+" R_c=l/(U_r*U_o*A);\n",
+"endfunction\n",
+"disp(reluctance_core(.3,9*10^-4),'Reluctance of the core=')\n",
+"\n",
+"function [R_g]=reluctance_gap(g,A)\n",
+" R_g=g/(U_o*A);\n",
+"endfunction\n",
+"disp(reluctance_gap(5*10^-4,9*10^-4),'Reluctance of the gap=')\n",
+"\n",
+"phy=1.0*9*10^-4;\n",
+"disp(phy,'flux=')\n",
+"\n",
+"i=phy*(reluctance_core(.3,9*10^-4)+reluctance_gap(5*10^-4,9*10^-4))/500;\n",
+"disp(i,'current=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Finding_air_gap_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding air gap flux\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"N=1000;\n",
+"I=10;\n",
+"U_o=4*%pi*10^-7;\n",
+"A_g=.2;\n",
+"g=.01;\n",
+"phy=(N*I*U_o*A_g)/(2*g);\n",
+"disp(phy,'flux=')\n",
+"B_g=phy/A_g;\n",
+"disp(B_g,'flux density=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4b: Finding_Induced_voltage_of_a_magnetic_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding Induced voltage of a magnetic circuit \n",
+"\n",
+"close;\n",
+"clc;\n",
+"syms t\n",
+"\n",
+"w=2*%pi*60//angular frequency\n",
+"\n",
+"B=1.0*sin(w*t);\n",
+"N=500;\n",
+"A=9*10^-4;\n",
+"e=N*A*diff(B,t);\n",
+"\n",
+"disp(e,'Induced Voltage = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Finding_current_from_dc_magnetization_curve.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding current from dc magnetization curve\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"H_c=12;//from fig at B_c=1 T\n",
+"l_c=0.3;\n",
+"F_c=H_c*l_c;//mmf of core path\n",
+"F_g=(5*10^-4)/(4*%pi*10^-7);//mmf of air gap\n",
+"i=(F_c+F_g)/500;//current in Amperes\n",
+"disp(i,'current=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6a: Finding_applied_voltage_to_the_windinds_with_magnetic_core.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Finding applied voltage to the windinds with magnetic core\n",
+"close;\n",
+"clc;\n",
+"syms t\n",
+"\n",
+"w=377;//angular frequency\n",
+"\n",
+"B=1.5*sin(w*t);\n",
+"N=200; \n",
+"A=16*10^-4;//area\n",
+"a=0.94;//steel occupies 0.94 times the gross core volume\n",
+"e=N*A*a*diff(B,t);\n",
+"\n",
+"disp(e,'applied Voltage = ');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Finding_minimum_magnet_volume.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding minimum magnet volume\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"\n",
+"function [A_m]=area(B_g,B_m)\n",
+" A_m=2*B_g/B_m;\n",
+"endfunction\n",
+"a=area(0.8,1.0);//from fig\n",
+"L_m=-0.2*0.8/(4*%pi*10^-7*-40*10^3);\n",
+"\n",
+"volume=a*L_m;//minimum magnet volume\n",
+"disp(volume,'minimum magnet volume in cm cube');\n",
+"\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb
new file mode 100644
index 0000000..3b9d04a
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb
@@ -0,0 +1,91 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Variable Reluctance Machines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1a: Finding_maximum_inductance_for_phase.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding maximum inductance for phase \n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"N=100;\n",
+"U_o=4*%pi*10^-7;\n",
+"alpha=%pi/3;\n",
+"R=3.8*10^-2;\n",
+"D=0.13;\n",
+"g=2.54*10^-4;\n",
+"L_max=N^2*U_o*alpha*R*D/(2*g);\n",
+"\n",
+"disp(L_max,'maximum inductance for phase 1=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: Finding_switching_times_T_on_and_T_off.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding switching times T on and T off\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"//off time at i=Imin\n",
+"T_off=-0.25*log(10/12)/2.5;\n",
+"\n",
+"//on time\n",
+"T_on=-0.25*log((12-20)/(10-20))/5;//in seconds\n",
+"\n",
+"disp(T_on,'On time=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb
new file mode 100644
index 0000000..23537d9
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb
@@ -0,0 +1,136 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 11: Fractional and subfractional Horsepower Motors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.2: Finding_efficiency_at_rated_voltage_and_frequency_with_starting_winding_open.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding efficiency at rated voltage and frequency with starting winding open\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"s=0.05;\n",
+"//rotor speed\n",
+"speed=(1-s)*1800;//in r/min\n",
+"//torque\n",
+"T=147/179;// in N.m\n",
+"\n",
+"//Efficiency\n",
+"op=244;//output\n",
+"ip=147;//input\n",
+"eff=ip/op;\n",
+"disp(eff,'Efficiency=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.3d: Finding_internal_mechanical_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding internal mechanical power\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"I_f=11.26;\n",
+"R_f=16.46;\n",
+"//power delivered to forwaed field\n",
+"P_gf=2*I_f^2*R_f;\n",
+"I_b=4;\n",
+"R_b=0.451;\n",
+"//power delivered to the backward field\n",
+"P_gb=2*I_b^2*R_b;\n",
+"\n",
+"P=.95*(P_gf-P_gb);\n",
+"disp(P,'internal mechanical power=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 11.6: Finding_speed_voltage_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding speed voltage constant\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V_t=50;\n",
+"I_a=1.25;\n",
+"R_a=1.03;\n",
+"E_a=V_t-I_a*R_a;\n",
+"\n",
+"W=220;//rad/s\n",
+"K_m=E_a/W;// V/rad/s\n",
+"\n",
+"//At 1700 r/min\n",
+"W_m=1700*2*%pi/60;//rad/s\n",
+"E_anew=K_m*W_m;\n",
+"\n",
+"I_anew=(48-E_anew)/1.03;\n",
+"P_shaft=E_anew*I_anew;\n",
+"P=P_shaft-61;\n",
+"\n",
+"disp(P,'output power=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb
new file mode 100644
index 0000000..4081071
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb
@@ -0,0 +1,239 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Transformers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Finding_power_factor_and_core_loss_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding power factor,core loss current\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"alpha=acos(16/20);\n",
+"pf=cos(alpha);//power factor\n",
+"disp(pf,'power factor=');\n",
+"\n",
+"I_e=20/194;//exciting current\n",
+"I_c=16/194;//core loss component\n",
+"I_m=I_e*0.6;//magnetizing componentminimum magnet volume"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Finding_peak_mmf_and_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding peak mmf and flux\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"function [F_peak]=mmf(k,N,m,I)\n",
+" F_peak=(1.5*4*k*N*I)/(%pi*2*m);\n",
+"endfunction\n",
+"\n",
+"f=mmf(.92,45,3,700);\n",
+"U_o=4*%pi*10^-7;\n",
+"B_peak=U_o*8.81*10^3/.01;//flux density\n",
+"vel=25*0.5;//in m/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Finding_regulation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding regulation\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"Z_eq=48/20.8;\n",
+"R_eq=617/20.8^2;\n",
+"X_eq=sqrt(Z_eq^2-R_eq^2);//in ohms\n",
+"I_h=50000/2400;//full load high tension current\n",
+"Loss=I_h^2*R_eq;\n",
+"Input=40000+186+Loss;//in watts\n",
+"Efficiency=1-803/Input;\n",
+"disp(Efficiency,'efficiency is=');\n",
+"\n",
+"V_1h=2400+(20.8*(0.8-0.6*%i)*(1.42+1.82*%i));\n",
+"Reg=((2446-2400)/2400)*100;\n",
+"disp(Reg,'percentage regultion=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Finding_kVA_rating.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding kVA rating\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"I_h=50000/240;\n",
+"V_h=2640;\n",
+"kva=V_h*I_h/1000;\n",
+"disp(kva,'kVA rating of transformer=')\n",
+"\n",
+"eff=1-803/(0.8*550000);//from ex 2.4\n",
+"disp(eff,'efficiency is=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Finding_current_in_feeder_wires.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding current in feeder wires\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V_s=2400/sqrt(3);\n",
+"X_eqs=2.76/3;//per phase\n",
+"X_eqr=1.82/3;//at recieving end\n",
+"total_X=X_eqs+X_eqr+0.8;\n",
+"I_win=594/sqrt(3);//at 2400V windings\n",
+"I_feeder=1385/2.33;//at 2400V feeder"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Finding_per_unit_system.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding per unit system\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"Z_baseH=2400/20.8;\n",
+"Z_baseX=240/208;\n",
+"\n",
+"I_x=5.41/208;//per unit at low voltage side\n",
+"\n",
+"Z_eqH=(1.42+%i*1.82)/115.2;//per unit\n",
+"disp(Z_eqH,'equivalent impedence referred to high voltage side')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: Finding_current_in_feeder_wires_in_per_unit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding current in feeder wires in per unit\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V_base=2400/sqrt(3);//for 2400V feeder and line to neutral\n",
+"I_base=50000/1385;//phase Y\n",
+"Z_base=V_base/I_base;//phase Y\n",
+"X_feeder=0.8/Z_base;//per unit\n",
+"\n",
+"SC_current=1.00/.0608;// short circuit current in per unit\n",
+"disp(SC_current,'short circuit current in per unit=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb
new file mode 100644
index 0000000..4ef948f
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb
@@ -0,0 +1,187 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Electromechanical Energy Conversion Principles"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Finding_Torque_acting_on_the_rotor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding Torque acting on the rotor\n",
+"\n",
+"close;\n",
+"clc;\n",
+"syms alpha;\n",
+"I=10;//current\n",
+"B_o=0.5;//magnetic field\n",
+"R=0.1;\n",
+"l=0.6;\n",
+"\n",
+"T=2*I*B_o*R*l*sin(alpha);\n",
+"\n",
+"disp(T,'Torque acting on the rotor=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Finding_magnetic_stored_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding magnetic stored energy\n",
+"\n",
+"close;\n",
+"clc;\n",
+"syms x d;\n",
+"constt=0.5*1000^2*4*%pi*10^-7*0.15*0.1*10^2/(2*0.002);\n",
+"\n",
+"W_fld=constt*(1-x/d);//in joules\n",
+"\n",
+"disp(W_fld,'magnetic stored energy=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Finding_force_on_the_plunger.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding force on the plunger\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"U_o=4*%pi*10^-7;\n",
+"\n",
+"function [f]=force(N,l,g,i)\n",
+" f=-(N^2*U_o*l*i^2/(4*g));\n",
+"endfunction\n",
+"\n",
+"f_fld=force(1000,0.1,0.002,10);//force in N\n",
+"\n",
+"disp(f_fld,'force on the plunger when current=10A');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Finding_Torque_acting_on_the_rotor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding Torque acting on the rotor\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"\n",
+"U_o=4*%pi*10^-7;\n",
+"\n",
+"function [T]=torque(B,h,g,r)\n",
+" T=(B^2*g*h*(r+g*.5))/U_o;\n",
+" endfunction\n",
+" \n",
+" T_fld=torque(2,0.02,0.002,0.02);//Maximum torque in N.m\n",
+" \n",
+" disp(T_fld,'Torque acting on the rotor');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: Finding_Torue_of_given_system.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding Torue of given system \n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"syms x i1 i2\n",
+"L_11=(3+cos(2*x))*10^(-3);\n",
+"L_12=0.1*cos(x);\n",
+"L_22=30+10*cos(2*x);\n",
+"W=0.5*L_11*i1^2+L_12*i1*i2+0.5*L_22*i2^2;\n",
+"T=diff(W,x);\n",
+"disp(T,'Torque = ');\n",
+"i1=1;//in Ampere\n",
+"i2=0.01;//in Ampere\n",
+"k=eval(T);\n",
+"disp(k,'Torue of given system = ');\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb
new file mode 100644
index 0000000..de0a85d
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb
@@ -0,0 +1,64 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Rotating Machine Basic Concept"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Finding_peak_mmf_and_flux.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding peak mmf and flux\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"\n",
+"function [F_peak]=mmf(k,N,p,I)\n",
+" F_peak=(4*k*N*I)/(%pi*p);\n",
+"endfunction\n",
+"f=mmf(.9,46,2,1500);//peaf fundamental mmf\n",
+"\n",
+"B_peak=(4*%pi*10^-7*f)/(7.5*10^-2);//peak flux density\n",
+"\n",
+"phy=2*B_peak*4*0.5;//flux per pole\n",
+"E_rms=sqrt(2)*%pi*60*.833*24*2.64;//rms voltage\n",
+"disp(E_rms,'RMS value of voltage generated=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb
new file mode 100644
index 0000000..65d047f
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb
@@ -0,0 +1,206 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Synchronous Machines in Steady State"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Finding_unsaturated_value_of_the_synchronous_reactance_and_the_SCR_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding unsaturated value of the synchronous reactance and the SCR ratio\n",
+"// Example 5.1\n",
+"\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"E_af_ag=202/3^.5;//voltage to neutral on air-gap line at 2.20A\n",
+"I_a_sc=118;//at 2.20A\n",
+"X_s_ag=E_af_ag/I_a_sc;//Reactance per phase\n",
+"disp(X_s_ag,'Reactance in ohm per phase=')\n",
+"I_a_r=45000/(3^.5*220);//Rated Ia\n",
+"I_a_sc=118/I_a_r;//per unit\n",
+"E_af_ag=202/220;//per unit\n",
+"X_s_ag=E_af_ag/I_a_sc;//per unit\n",
+"disp(X_s_ag,'reactance per unit=')\n",
+"X_s=220/3^.5*152;//per phase\n",
+"disp(X_s,'saturated reactance per phase=')\n",
+"I_a_sc_dash=152/118;//per unit\n",
+"X_s=1.00/I_a_sc_dash;//per unit\n",
+"SCR=2.84/2.20;\n",
+"disp(SCR,'short circuit ratio=')\n",
+"//Result\n",
+"// Reactance in ohm per phase=0.9883454 \n",
+"//reactance per unit=0.9189162 \n",
+"//saturated reactance per phase=19306.593 \n",
+"//short circuit ratio=1.2909091 "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Finding_effective_armature_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding effective armature resistance\n",
+"// Example 5.2\n",
+"\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"L_loss_sc=1.8/45;//per unit\n",
+"I_a=1.00;//per unit\n",
+"R_a_eff=L_loss_sc/I_a^2;//per unit\n",
+"disp(R_a_eff,'effective armature resistance in per unit=')\n",
+"R_a_eff=1800/((118^2)*3);//per phase\n",
+"disp(R_a_eff,'effective armature resistance in ohms per phase=')\n",
+"//Result\n",
+"//effective armature resistance in per unit=0.04\n",
+"//effective armature resistance in ohms per phase=0.0430911"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: EX5_3.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding maximum torque deliver by motor when it is supplied with the power from a)infinite bus b)turbine generator\n",
+"// Example 5.3\n",
+"\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"kVA_r=1500/3;//per phase\n",
+"V_ta=2300/sqrt(3);//per phase\n",
+"I_r=500000/V_ta;//per phase\n",
+"X_sm=1.95;\n",
+"I_a_X_sm=I_r*X_sm;//syn-reactance V-drop\n",
+"E_afm=sqrt(V_ta^2+I_a_X_sm^2);\n",
+"p_max=(V_ta*E_afm)/X_sm;//per phase\n",
+"P_max=3*p_max;//power in 3 phase\n",
+"W_s=2*%pi*4;\n",
+"T_max=P_max/W_s;//torque-max\n",
+"disp(T_max,'Maximum torque in newton-meteres=')\n",
+"//Result\n",
+"//Maximum torque in newton-meteres=123341.2\n",
+"\n",
+"V_ta=2300/sqrt(3);//per phase\n",
+"I_r=500000/V_ta;//per phase\n",
+"X_sm=1.95;X_sg=2.65;//synchronous reactance of motor ang generator\n",
+"I_a_X_sg=I_r*X_sg;//syn-reactance V-drop\n",
+"E_afg=sqrt(V_ta^2+I_a_X_sg^2);\n",
+"p_max=(E_afg*E_afm)/(X_sm+X_sg);//per phase\n",
+"P_max=3*p_max;//power in 3 phase\n",
+"W_s=2*%pi*4;\n",
+"T_max=P_max/W_s;//torque-max\n",
+"disp(T_max,'Maximum torque in newton-meteres=')\n",
+"//Result\n",
+"//Maximum torque in newton-meteres=65401.933\n",
+"\n",
+"I_a=sqrt(E_afm^2+E_afg^2)/(X_sg+X_sm);\n",
+"alpha=acos(E_afm/(I_a*(X_sg+X_sm)));\n",
+"\n",
+"V_ta=E_afm-I_a*X_sm*cos(alpha)+%i*I_a*X_sm*sin(alpha);\n",
+"disp(V_ta,'terminal voltage=')\n",
+"//Result\n",
+"//terminal voltage=874.14246 + 704.12478i "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: Finding_efficiency_of_machine.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding efficiency of machine\n",
+"// Example 5.4\n",
+"\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"I_a=45000/(sqrt(3)*230*.8);//armature current\n",
+"R_f=29.8*((234.5+75)/(234.5+25));//field resistance at 75 degree celsius\n",
+"R_a=0.0335*((234.5+75)/(234.5+25));//armature dc resistance at 75 degree celsius\n",
+"I_f=5.5;\n",
+"L_f=(I_f^2*R_f)/1000;//field loss\n",
+"L_a=(3*I_a^2*R_a)/1000;//armature loss\n",
+"V_i=230/sqrt(3)-I_a*(.8+%i*.6)*R_a;//internal voltage\n",
+"L_s=.56;//stray load loss\n",
+"L_c=1.2;//open circuit core loss\n",
+"L_w=.91;//frictional and winding loss\n",
+"L_t=L_f+L_a+L_s+L_c+L_w//total losses\n",
+"Input=46.07;\n",
+"Eff=1-L_t/Input;\n",
+"disp(Eff*100,'efficiency of the system is(%) ')\n",
+"//Result\n",
+"//efficiency of the system is(%)86.683487"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb
new file mode 100644
index 0000000..f41c300
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb
@@ -0,0 +1,82 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Synchronous Machines A Transient Performance"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2a: Graph_on_steady_state_and_transient_power_angle_characteristics.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"xset('window',1)\n",
+"xtitle('My Graph','radians','power per unit')\n",
+"x=linspace(0,%pi,100)\n",
+"y=6.22*sin(x)\n",
+"\n",
+"plot(x,y) "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2b: Graph_on_steady_state_and_transient_power_angle_characteristics.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clear\n",
+"clc\n",
+"xset('window',1)\n",
+"xtitle('My Graph','radians','power per unit')\n",
+"x=linspace(0,%pi,100)\n",
+"y=1.77*sin(x)+0.67*sin(2*x)\n",
+"plot(x,y) "
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb
new file mode 100644
index 0000000..b98cfba
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb
@@ -0,0 +1,132 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Polyphase Induction Machines"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: Finding_stator_current_and_efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding stator current and efficiency\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V_app=220/sqrt(3);//applied voltage to neutral\n",
+"I_s=127/6.75;//stator current\n",
+"pf=cos(.565);//in radians\n",
+"\n",
+"speed=120/6;// synchronous speed in r/s\n",
+"S_r=(1-.02)*speed*60;//rotor spped in r/min\n",
+"P_g=3*18.8^2*5.41;\n",
+"P=.98*5740;//internal mechanical power\n",
+"\n",
+"eff=1-830/6060;\n",
+"disp(eff,'efficiency=')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Finding_internal_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption:Finding internal torque\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V_a=122.3;\n",
+"I_two= V_a/sqrt(5.07^2+0.699^2);//load component of stator current\n",
+"T=3*23.9^2*4.8/125.6;//internal torque\n",
+"P=3*23^2*4.8*.97;//internal power\n",
+"\n",
+"// at maximum torque point\n",
+"s_max=0.144/0.75;\n",
+"speed=(1-s_max)*1200;//speed in r/min\n",
+"T_max=(0.5*3*122.3^2)/(125.6*(0.273+0.750));//maximum internal torque\n",
+"\n",
+"T_start=3*150.5^2*0.144/125.6;//starting torque in N-mFinding stator current and efficiency"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Finding_internal_starting_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding internal starting torque\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"P_r=380-3*5.7^2*0.262;\n",
+"//from test 1\n",
+"Z_nl=219/(sqrt(3)*5.7);//phase Y\n",
+"R_nl=380/(3*5.7^2);\n",
+"\n",
+"//from test 2\n",
+"Z_bl=26.5/(sqrt(3)*18.57);//phase at 15 hz\n",
+"R_bl=675/(3*18.75^2)//\n",
+"\n",
+"//internal starting torque\n",
+"P_g=20100-3*83.3^2*0.262;//air gap power\n",
+"\n",
+"T_start=P_g/188.5;//starting torque in N-m"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb
new file mode 100644
index 0000000..990e72f
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb
@@ -0,0 +1,58 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Polyphase Induction Machines Dynamics and Control"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Finding_short_circuit_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding short circuit current\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"X=.060+2.5-(2.5^2/(.06+2.5));//transient reactance\n",
+"I=300*10^3/(.9*.93*440*sqrt(3));//prefault stator current\n",
+"I_initial=232/.12;//initial current\n",
+"T_o=(2.5+.06)/(2*%pi*60*.0064);//open circuit time constant\n",
+"T_s=T_o*.12/2.56;//short circuit time constant"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb
new file mode 100644
index 0000000..0138c7f
--- /dev/null
+++ b/Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb
@@ -0,0 +1,114 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 9: DC Machines in Steady State"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.1: Finding_electromagnetic_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding electromagnetic torque\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V_t=128;\n",
+"E_a=125;\n",
+"R_a=.02;\n",
+"I_a=(V_t-E_a)/R_a;//armature current\n",
+"\n",
+"P_t=V_t*I_a;//terminal power;\n",
+"P_e=E_a*I_a;//electromagnetic power;\n",
+"T=P_e/(100*%pi);//torque\n",
+"disp(T,'electromagnetic torque=');"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.2: Finding_terminal_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding terminal voltage\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"V=274;//voltage when Ia=0\n",
+"E_a=274*1150/1200;//actual emf\n",
+"V_t=E_a-405*(0.025+0.005);//terminal voltage"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 9.4: Finding_speed_and_output_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Caption: Finding speed and output power\n",
+"clear;\n",
+"close;\n",
+"clc;\n",
+"E_ao=250*1200/1100;//at 1200 r/min\n",
+"E_a=250-400*.025;//at Ia=400A\n",
+"n=240*1200/261;//actual spped\n",
+"P_em=240*400;\n",
+"disp(P_em,'electromagnetic power=')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}