diff options
Diffstat (limited to 'Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb')
-rw-r--r-- | Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb | 1194 |
1 files changed, 1194 insertions, 0 deletions
diff --git a/Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb b/Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb new file mode 100644 index 0000000..535aa7d --- /dev/null +++ b/Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb @@ -0,0 +1,1194 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Semiconductor Fundamentals" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: Position_of_Fermi_energy_at_0K.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Position of Fermi energy at 0K\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-10 in page 34\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"h=1.5*10^-34; // Constant of calculation in Js\n", +"m_c=0.067*0.91*10^-30; // Effective mass of conduction electron in Kg\n", +"n_0=10^24; // Electron concentration at 0K /m^3\n", +"\n", +"// Calculation\n", +"E_f= ((h^2*(3*%pi^2*n_0)^(2/3))/(2*m_c));\n", +"A=E_f/(1.6*10^-19);\n", +"\n", +"printf('Position of Fermi level at 0K is %0.4f eV',A);\n", +"\n", +"// Result\n", +"// Fermi energy at 0K as measured from edge of conduction band is 0.11 eV\n", +"// Fermi energy is placed 0.11 eV above the edge of conduction band\n", +"// Fermi energy is within the conduction band" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: Time_taken_to_reach_Brillouin_zone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Time taken to reach Brillouin zone\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-11 in page 46\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"h=1.05*10^-34; // Constant of calculation in Js\n", +"Kb=1.112*10^8; // Wave vector at Brillouin xone along x-axis /cm\n", +"E_0=10^4; // External electric field applied in V/cm\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"\n", +"// Calculation\n", +"tou=(h*Kb)/(e*E_0);\n", +"\n", +"printf('Time taken by electron is %0.3e s',tou);\n", +"\n", +"// Result\n", +"// Time taken by electron to reach Brillouin zone is 7.297 ps" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: Calculate_drift_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate drift velocity\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-12 in page 46\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"m_c=0.067*0.91*10^-30; // Effective electron mass in Kg\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"E_0=10^5; // External electric field in KV/m\n", +"tou1=10^-13; // First Brillouin zone time in s\n", +"tou2=10^-12; // Second Brillouin zone time in s\n", +"tou3=10^-11; // Third Brillouin zone time in s\n", +"\n", +"// Calculation\n", +"v_01=(e*tou1*E_0)/m_c;\n", +"v_02=(e*tou2*E_0)/m_c;\n", +"v_03=(e*tou3*E_0)/m_c;\n", +"\n", +"printf('(a)Drift velocity in first case is %0.2e m/s\n',v_01);\n", +"printf('(b)Drift velocity in second case is %0.2e m/s\n',v_02);\n", +"printf('(c)Drift velocity in third case is %0.2e m/s',v_03);\n", +"\n", +"// Result\n", +"// (a) Drift velocity in first case is 2.62*10^4 cm/s\n", +"// (b) Drift velocity in second case is 2.62*10^5 cm/s\n", +"// (c) Drift velocity in third case is 2.62*10^6 cm/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.13: Compute_conductivity_drift_velocity_current_density.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Compute conductivity,drift velocity,current density\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-13 in page 47\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"mu=35.2*10^-4; // Mobility of electrons in m^2/Vs\n", +"n_0=7.87*10^28; // Number of free electrons per cubic meter\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"E_0=30*10^2; // External electric field applied in V/m\n", +"\n", +"// Calculation\n", +"sigma=n_0*e*mu;\n", +"printf('(a)Mobility = %0.1e m^2/Vs\n',mu);\n", +"printf('Conductivity of the specimen is %0.2e s/m\n\n',sigma);\n", +"V_0=mu*E_0;\n", +"J=sigma*E_0;\n", +"printf('(b)Electric field Eo = %0.0e V/m\n',E_0);\n", +"printf('Drift velocity of free electrons is %0.2f m/s\n',V_0);\n", +"printf('Current density is %0.2e A/meter^3',J);\n", +"\n", +"// Result\n", +"// (a) Conductivity of specimen is 4.43*10^7 s/m\n", +"// (b) Drift velocity of free electrons is 10.56 m/s\n", +"// (c) Current density is 13.3*10^10 A/meter cube" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.14: Calculate_drift_velocity_in_copper_conductor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate drift velocity in copper conductor\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-14 in page 47\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"A=10^-5; // Cross sectional area in m^2\n", +"I=100; // Current flowing in A\n", +"n_0=8.5*10^28; // Free electron concentration of copper per cubic meter\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"\n", +"// Calculation\n", +"V_d=I/(n_0*A*e);\n", +"\n", +"printf('The drift velocity in copper is %0.3e m/s',V_d);\n", +"\n", +"// Result\n", +"// Drift velocity in copper is 7.353*10^-4 m/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.16: Calculate_drift_velocity_in_copper.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate drift velocity in copper\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-16 in page 47\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"tou=10^-14; // Relaxation time in s\n", +"m_c=0.02*9.1*10^-31; // Effective mass of electron in Kg\n", +"E_0=0.1; // Electric field across conductor in V/m\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"\n", +"// Calculation\n", +"V_0=(e*E_0*tou)/m_c;\n", +"\n", +"printf('The drift velocity of electrons in copper is %0.3f m/s',V_0);\n", +"\n", +"// Result\n", +"// Drift velocity of electrons in copper is 0.009 m/s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.17: Equilibrium_hole_concentration_in_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Equilibrium hole concentration in Si\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-17 in page 48\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"n_0=10^17; // Free electron concentration /cm^3\n", +"n_i=1.5*10^10; // Constant of calculation\n", +"// Calculation\n", +"p_0= n_i^2/n_0;\n", +"\n", +"printf('Equilibrium hole concentration is %0.2e cm^-3',p_0);\n", +"\n", +"// Result\n", +"// Equilibrium hole concentration in Si sample is 2.25*10^3 cm^-3" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.18: Time_taken_to_reach_Brillouin_zone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Time taken to reach Brillouin zone\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-18 in page 48\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"h=1.05*10^-34; // Constant of calculation in Js\n", +"kB=1.112*10^8; // Brillouin zone edge along x-axis\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"E_0=10^4; // External electric field in V/m\n", +"\n", +"// Calculation\n", +"tou=(h*kB)/(e*E_0);\n", +"printf('Time taken to reach Brillouin zone is %0.3e s',tou);\n", +"\n", +"// Result\n", +"// Time taken by GaAs electron to reach Brillouin zone is 7.298 ps" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Calculate_wave_vector_carried_by_photo.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate wave vector carried by photon\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-1 in page 7\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given data\n", +"c=3*10^8; // Speed of light in m/s\n", +"h=6.64*10^-34;// Planks constant in Js\n", +"E_photon=2*1.6*10^-19; // Energy of photon in J\n", +"\n", +"//Calculations\n", +"lambda=(c*h)/E_photon; \n", +"k=(2*%pi/lambda);\n", +"\n", +"printf('The wavelenght of a 2.0eV photon = %0.3e m\n',lambda);\n", +"printf('The magnitude of k vector = %0.2e m^-1',k);\n", +"\n", +"// Results\n", +"// The wavelength of a 2.0 eV photon is 6225 Angstrom\n", +"// The magnitude of k-vector is 1.01 * 10^7 m^-1" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.20: Electron_hole_concentration_at_minimum_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Electron,hole concentration at minimum conductivity\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-20 in page 49\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"mu_n=1350; // Mobility of electrons in cm^2/Vs\n", +"mu_p=450; // Movility of holes in cm^2/Vs\n", +"n_i=1.5*10^10; // Intrinsic carrier concentration /cm^3\n", +"\n", +"// Calculation\\n", +"//Minimum conductivity of Si when slightly p-type has been proved in text\n", +"//Thus the electron and hole concentrations are derived as below\n", +"n_0=n_i*sqrt(mu_p/mu_n); \n", +"p_0=n_i*sqrt(mu_n/mu_p); \n", +"\n", +"printf('(a)Electron concentration is %0.2e cm^-3\n',n_0);\n", +"printf('(b)Hole concentration is %0.2e cm^-3',p_0);\n", +"\n", +"// Result \n", +"// (a) Electron concentration is 8.66*10^9 cm^-3\n", +"// (b) Hole concentration is 2.6*10^10 cm^-3" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.21: Position_of_Fermi_level_at_room_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Position of Fermi level at room temperature\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-22 in page 50\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"C_Ge=4.41*10^22; // Concentration of Ge atom /cm^3\n", +"N_D=4.41*10^15; // Number of free donor atoms \n", +"N_C=8.87*10^18; // Number of conduction electrons assuming full ionization\n", +"K_BT=0.026; // Measured in eV at room temperature\n", +"\n", +"// Calculation\n", +"E_F=K_BT*log(N_D/N_C);\n", +"\n", +"printf('Position of fermi level is %0.4f',E_F);\n", +"\n", +"// Result\n", +"// Position of Fermi level from edge of conduction band is -0.1977\n", +"// Thus E_F is below E_C" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.22: Mobility_of_free_electrons_in_Alluminium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Mobility of free electrons in Alluminium\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-22 in page 50\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"n_0=18*10^28; // Derived from the given formula in textbook\n", +"rho=3.44*10^-6; // Resistivity in ohm-cm\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"\n", +"// Calculation\n", +"mu=10^2/(n_0*e*rho);\n", +"\n", +"printf('Mobility of free electrons is %0.0e m^2/V-s',mu);\n", +"\n", +"// Result\n", +"// Mobility of free electrons in Alluminium is 10^-3 m^2/V-s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.23: Percentage_of_increse_in_carrier_concentration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Percentage of increse in carrier concentration\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-23 in page 51\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"kT=0.026; // Value at T=300K\n", +"T=300; // Room temperature in K\n", +"dT=1/300; // Rate of change of temperature\n", +"E_g=0.785; // Band gap energy in germanium in eV\n", +"\n", +"// Calculation\n", +"dni=((1.5+(E_g/(2*kT)))*dT)*100; \n", +"\n", +"printf('Rise in intrinsic carrier concentration is %0.1f percent/degree',dni);\n", +"\n", +"// Result\n", +"// Percentage rise in intrinsic carrier concentration is 5.5 %/degree" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.24: Previous_problem_calculated_for_intrinsic_silicon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Previous problem calculated for intrinsic silicon\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-24 in page 51\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"kT=0.026; // Value at T=300K\n", +"T=300; // Room temperature in K\n", +"dT=1/300; // Rate of change of temperature\n", +"E_g=1.21; // Band gap energy in silicon in eV\n", +"\n", +"// Calculation\n", +"dni=((1.5+(E_g/(2*kT)))*dT)*100; \n", +"\n", +"printf('Rise in intrinsic carrier concentration is %0.1f percent/degree',dni);\n", +"\n", +"// Result\n", +"// Percentage rise in intrinsic carrier concentration is 8.3 %/degree" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.25: Find_drift_velocity_mobility_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Find drift velocity,mobility,conductivity\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-25 in page 51\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"A=0.835*10^-6; // Cross section of wire in m^2\n", +"J=2.4*10^6; // Current density in A/m^2\n", +"n_0=8.4*10^27; // Concentration of electrons in copper in electrons/m^3\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"ohm=0.0214; // Resistance per meter\n", +"E_0=2*ohm; // Electric field in V/m\n", +"\n", +"// Calculations\n", +"v_0=(J)/(n_0*e);\n", +"printf('(a)The drift velocity is %0.2e m/s\n',v_0);\n", +"mu=v_0/E_0;\n", +"printf('(b)The mobility of electrons is %0.2e m^2/V-s\n',mu);\n", +"sigma=(n_0*10*e*mu);\n", +"printf('(c)Therefore the conductivity is %0.2e /ohm-m',sigma);\n", +"\n", +"// Result\n", +"// (a) The drift velocity is 1.78*10^-3 m/s\n", +"// (b) Mobility in this case is 4.16*10^-2 m^2/V-s\n", +"// (c) Conductivity is 5.61*10^8 1/ohm-m" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.26: Determine_concentration_of_electrons_and_holes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Determine concentration of electrons and holes\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-26 in page 52\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"N_D=2*10^14; // Number of donor atoms in atoms/cm^2\n", +"N_A=3*10^14; // Number of acceptor atoms in atoms/cm^2\n", +"ni=2.5*10^19; // number of intrinsic atoms in atoms/cm^2\n", +"\n", +"// Calculation\n", +"p_0=(0.5*10^14)+sqrt(0.25*10^28 + 6.25*10^26);\n", +"n_0=-(0.5*10^14)+sqrt(0.25*10^28 + 6.25*10^26);\n", +"printf('(a)Concentration of free electrons is %0.3e cm^-3\n',n_0);\n", +"printf('(b)Concentration of holes is %0.3e cm^-3\n',p_0);\n", +"printf('since p_0>n_0 the sample is p-type\n');\n", +"printf('When N_A=N_D=10^15,\n n_0=p_0 from the neutrality equation\n');\n", +"printf('Thus the germanium sample in this question is intrinsic by compensation');\n", +"printf('When N_D=10^16,\n');\n", +"p_0=(6.25*10^26)/10^16;\n", +"printf('(c)p_0=%0.2e cm^-3\n',p_0);\n", +"printf('Since n_0>p_0,germanium sample in this case is n-type');\n", +"\n", +"// Result\n", +"// (a) Number of free electrons are 0.058*10^14 cm^-3 \n", +"// (b) Number of holes are 1.058*10^14 cm^-3\n", +"// Semiconductor can be made intrinsic without doping or by equal doping" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.27: Concentration_of_holes_and_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Concentration of holes and electrons\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-27 in page 52\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"sigma=100; // Conductivity of p-type germanium\n", +"e=1.6*10^-19; // Charge on an electron in eV\n", +"mu_p=1800; // Mobility of holes in cm^2/Vs\n", +"ni=2.5*10^13; // Number of intrinsic atoms in germanium\n", +"mu_n=1300; // Mobility of electrons in cm^2/Vs\n", +"sigma1=0.1; // Conductivity in n-type silicon in /ohm-cm\n", +"ni1=1.5*10^10; // Number of intrinsic atoms in silicon\n", +"P_p=3.47*10^17; // Constant of calculation\n", +"\n", +"// Calculation\n", +"printf('For Germanium:\n');\n", +"p_0=sigma/(e*mu_p);\n", +"n_0=(ni^2)/P_p;\n", +"printf('(a)Concentration of holes is %0.2e cm^-3\n',p_0);\n", +"printf('(b)Concentration of electrons is %0.2e m^-3\n',n_0);\n", +"printf('For Silicon:\n');\n", +"n_0=sigma1/(e*mu_n);\n", +"p_0=(ni1^2)/(4.81*10^14);\n", +"printf('(c)Concentration of electrons is %0.2e cm^-3\n',n_0);\n", +"printf('(d)Concentration of holes is %0.2e m^-3',p_0);\n", +"\n", +"// Result\n", +"// (a) For Ge,Hole conc. = 3.47*10^17 cm^-3, Electron conc. = 1.8*10^15 m^-3\n", +"// (b) For Si,Hole conc. = 4.68*10^5 cm^-3, Electron conc. = 4.81*10^14 cm^-3" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.28: To_prove_resistivity_is_45_ohm_cm.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// To prove,resistivity is 45 ohm-cm\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-28 in page 53\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"ni=2.5*10^13; // Intrinsic concentration /cm^3\n", +"mu=5600; // Sum of mobilities of holes and electrons\n", +"e=1.6*10^-19; // Charge on an electron in C \n", +"\n", +"// Calculation\n", +"sigma=e*ni*mu;\n", +"printf('Conductivity of germanium is %0.3f (s/cm)^-1\n',sigma);\n", +"rho=1/sigma;\n", +"printf('Therefore resistivity is %0.1f ohm-cm',rho);\n", +"\n", +"// Result\n", +"// Conductivity of germanium = 0.0232 (s/cm)^-1\n", +"// Resistivity = 44.6 ohm-cm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.29: Find_conductivity_of_intrinsic_germanium.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Find conductivity of intrinsic germanium\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-29 in page 53\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"ni=2.5*10^13; // Intrinsic concentration /cm^3\n", +"e=1.6*10^-19; // Charge on an electron in C\n", +"mu_n=3800; // Mobility of electrons in cm^2/Vs\n", +"mu_p=1800; // Mobility of holes in cm^2/Vs\n", +"N_D=4.41*10^15; // Concentration of donor atoms in Ge /cm^3\n", +"\n", +"// Calculation\n", +"sigma=(ni*e)*(mu_n+mu_p);\n", +"printf('(a)Intrinsic conductivity=%0.4f s/cm\n',sigma);\n", +"p_0=(ni^2)/N_D;\n", +"printf('p_0=%0.2e /cm^3\n',p_0);\n", +"sigma1=N_D*e*mu_n;\n", +"printf('(b)Since n_0>p_0, Conductivity=%0.2f s/cm\n',sigma1);\n", +"n_0=(ni^2)/N_D;\n", +"printf('With given acceptor impurity,\nn_0=%0.2e /cm^3\n',n_0);\n", +"sigma2=N_D*e*mu_p;\n", +"printf('(c)Since p_0>n_0, Conductivity=%0.2f s/cm',sigma2);\n", +"\n", +"// Result\n", +"// (a) Conductivity in first case is 0.0224 s/cm\n", +"// (b) Conductivity in second case is 2.68 s/cm\n", +"// (c) Conductivity in third case is 1.27 s/cm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Calculate_semiconductor_band_gap.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate semiconductor band gap\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-2 in page 7\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"lambda=0.5*10^-6; // Wavelength of emitted light in m\n", +"c=3*10^8; // Speed of light in vacuum in m/s\n", +"h=1.05*10^-34;// Constant of calculation\n", +"\n", +"// Calculation\n", +"E_g= (2*%pi*h*c)/lambda;\n", +"A= E_g*10^19/1.6;\n", +"\n", +"printf('The material band gap has to be %0.3f eV',A);\n", +"\n", +"// Result\n", +"//The material band gap is 2.474 eV\n", +"// Semiconductors like C,BN,GaN,SiC meet this criterion" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Calculate_E_k_relation_of_conduction_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate E-k relation of conduction electrons\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-3 in page 20\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"m_c=0.1*0.91*10^-30; // Effective mass of conduction electron in kg\n", +"k=0.3*10^10; // Wave vector in /m\n", +"h=1.05*10^-34; // Constant of calculation in Js\n", +"\n", +"// Calculation\n", +"E= (h^2*k^2)/(2*m_c);\n", +"A= E/(1.6*10^-19);\n", +"\n", +"printf('Energy of conduction electrons = %0.1f eV',A);\n", +"\n", +"// Result\n", +"//Energy of the conduction electrons in vertically upward direction is 3.4 eV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Energies_of_electrons_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Energies of electrons in conduction band\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-4 in page 21\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"k=0.01*10^10; // k-vector value /m\n", +"h=1.05*10^-34; // Constant of calculation Js\n", +"m_0=0.91*10^-30; // Mass of conduction electron Kg\n", +"m_c1=0.067*m_0; // Effective mass of GaAs conduction electron Kg\n", +"m_c2=0.01*m_0; // Effective mass if InAs conduction electron Kg\n", +"\n", +"// Calculation\n", +"E_1=(h^2*(9*k^2))/(2*m_c1);\n", +"A_1=(E_1)/(1.6*10^-19);\n", +"\n", +"printf('(a)Energy of conduction electron in GaAs = %0.2e eV\n',A_1);\n", +"\n", +"E_2=(h^2*(9*k^2))/(2*m_c2);\n", +"A_2=(E_2)/(1.6*10^-19);\n", +"\n", +"printf('(b)Energy of conduction electron in InAs = %0.3e eV',A_2);\n", +"\n", +"// Results\n", +"// (a) Energy of conduction electron in GaAs is 50.9 meV\n", +"// (b) Energy of conduction electron in InAs is 340.7 meV\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Energies_of_electrons_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Energies of electrons in conduction band\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-5 in page 21\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"h=1.05*10^-34; // Constant of calculation Js\n", +"k=0.1,0.1,0,0; // Values of k-vector\n", +"m_c=0.067*0.091*10^-30; // Effective mass of conduction electron\n", +"\n", +"// Calculation\n", +"E=(h^2*(((0.1*10^10)^2)+((0.1*10^10)^2)))/(2*m_c);\n", +"A= E/(1.6*10^-19);\n", +"\n", +"printf('Energy of conduction electron is %0.3f eV',A);\n", +"\n", +"// Result\n", +"// Energy of conduction electron in the vertically upward direction = 11.302 eV\n", +"// The non parabolic E-k dispersion relation is more appropriate here" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Estimation_of_smallest_k_vector_along_x_direction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Estimation of smallest k-vector along x-direction\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-6 in page 21\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"x=1; // x-coordiante\n", +"y=1; // y-coordinate\n", +"z=1; // z-coordinate\n", +"E=0.3*1.6*10^-19; // Energy separation in eV\n", +"m_c=0.067*0.91*10^-30; // Effective mass of conduction electron in kg\n", +"h=1.05*10^-34; // Constant of calculation in Js\n", +"\n", +"// Calculation\n", +"k_x=(2*m_c*E)/(3*h^2);\n", +"A=sqrt(k_x);\n", +"\n", +"printf('K vector along (111) direction is %0.1e m^-1',A);\n", +"\n", +"// Result\n", +"//Value of k-vector along (111) direction is 4.2*10^8 m^-1\n", +"//Parabolic expression has been used to compute the k-vector" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Energies_of_electrons_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Energies of electrons in conduction band\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-7 in page 22\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"k=0.01*10^10; // k-vector value /m\n", +"h=1.05*10^-34; // Constant of calculation Js\n", +"m_0=0.91*10^-30; // Mass of conduction electron Kg\n", +"m_c1=0.067*m_0; // Effective mass of GaAs conduction electron Kg\n", +"m_c2=0.01*m_0; // Effective mass if InAs conduction electron Kg\n", +"\n", +"// Calculation\n", +"E_1=(h^2*(9*k^2))/(2*m_c1);\n", +"A_1=(E_1)/(1.6*10^-19);\n", +"\n", +"printf('(a)Energy of conduction electron in GaAs = %0.2e eV\n',A_1);\n", +"\n", +"E_2=(h^2*(9*k^2))/(2*m_c2);\n", +"A_2=(E_2)/(1.6*10^-19);\n", +"\n", +"printf('(b)Energy of conduction electron in InAs = %0.3e eV',A_2);\n", +"\n", +"// Results\n", +"// (a) Energy of conduction electron in GaAs is 50.9 meV\n", +"// (b) Energy of conduction electron in InAs is 340.7 meV" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Find_position_of_Fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Find position of Fermi level\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-8 in page 33\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"n_0=6*10^17; // Electron concentration in the conduction band /cm^3\n", +"k_bT=0.026; // Expressed in eV at room temperature\n", +"N_c=4.45*10^17; // Constant of Calculation /cm^3\n", +"\n", +"// Calculation\n", +"E_f=k_bT*log(n_0/N_c);\n", +"A=E_f*10^3;\n", +"\n", +"printf('Position of Fermi level is %0.2f meV',A);\n", +"\n", +"// Result\n", +"// Position of Fermi level is 7.77 meV\n", +"// Intrinsic carrier density is lesser than dopant density\n", +"// Hence semiconductor is non-degenerate" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Find_Fermi_level_at_room_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Find Fermi level at room temperature\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 1-9 in page 34\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Data given\n", +"k=1; // Assumed constant \n", +"m_e=2*k; // Effective mass of an electron in Kg\n", +"m_h=k; // Effective mass of only heavy hole in Kg\n", +"k_bT=0.026; // Expressed in eV at room temperature\n", +"\n", +"// Calculation\n", +"E_f=(3/4)*0.026*log(m_e/m_h);\n", +"printf('E_f = ((-E_g/2) - %0.3f) eV\n',E_f);\n", +"printf('Thus Fermi level is below center of forbidden gap by 0.014 eV');\n", +"\n", +"// Result\n", +"// Fermi level in the intrinsic semiconductor is ((-E_g/2) - 0.014) eV" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |