diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Electric_Machinery_by_A_E_Fitzgerald | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Electric_Machinery_by_A_E_Fitzgerald')
11 files changed, 1537 insertions, 0 deletions
diff --git a/Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb new file mode 100644 index 0000000..8a13bd6 --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/1-Magnetic_Circuits_and_Magnetic_Materials.ipynb @@ -0,0 +1,228 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Magnetic Circuits and Magnetic Materials" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Finding_reluctances_and_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding reluctances and flux\n", +"\n", +"clear;\n", +"close;\n", +"clc;\n", +"U_r=70000;\n", +"U_o=4*%pi*10^-7;\n", +"\n", +"function [R_c]=reluctance_core(l,A)\n", +" R_c=l/(U_r*U_o*A);\n", +"endfunction\n", +"disp(reluctance_core(.3,9*10^-4),'Reluctance of the core=')\n", +"\n", +"function [R_g]=reluctance_gap(g,A)\n", +" R_g=g/(U_o*A);\n", +"endfunction\n", +"disp(reluctance_gap(5*10^-4,9*10^-4),'Reluctance of the gap=')\n", +"\n", +"phy=1.0*9*10^-4;\n", +"disp(phy,'flux=')\n", +"\n", +"i=phy*(reluctance_core(.3,9*10^-4)+reluctance_gap(5*10^-4,9*10^-4))/500;\n", +"disp(i,'current=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Finding_air_gap_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding air gap flux\n", +"clear;\n", +"close;\n", +"clc;\n", +"N=1000;\n", +"I=10;\n", +"U_o=4*%pi*10^-7;\n", +"A_g=.2;\n", +"g=.01;\n", +"phy=(N*I*U_o*A_g)/(2*g);\n", +"disp(phy,'flux=')\n", +"B_g=phy/A_g;\n", +"disp(B_g,'flux density=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4b: Finding_Induced_voltage_of_a_magnetic_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding Induced voltage of a magnetic circuit \n", +"\n", +"close;\n", +"clc;\n", +"syms t\n", +"\n", +"w=2*%pi*60//angular frequency\n", +"\n", +"B=1.0*sin(w*t);\n", +"N=500;\n", +"A=9*10^-4;\n", +"e=N*A*diff(B,t);\n", +"\n", +"disp(e,'Induced Voltage = ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Finding_current_from_dc_magnetization_curve.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding current from dc magnetization curve\n", +"clear;\n", +"close;\n", +"clc;\n", +"H_c=12;//from fig at B_c=1 T\n", +"l_c=0.3;\n", +"F_c=H_c*l_c;//mmf of core path\n", +"F_g=(5*10^-4)/(4*%pi*10^-7);//mmf of air gap\n", +"i=(F_c+F_g)/500;//current in Amperes\n", +"disp(i,'current=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6a: Finding_applied_voltage_to_the_windinds_with_magnetic_core.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Finding applied voltage to the windinds with magnetic core\n", +"close;\n", +"clc;\n", +"syms t\n", +"\n", +"w=377;//angular frequency\n", +"\n", +"B=1.5*sin(w*t);\n", +"N=200; \n", +"A=16*10^-4;//area\n", +"a=0.94;//steel occupies 0.94 times the gross core volume\n", +"e=N*A*a*diff(B,t);\n", +"\n", +"disp(e,'applied Voltage = ');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Finding_minimum_magnet_volume.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding minimum magnet volume\n", +"clear;\n", +"close;\n", +"clc;\n", +"\n", +"function [A_m]=area(B_g,B_m)\n", +" A_m=2*B_g/B_m;\n", +"endfunction\n", +"a=area(0.8,1.0);//from fig\n", +"L_m=-0.2*0.8/(4*%pi*10^-7*-40*10^3);\n", +"\n", +"volume=a*L_m;//minimum magnet volume\n", +"disp(volume,'minimum magnet volume in cm cube');\n", +"\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb new file mode 100644 index 0000000..3b9d04a --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/10-Variable_Reluctance_Machines.ipynb @@ -0,0 +1,91 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Variable Reluctance Machines" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1a: Finding_maximum_inductance_for_phase.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding maximum inductance for phase \n", +"clear;\n", +"close;\n", +"clc;\n", +"N=100;\n", +"U_o=4*%pi*10^-7;\n", +"alpha=%pi/3;\n", +"R=3.8*10^-2;\n", +"D=0.13;\n", +"g=2.54*10^-4;\n", +"L_max=N^2*U_o*alpha*R*D/(2*g);\n", +"\n", +"disp(L_max,'maximum inductance for phase 1=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Finding_switching_times_T_on_and_T_off.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding switching times T on and T off\n", +"clear;\n", +"close;\n", +"clc;\n", +"//off time at i=Imin\n", +"T_off=-0.25*log(10/12)/2.5;\n", +"\n", +"//on time\n", +"T_on=-0.25*log((12-20)/(10-20))/5;//in seconds\n", +"\n", +"disp(T_on,'On time=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb new file mode 100644 index 0000000..23537d9 --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/11-Fractional_and_subfractional_Horsepower_Motors.ipynb @@ -0,0 +1,136 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Fractional and subfractional Horsepower Motors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Finding_efficiency_at_rated_voltage_and_frequency_with_starting_winding_open.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding efficiency at rated voltage and frequency with starting winding open\n", +"clear;\n", +"close;\n", +"clc;\n", +"s=0.05;\n", +"//rotor speed\n", +"speed=(1-s)*1800;//in r/min\n", +"//torque\n", +"T=147/179;// in N.m\n", +"\n", +"//Efficiency\n", +"op=244;//output\n", +"ip=147;//input\n", +"eff=ip/op;\n", +"disp(eff,'Efficiency=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.3d: Finding_internal_mechanical_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding internal mechanical power\n", +"clear;\n", +"close;\n", +"clc;\n", +"I_f=11.26;\n", +"R_f=16.46;\n", +"//power delivered to forwaed field\n", +"P_gf=2*I_f^2*R_f;\n", +"I_b=4;\n", +"R_b=0.451;\n", +"//power delivered to the backward field\n", +"P_gb=2*I_b^2*R_b;\n", +"\n", +"P=.95*(P_gf-P_gb);\n", +"disp(P,'internal mechanical power=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.6: Finding_speed_voltage_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding speed voltage constant\n", +"clear;\n", +"close;\n", +"clc;\n", +"V_t=50;\n", +"I_a=1.25;\n", +"R_a=1.03;\n", +"E_a=V_t-I_a*R_a;\n", +"\n", +"W=220;//rad/s\n", +"K_m=E_a/W;// V/rad/s\n", +"\n", +"//At 1700 r/min\n", +"W_m=1700*2*%pi/60;//rad/s\n", +"E_anew=K_m*W_m;\n", +"\n", +"I_anew=(48-E_anew)/1.03;\n", +"P_shaft=E_anew*I_anew;\n", +"P=P_shaft-61;\n", +"\n", +"disp(P,'output power=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb new file mode 100644 index 0000000..4081071 --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/2-Transformers.ipynb @@ -0,0 +1,239 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Transformers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Finding_power_factor_and_core_loss_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding power factor,core loss current\n", +"clear;\n", +"close;\n", +"clc;\n", +"alpha=acos(16/20);\n", +"pf=cos(alpha);//power factor\n", +"disp(pf,'power factor=');\n", +"\n", +"I_e=20/194;//exciting current\n", +"I_c=16/194;//core loss component\n", +"I_m=I_e*0.6;//magnetizing componentminimum magnet volume" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Finding_peak_mmf_and_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding peak mmf and flux\n", +"clear;\n", +"close;\n", +"clc;\n", +"function [F_peak]=mmf(k,N,m,I)\n", +" F_peak=(1.5*4*k*N*I)/(%pi*2*m);\n", +"endfunction\n", +"\n", +"f=mmf(.92,45,3,700);\n", +"U_o=4*%pi*10^-7;\n", +"B_peak=U_o*8.81*10^3/.01;//flux density\n", +"vel=25*0.5;//in m/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Finding_regulation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding regulation\n", +"clear;\n", +"close;\n", +"clc;\n", +"Z_eq=48/20.8;\n", +"R_eq=617/20.8^2;\n", +"X_eq=sqrt(Z_eq^2-R_eq^2);//in ohms\n", +"I_h=50000/2400;//full load high tension current\n", +"Loss=I_h^2*R_eq;\n", +"Input=40000+186+Loss;//in watts\n", +"Efficiency=1-803/Input;\n", +"disp(Efficiency,'efficiency is=');\n", +"\n", +"V_1h=2400+(20.8*(0.8-0.6*%i)*(1.42+1.82*%i));\n", +"Reg=((2446-2400)/2400)*100;\n", +"disp(Reg,'percentage regultion=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Finding_kVA_rating.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding kVA rating\n", +"clear;\n", +"close;\n", +"clc;\n", +"I_h=50000/240;\n", +"V_h=2640;\n", +"kva=V_h*I_h/1000;\n", +"disp(kva,'kVA rating of transformer=')\n", +"\n", +"eff=1-803/(0.8*550000);//from ex 2.4\n", +"disp(eff,'efficiency is=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Finding_current_in_feeder_wires.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding current in feeder wires\n", +"clear;\n", +"close;\n", +"clc;\n", +"V_s=2400/sqrt(3);\n", +"X_eqs=2.76/3;//per phase\n", +"X_eqr=1.82/3;//at recieving end\n", +"total_X=X_eqs+X_eqr+0.8;\n", +"I_win=594/sqrt(3);//at 2400V windings\n", +"I_feeder=1385/2.33;//at 2400V feeder" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Finding_per_unit_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding per unit system\n", +"clear;\n", +"close;\n", +"clc;\n", +"Z_baseH=2400/20.8;\n", +"Z_baseX=240/208;\n", +"\n", +"I_x=5.41/208;//per unit at low voltage side\n", +"\n", +"Z_eqH=(1.42+%i*1.82)/115.2;//per unit\n", +"disp(Z_eqH,'equivalent impedence referred to high voltage side')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Finding_current_in_feeder_wires_in_per_unit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding current in feeder wires in per unit\n", +"clear;\n", +"close;\n", +"clc;\n", +"V_base=2400/sqrt(3);//for 2400V feeder and line to neutral\n", +"I_base=50000/1385;//phase Y\n", +"Z_base=V_base/I_base;//phase Y\n", +"X_feeder=0.8/Z_base;//per unit\n", +"\n", +"SC_current=1.00/.0608;// short circuit current in per unit\n", +"disp(SC_current,'short circuit current in per unit=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb new file mode 100644 index 0000000..4ef948f --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/3-Electromechanical_Energy_Conversion_Principles.ipynb @@ -0,0 +1,187 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Electromechanical Energy Conversion Principles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Finding_Torque_acting_on_the_rotor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding Torque acting on the rotor\n", +"\n", +"close;\n", +"clc;\n", +"syms alpha;\n", +"I=10;//current\n", +"B_o=0.5;//magnetic field\n", +"R=0.1;\n", +"l=0.6;\n", +"\n", +"T=2*I*B_o*R*l*sin(alpha);\n", +"\n", +"disp(T,'Torque acting on the rotor=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Finding_magnetic_stored_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding magnetic stored energy\n", +"\n", +"close;\n", +"clc;\n", +"syms x d;\n", +"constt=0.5*1000^2*4*%pi*10^-7*0.15*0.1*10^2/(2*0.002);\n", +"\n", +"W_fld=constt*(1-x/d);//in joules\n", +"\n", +"disp(W_fld,'magnetic stored energy=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Finding_force_on_the_plunger.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding force on the plunger\n", +"clear;\n", +"close;\n", +"clc;\n", +"U_o=4*%pi*10^-7;\n", +"\n", +"function [f]=force(N,l,g,i)\n", +" f=-(N^2*U_o*l*i^2/(4*g));\n", +"endfunction\n", +"\n", +"f_fld=force(1000,0.1,0.002,10);//force in N\n", +"\n", +"disp(f_fld,'force on the plunger when current=10A');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Finding_Torque_acting_on_the_rotor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding Torque acting on the rotor\n", +"clear;\n", +"close;\n", +"clc;\n", +"\n", +"U_o=4*%pi*10^-7;\n", +"\n", +"function [T]=torque(B,h,g,r)\n", +" T=(B^2*g*h*(r+g*.5))/U_o;\n", +" endfunction\n", +" \n", +" T_fld=torque(2,0.02,0.002,0.02);//Maximum torque in N.m\n", +" \n", +" disp(T_fld,'Torque acting on the rotor');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Finding_Torue_of_given_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding Torue of given system \n", +"clear;\n", +"close;\n", +"clc;\n", +"syms x i1 i2\n", +"L_11=(3+cos(2*x))*10^(-3);\n", +"L_12=0.1*cos(x);\n", +"L_22=30+10*cos(2*x);\n", +"W=0.5*L_11*i1^2+L_12*i1*i2+0.5*L_22*i2^2;\n", +"T=diff(W,x);\n", +"disp(T,'Torque = ');\n", +"i1=1;//in Ampere\n", +"i2=0.01;//in Ampere\n", +"k=eval(T);\n", +"disp(k,'Torue of given system = ');\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb new file mode 100644 index 0000000..de0a85d --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/4-Rotating_Machine_Basic_Concept.ipynb @@ -0,0 +1,64 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Rotating Machine Basic Concept" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Finding_peak_mmf_and_flux.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding peak mmf and flux\n", +"clear;\n", +"close;\n", +"clc;\n", +"\n", +"function [F_peak]=mmf(k,N,p,I)\n", +" F_peak=(4*k*N*I)/(%pi*p);\n", +"endfunction\n", +"f=mmf(.9,46,2,1500);//peaf fundamental mmf\n", +"\n", +"B_peak=(4*%pi*10^-7*f)/(7.5*10^-2);//peak flux density\n", +"\n", +"phy=2*B_peak*4*0.5;//flux per pole\n", +"E_rms=sqrt(2)*%pi*60*.833*24*2.64;//rms voltage\n", +"disp(E_rms,'RMS value of voltage generated=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb new file mode 100644 index 0000000..65d047f --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/5-Synchronous_Machines_in_Steady_State.ipynb @@ -0,0 +1,206 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Synchronous Machines in Steady State" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Finding_unsaturated_value_of_the_synchronous_reactance_and_the_SCR_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding unsaturated value of the synchronous reactance and the SCR ratio\n", +"// Example 5.1\n", +"\n", +"clear;\n", +"close;\n", +"clc;\n", +"E_af_ag=202/3^.5;//voltage to neutral on air-gap line at 2.20A\n", +"I_a_sc=118;//at 2.20A\n", +"X_s_ag=E_af_ag/I_a_sc;//Reactance per phase\n", +"disp(X_s_ag,'Reactance in ohm per phase=')\n", +"I_a_r=45000/(3^.5*220);//Rated Ia\n", +"I_a_sc=118/I_a_r;//per unit\n", +"E_af_ag=202/220;//per unit\n", +"X_s_ag=E_af_ag/I_a_sc;//per unit\n", +"disp(X_s_ag,'reactance per unit=')\n", +"X_s=220/3^.5*152;//per phase\n", +"disp(X_s,'saturated reactance per phase=')\n", +"I_a_sc_dash=152/118;//per unit\n", +"X_s=1.00/I_a_sc_dash;//per unit\n", +"SCR=2.84/2.20;\n", +"disp(SCR,'short circuit ratio=')\n", +"//Result\n", +"// Reactance in ohm per phase=0.9883454 \n", +"//reactance per unit=0.9189162 \n", +"//saturated reactance per phase=19306.593 \n", +"//short circuit ratio=1.2909091 " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Finding_effective_armature_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding effective armature resistance\n", +"// Example 5.2\n", +"\n", +"clear;\n", +"close;\n", +"clc;\n", +"L_loss_sc=1.8/45;//per unit\n", +"I_a=1.00;//per unit\n", +"R_a_eff=L_loss_sc/I_a^2;//per unit\n", +"disp(R_a_eff,'effective armature resistance in per unit=')\n", +"R_a_eff=1800/((118^2)*3);//per phase\n", +"disp(R_a_eff,'effective armature resistance in ohms per phase=')\n", +"//Result\n", +"//effective armature resistance in per unit=0.04\n", +"//effective armature resistance in ohms per phase=0.0430911" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: EX5_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding maximum torque deliver by motor when it is supplied with the power from a)infinite bus b)turbine generator\n", +"// Example 5.3\n", +"\n", +"clear;\n", +"close;\n", +"clc;\n", +"kVA_r=1500/3;//per phase\n", +"V_ta=2300/sqrt(3);//per phase\n", +"I_r=500000/V_ta;//per phase\n", +"X_sm=1.95;\n", +"I_a_X_sm=I_r*X_sm;//syn-reactance V-drop\n", +"E_afm=sqrt(V_ta^2+I_a_X_sm^2);\n", +"p_max=(V_ta*E_afm)/X_sm;//per phase\n", +"P_max=3*p_max;//power in 3 phase\n", +"W_s=2*%pi*4;\n", +"T_max=P_max/W_s;//torque-max\n", +"disp(T_max,'Maximum torque in newton-meteres=')\n", +"//Result\n", +"//Maximum torque in newton-meteres=123341.2\n", +"\n", +"V_ta=2300/sqrt(3);//per phase\n", +"I_r=500000/V_ta;//per phase\n", +"X_sm=1.95;X_sg=2.65;//synchronous reactance of motor ang generator\n", +"I_a_X_sg=I_r*X_sg;//syn-reactance V-drop\n", +"E_afg=sqrt(V_ta^2+I_a_X_sg^2);\n", +"p_max=(E_afg*E_afm)/(X_sm+X_sg);//per phase\n", +"P_max=3*p_max;//power in 3 phase\n", +"W_s=2*%pi*4;\n", +"T_max=P_max/W_s;//torque-max\n", +"disp(T_max,'Maximum torque in newton-meteres=')\n", +"//Result\n", +"//Maximum torque in newton-meteres=65401.933\n", +"\n", +"I_a=sqrt(E_afm^2+E_afg^2)/(X_sg+X_sm);\n", +"alpha=acos(E_afm/(I_a*(X_sg+X_sm)));\n", +"\n", +"V_ta=E_afm-I_a*X_sm*cos(alpha)+%i*I_a*X_sm*sin(alpha);\n", +"disp(V_ta,'terminal voltage=')\n", +"//Result\n", +"//terminal voltage=874.14246 + 704.12478i " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Finding_efficiency_of_machine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding efficiency of machine\n", +"// Example 5.4\n", +"\n", +"clear;\n", +"close;\n", +"clc;\n", +"I_a=45000/(sqrt(3)*230*.8);//armature current\n", +"R_f=29.8*((234.5+75)/(234.5+25));//field resistance at 75 degree celsius\n", +"R_a=0.0335*((234.5+75)/(234.5+25));//armature dc resistance at 75 degree celsius\n", +"I_f=5.5;\n", +"L_f=(I_f^2*R_f)/1000;//field loss\n", +"L_a=(3*I_a^2*R_a)/1000;//armature loss\n", +"V_i=230/sqrt(3)-I_a*(.8+%i*.6)*R_a;//internal voltage\n", +"L_s=.56;//stray load loss\n", +"L_c=1.2;//open circuit core loss\n", +"L_w=.91;//frictional and winding loss\n", +"L_t=L_f+L_a+L_s+L_c+L_w//total losses\n", +"Input=46.07;\n", +"Eff=1-L_t/Input;\n", +"disp(Eff*100,'efficiency of the system is(%) ')\n", +"//Result\n", +"//efficiency of the system is(%)86.683487" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb new file mode 100644 index 0000000..f41c300 --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/6-Synchronous_Machines_A_Transient_Performance.ipynb @@ -0,0 +1,82 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Synchronous Machines A Transient Performance" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2a: Graph_on_steady_state_and_transient_power_angle_characteristics.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"xset('window',1)\n", +"xtitle('My Graph','radians','power per unit')\n", +"x=linspace(0,%pi,100)\n", +"y=6.22*sin(x)\n", +"\n", +"plot(x,y) " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2b: Graph_on_steady_state_and_transient_power_angle_characteristics.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clear\n", +"clc\n", +"xset('window',1)\n", +"xtitle('My Graph','radians','power per unit')\n", +"x=linspace(0,%pi,100)\n", +"y=1.77*sin(x)+0.67*sin(2*x)\n", +"plot(x,y) " + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb new file mode 100644 index 0000000..b98cfba --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/7-Polyphase_Induction_Machines.ipynb @@ -0,0 +1,132 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Polyphase Induction Machines" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Finding_stator_current_and_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding stator current and efficiency\n", +"clear;\n", +"close;\n", +"clc;\n", +"V_app=220/sqrt(3);//applied voltage to neutral\n", +"I_s=127/6.75;//stator current\n", +"pf=cos(.565);//in radians\n", +"\n", +"speed=120/6;// synchronous speed in r/s\n", +"S_r=(1-.02)*speed*60;//rotor spped in r/min\n", +"P_g=3*18.8^2*5.41;\n", +"P=.98*5740;//internal mechanical power\n", +"\n", +"eff=1-830/6060;\n", +"disp(eff,'efficiency=')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Finding_internal_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption:Finding internal torque\n", +"clear;\n", +"close;\n", +"clc;\n", +"V_a=122.3;\n", +"I_two= V_a/sqrt(5.07^2+0.699^2);//load component of stator current\n", +"T=3*23.9^2*4.8/125.6;//internal torque\n", +"P=3*23^2*4.8*.97;//internal power\n", +"\n", +"// at maximum torque point\n", +"s_max=0.144/0.75;\n", +"speed=(1-s_max)*1200;//speed in r/min\n", +"T_max=(0.5*3*122.3^2)/(125.6*(0.273+0.750));//maximum internal torque\n", +"\n", +"T_start=3*150.5^2*0.144/125.6;//starting torque in N-mFinding stator current and efficiency" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Finding_internal_starting_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding internal starting torque\n", +"clear;\n", +"close;\n", +"clc;\n", +"P_r=380-3*5.7^2*0.262;\n", +"//from test 1\n", +"Z_nl=219/(sqrt(3)*5.7);//phase Y\n", +"R_nl=380/(3*5.7^2);\n", +"\n", +"//from test 2\n", +"Z_bl=26.5/(sqrt(3)*18.57);//phase at 15 hz\n", +"R_bl=675/(3*18.75^2)//\n", +"\n", +"//internal starting torque\n", +"P_g=20100-3*83.3^2*0.262;//air gap power\n", +"\n", +"T_start=P_g/188.5;//starting torque in N-m" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb new file mode 100644 index 0000000..990e72f --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/8-Polyphase_Induction_Machines_Dynamics_and_Control.ipynb @@ -0,0 +1,58 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Polyphase Induction Machines Dynamics and Control" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Finding_short_circuit_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding short circuit current\n", +"clear;\n", +"close;\n", +"clc;\n", +"X=.060+2.5-(2.5^2/(.06+2.5));//transient reactance\n", +"I=300*10^3/(.9*.93*440*sqrt(3));//prefault stator current\n", +"I_initial=232/.12;//initial current\n", +"T_o=(2.5+.06)/(2*%pi*60*.0064);//open circuit time constant\n", +"T_s=T_o*.12/2.56;//short circuit time constant" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb b/Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb new file mode 100644 index 0000000..0138c7f --- /dev/null +++ b/Electric_Machinery_by_A_E_Fitzgerald/9-DC_Machines_in_Steady_State.ipynb @@ -0,0 +1,114 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: DC Machines in Steady State" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Finding_electromagnetic_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding electromagnetic torque\n", +"clear;\n", +"close;\n", +"clc;\n", +"V_t=128;\n", +"E_a=125;\n", +"R_a=.02;\n", +"I_a=(V_t-E_a)/R_a;//armature current\n", +"\n", +"P_t=V_t*I_a;//terminal power;\n", +"P_e=E_a*I_a;//electromagnetic power;\n", +"T=P_e/(100*%pi);//torque\n", +"disp(T,'electromagnetic torque=');" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Finding_terminal_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding terminal voltage\n", +"clear;\n", +"close;\n", +"clc;\n", +"V=274;//voltage when Ia=0\n", +"E_a=274*1150/1200;//actual emf\n", +"V_t=E_a-405*(0.025+0.005);//terminal voltage" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Finding_speed_and_output_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Caption: Finding speed and output power\n", +"clear;\n", +"close;\n", +"clc;\n", +"E_ao=250*1200/1100;//at 1200 r/min\n", +"E_a=250-400*.025;//at Ia=400A\n", +"n=240*1200/261;//actual spped\n", +"P_em=240*400;\n", +"disp(P_em,'electromagnetic power=')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |