summaryrefslogtreecommitdiff
path: root/Basic_Electronics_by_D_De
diff options
context:
space:
mode:
Diffstat (limited to 'Basic_Electronics_by_D_De')
-rw-r--r--Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb1194
-rw-r--r--Basic_Electronics_by_D_De/2-Diode_Fundamentals.ipynb1514
-rw-r--r--Basic_Electronics_by_D_De/3-Diode_Circuits.ipynb1076
-rw-r--r--Basic_Electronics_by_D_De/4-BJT_Fundamentals.ipynb557
-rw-r--r--Basic_Electronics_by_D_De/5-BJT_Circuits.ipynb337
-rw-r--r--Basic_Electronics_by_D_De/6-Field_Effect_Transistor.ipynb980
-rw-r--r--Basic_Electronics_by_D_De/7-FET_Circuits.ipynb1904
-rw-r--r--Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb471
8 files changed, 8033 insertions, 0 deletions
diff --git a/Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb b/Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb
new file mode 100644
index 0000000..535aa7d
--- /dev/null
+++ b/Basic_Electronics_by_D_De/1-Semiconductor_Fundamentals.ipynb
@@ -0,0 +1,1194 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Semiconductor Fundamentals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: Position_of_Fermi_energy_at_0K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//Position of Fermi energy at 0K\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-10 in page 34\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"h=1.5*10^-34; // Constant of calculation in Js\n",
+"m_c=0.067*0.91*10^-30; // Effective mass of conduction electron in Kg\n",
+"n_0=10^24; // Electron concentration at 0K /m^3\n",
+"\n",
+"// Calculation\n",
+"E_f= ((h^2*(3*%pi^2*n_0)^(2/3))/(2*m_c));\n",
+"A=E_f/(1.6*10^-19);\n",
+"\n",
+"printf('Position of Fermi level at 0K is %0.4f eV',A);\n",
+"\n",
+"// Result\n",
+"// Fermi energy at 0K as measured from edge of conduction band is 0.11 eV\n",
+"// Fermi energy is placed 0.11 eV above the edge of conduction band\n",
+"// Fermi energy is within the conduction band"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: Time_taken_to_reach_Brillouin_zone.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Time taken to reach Brillouin zone\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-11 in page 46\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"h=1.05*10^-34; // Constant of calculation in Js\n",
+"Kb=1.112*10^8; // Wave vector at Brillouin xone along x-axis /cm\n",
+"E_0=10^4; // External electric field applied in V/cm\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"\n",
+"// Calculation\n",
+"tou=(h*Kb)/(e*E_0);\n",
+"\n",
+"printf('Time taken by electron is %0.3e s',tou);\n",
+"\n",
+"// Result\n",
+"// Time taken by electron to reach Brillouin zone is 7.297 ps"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.12: Calculate_drift_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate drift velocity\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-12 in page 46\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"m_c=0.067*0.91*10^-30; // Effective electron mass in Kg\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"E_0=10^5; // External electric field in KV/m\n",
+"tou1=10^-13; // First Brillouin zone time in s\n",
+"tou2=10^-12; // Second Brillouin zone time in s\n",
+"tou3=10^-11; // Third Brillouin zone time in s\n",
+"\n",
+"// Calculation\n",
+"v_01=(e*tou1*E_0)/m_c;\n",
+"v_02=(e*tou2*E_0)/m_c;\n",
+"v_03=(e*tou3*E_0)/m_c;\n",
+"\n",
+"printf('(a)Drift velocity in first case is %0.2e m/s\n',v_01);\n",
+"printf('(b)Drift velocity in second case is %0.2e m/s\n',v_02);\n",
+"printf('(c)Drift velocity in third case is %0.2e m/s',v_03);\n",
+"\n",
+"// Result\n",
+"// (a) Drift velocity in first case is 2.62*10^4 cm/s\n",
+"// (b) Drift velocity in second case is 2.62*10^5 cm/s\n",
+"// (c) Drift velocity in third case is 2.62*10^6 cm/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.13: Compute_conductivity_drift_velocity_current_density.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Compute conductivity,drift velocity,current density\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-13 in page 47\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"mu=35.2*10^-4; // Mobility of electrons in m^2/Vs\n",
+"n_0=7.87*10^28; // Number of free electrons per cubic meter\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"E_0=30*10^2; // External electric field applied in V/m\n",
+"\n",
+"// Calculation\n",
+"sigma=n_0*e*mu;\n",
+"printf('(a)Mobility = %0.1e m^2/Vs\n',mu);\n",
+"printf('Conductivity of the specimen is %0.2e s/m\n\n',sigma);\n",
+"V_0=mu*E_0;\n",
+"J=sigma*E_0;\n",
+"printf('(b)Electric field Eo = %0.0e V/m\n',E_0);\n",
+"printf('Drift velocity of free electrons is %0.2f m/s\n',V_0);\n",
+"printf('Current density is %0.2e A/meter^3',J);\n",
+"\n",
+"// Result\n",
+"// (a) Conductivity of specimen is 4.43*10^7 s/m\n",
+"// (b) Drift velocity of free electrons is 10.56 m/s\n",
+"// (c) Current density is 13.3*10^10 A/meter cube"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.14: Calculate_drift_velocity_in_copper_conductor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate drift velocity in copper conductor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-14 in page 47\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"A=10^-5; // Cross sectional area in m^2\n",
+"I=100; // Current flowing in A\n",
+"n_0=8.5*10^28; // Free electron concentration of copper per cubic meter\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"\n",
+"// Calculation\n",
+"V_d=I/(n_0*A*e);\n",
+"\n",
+"printf('The drift velocity in copper is %0.3e m/s',V_d);\n",
+"\n",
+"// Result\n",
+"// Drift velocity in copper is 7.353*10^-4 m/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.16: Calculate_drift_velocity_in_copper.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate drift velocity in copper\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-16 in page 47\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"tou=10^-14; // Relaxation time in s\n",
+"m_c=0.02*9.1*10^-31; // Effective mass of electron in Kg\n",
+"E_0=0.1; // Electric field across conductor in V/m\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"\n",
+"// Calculation\n",
+"V_0=(e*E_0*tou)/m_c;\n",
+"\n",
+"printf('The drift velocity of electrons in copper is %0.3f m/s',V_0);\n",
+"\n",
+"// Result\n",
+"// Drift velocity of electrons in copper is 0.009 m/s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.17: Equilibrium_hole_concentration_in_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Equilibrium hole concentration in Si\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-17 in page 48\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"n_0=10^17; // Free electron concentration /cm^3\n",
+"n_i=1.5*10^10; // Constant of calculation\n",
+"// Calculation\n",
+"p_0= n_i^2/n_0;\n",
+"\n",
+"printf('Equilibrium hole concentration is %0.2e cm^-3',p_0);\n",
+"\n",
+"// Result\n",
+"// Equilibrium hole concentration in Si sample is 2.25*10^3 cm^-3"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.18: Time_taken_to_reach_Brillouin_zone.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Time taken to reach Brillouin zone\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-18 in page 48\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"h=1.05*10^-34; // Constant of calculation in Js\n",
+"kB=1.112*10^8; // Brillouin zone edge along x-axis\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"E_0=10^4; // External electric field in V/m\n",
+"\n",
+"// Calculation\n",
+"tou=(h*kB)/(e*E_0);\n",
+"printf('Time taken to reach Brillouin zone is %0.3e s',tou);\n",
+"\n",
+"// Result\n",
+"// Time taken by GaAs electron to reach Brillouin zone is 7.298 ps"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Calculate_wave_vector_carried_by_photo.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate wave vector carried by photon\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-1 in page 7\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"c=3*10^8; // Speed of light in m/s\n",
+"h=6.64*10^-34;// Planks constant in Js\n",
+"E_photon=2*1.6*10^-19; // Energy of photon in J\n",
+"\n",
+"//Calculations\n",
+"lambda=(c*h)/E_photon; \n",
+"k=(2*%pi/lambda);\n",
+"\n",
+"printf('The wavelenght of a 2.0eV photon = %0.3e m\n',lambda);\n",
+"printf('The magnitude of k vector = %0.2e m^-1',k);\n",
+"\n",
+"// Results\n",
+"// The wavelength of a 2.0 eV photon is 6225 Angstrom\n",
+"// The magnitude of k-vector is 1.01 * 10^7 m^-1"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.20: Electron_hole_concentration_at_minimum_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Electron,hole concentration at minimum conductivity\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-20 in page 49\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"mu_n=1350; // Mobility of electrons in cm^2/Vs\n",
+"mu_p=450; // Movility of holes in cm^2/Vs\n",
+"n_i=1.5*10^10; // Intrinsic carrier concentration /cm^3\n",
+"\n",
+"// Calculation\\n",
+"//Minimum conductivity of Si when slightly p-type has been proved in text\n",
+"//Thus the electron and hole concentrations are derived as below\n",
+"n_0=n_i*sqrt(mu_p/mu_n); \n",
+"p_0=n_i*sqrt(mu_n/mu_p); \n",
+"\n",
+"printf('(a)Electron concentration is %0.2e cm^-3\n',n_0);\n",
+"printf('(b)Hole concentration is %0.2e cm^-3',p_0);\n",
+"\n",
+"// Result \n",
+"// (a) Electron concentration is 8.66*10^9 cm^-3\n",
+"// (b) Hole concentration is 2.6*10^10 cm^-3"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.21: Position_of_Fermi_level_at_room_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Position of Fermi level at room temperature\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-22 in page 50\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"C_Ge=4.41*10^22; // Concentration of Ge atom /cm^3\n",
+"N_D=4.41*10^15; // Number of free donor atoms \n",
+"N_C=8.87*10^18; // Number of conduction electrons assuming full ionization\n",
+"K_BT=0.026; // Measured in eV at room temperature\n",
+"\n",
+"// Calculation\n",
+"E_F=K_BT*log(N_D/N_C);\n",
+"\n",
+"printf('Position of fermi level is %0.4f',E_F);\n",
+"\n",
+"// Result\n",
+"// Position of Fermi level from edge of conduction band is -0.1977\n",
+"// Thus E_F is below E_C"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.22: Mobility_of_free_electrons_in_Alluminium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Mobility of free electrons in Alluminium\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-22 in page 50\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"n_0=18*10^28; // Derived from the given formula in textbook\n",
+"rho=3.44*10^-6; // Resistivity in ohm-cm\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"\n",
+"// Calculation\n",
+"mu=10^2/(n_0*e*rho);\n",
+"\n",
+"printf('Mobility of free electrons is %0.0e m^2/V-s',mu);\n",
+"\n",
+"// Result\n",
+"// Mobility of free electrons in Alluminium is 10^-3 m^2/V-s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.23: Percentage_of_increse_in_carrier_concentration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Percentage of increse in carrier concentration\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-23 in page 51\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"kT=0.026; // Value at T=300K\n",
+"T=300; // Room temperature in K\n",
+"dT=1/300; // Rate of change of temperature\n",
+"E_g=0.785; // Band gap energy in germanium in eV\n",
+"\n",
+"// Calculation\n",
+"dni=((1.5+(E_g/(2*kT)))*dT)*100; \n",
+"\n",
+"printf('Rise in intrinsic carrier concentration is %0.1f percent/degree',dni);\n",
+"\n",
+"// Result\n",
+"// Percentage rise in intrinsic carrier concentration is 5.5 %/degree"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.24: Previous_problem_calculated_for_intrinsic_silicon.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Previous problem calculated for intrinsic silicon\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-24 in page 51\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"kT=0.026; // Value at T=300K\n",
+"T=300; // Room temperature in K\n",
+"dT=1/300; // Rate of change of temperature\n",
+"E_g=1.21; // Band gap energy in silicon in eV\n",
+"\n",
+"// Calculation\n",
+"dni=((1.5+(E_g/(2*kT)))*dT)*100; \n",
+"\n",
+"printf('Rise in intrinsic carrier concentration is %0.1f percent/degree',dni);\n",
+"\n",
+"// Result\n",
+"// Percentage rise in intrinsic carrier concentration is 8.3 %/degree"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.25: Find_drift_velocity_mobility_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find drift velocity,mobility,conductivity\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-25 in page 51\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"A=0.835*10^-6; // Cross section of wire in m^2\n",
+"J=2.4*10^6; // Current density in A/m^2\n",
+"n_0=8.4*10^27; // Concentration of electrons in copper in electrons/m^3\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"ohm=0.0214; // Resistance per meter\n",
+"E_0=2*ohm; // Electric field in V/m\n",
+"\n",
+"// Calculations\n",
+"v_0=(J)/(n_0*e);\n",
+"printf('(a)The drift velocity is %0.2e m/s\n',v_0);\n",
+"mu=v_0/E_0;\n",
+"printf('(b)The mobility of electrons is %0.2e m^2/V-s\n',mu);\n",
+"sigma=(n_0*10*e*mu);\n",
+"printf('(c)Therefore the conductivity is %0.2e /ohm-m',sigma);\n",
+"\n",
+"// Result\n",
+"// (a) The drift velocity is 1.78*10^-3 m/s\n",
+"// (b) Mobility in this case is 4.16*10^-2 m^2/V-s\n",
+"// (c) Conductivity is 5.61*10^8 1/ohm-m"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.26: Determine_concentration_of_electrons_and_holes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine concentration of electrons and holes\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-26 in page 52\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"N_D=2*10^14; // Number of donor atoms in atoms/cm^2\n",
+"N_A=3*10^14; // Number of acceptor atoms in atoms/cm^2\n",
+"ni=2.5*10^19; // number of intrinsic atoms in atoms/cm^2\n",
+"\n",
+"// Calculation\n",
+"p_0=(0.5*10^14)+sqrt(0.25*10^28 + 6.25*10^26);\n",
+"n_0=-(0.5*10^14)+sqrt(0.25*10^28 + 6.25*10^26);\n",
+"printf('(a)Concentration of free electrons is %0.3e cm^-3\n',n_0);\n",
+"printf('(b)Concentration of holes is %0.3e cm^-3\n',p_0);\n",
+"printf('since p_0>n_0 the sample is p-type\n');\n",
+"printf('When N_A=N_D=10^15,\n n_0=p_0 from the neutrality equation\n');\n",
+"printf('Thus the germanium sample in this question is intrinsic by compensation');\n",
+"printf('When N_D=10^16,\n');\n",
+"p_0=(6.25*10^26)/10^16;\n",
+"printf('(c)p_0=%0.2e cm^-3\n',p_0);\n",
+"printf('Since n_0>p_0,germanium sample in this case is n-type');\n",
+"\n",
+"// Result\n",
+"// (a) Number of free electrons are 0.058*10^14 cm^-3 \n",
+"// (b) Number of holes are 1.058*10^14 cm^-3\n",
+"// Semiconductor can be made intrinsic without doping or by equal doping"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.27: Concentration_of_holes_and_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Concentration of holes and electrons\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-27 in page 52\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"sigma=100; // Conductivity of p-type germanium\n",
+"e=1.6*10^-19; // Charge on an electron in eV\n",
+"mu_p=1800; // Mobility of holes in cm^2/Vs\n",
+"ni=2.5*10^13; // Number of intrinsic atoms in germanium\n",
+"mu_n=1300; // Mobility of electrons in cm^2/Vs\n",
+"sigma1=0.1; // Conductivity in n-type silicon in /ohm-cm\n",
+"ni1=1.5*10^10; // Number of intrinsic atoms in silicon\n",
+"P_p=3.47*10^17; // Constant of calculation\n",
+"\n",
+"// Calculation\n",
+"printf('For Germanium:\n');\n",
+"p_0=sigma/(e*mu_p);\n",
+"n_0=(ni^2)/P_p;\n",
+"printf('(a)Concentration of holes is %0.2e cm^-3\n',p_0);\n",
+"printf('(b)Concentration of electrons is %0.2e m^-3\n',n_0);\n",
+"printf('For Silicon:\n');\n",
+"n_0=sigma1/(e*mu_n);\n",
+"p_0=(ni1^2)/(4.81*10^14);\n",
+"printf('(c)Concentration of electrons is %0.2e cm^-3\n',n_0);\n",
+"printf('(d)Concentration of holes is %0.2e m^-3',p_0);\n",
+"\n",
+"// Result\n",
+"// (a) For Ge,Hole conc. = 3.47*10^17 cm^-3, Electron conc. = 1.8*10^15 m^-3\n",
+"// (b) For Si,Hole conc. = 4.68*10^5 cm^-3, Electron conc. = 4.81*10^14 cm^-3"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.28: To_prove_resistivity_is_45_ohm_cm.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To prove,resistivity is 45 ohm-cm\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-28 in page 53\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"ni=2.5*10^13; // Intrinsic concentration /cm^3\n",
+"mu=5600; // Sum of mobilities of holes and electrons\n",
+"e=1.6*10^-19; // Charge on an electron in C \n",
+"\n",
+"// Calculation\n",
+"sigma=e*ni*mu;\n",
+"printf('Conductivity of germanium is %0.3f (s/cm)^-1\n',sigma);\n",
+"rho=1/sigma;\n",
+"printf('Therefore resistivity is %0.1f ohm-cm',rho);\n",
+"\n",
+"// Result\n",
+"// Conductivity of germanium = 0.0232 (s/cm)^-1\n",
+"// Resistivity = 44.6 ohm-cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.29: Find_conductivity_of_intrinsic_germanium.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find conductivity of intrinsic germanium\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-29 in page 53\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"ni=2.5*10^13; // Intrinsic concentration /cm^3\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"mu_n=3800; // Mobility of electrons in cm^2/Vs\n",
+"mu_p=1800; // Mobility of holes in cm^2/Vs\n",
+"N_D=4.41*10^15; // Concentration of donor atoms in Ge /cm^3\n",
+"\n",
+"// Calculation\n",
+"sigma=(ni*e)*(mu_n+mu_p);\n",
+"printf('(a)Intrinsic conductivity=%0.4f s/cm\n',sigma);\n",
+"p_0=(ni^2)/N_D;\n",
+"printf('p_0=%0.2e /cm^3\n',p_0);\n",
+"sigma1=N_D*e*mu_n;\n",
+"printf('(b)Since n_0>p_0, Conductivity=%0.2f s/cm\n',sigma1);\n",
+"n_0=(ni^2)/N_D;\n",
+"printf('With given acceptor impurity,\nn_0=%0.2e /cm^3\n',n_0);\n",
+"sigma2=N_D*e*mu_p;\n",
+"printf('(c)Since p_0>n_0, Conductivity=%0.2f s/cm',sigma2);\n",
+"\n",
+"// Result\n",
+"// (a) Conductivity in first case is 0.0224 s/cm\n",
+"// (b) Conductivity in second case is 2.68 s/cm\n",
+"// (c) Conductivity in third case is 1.27 s/cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Calculate_semiconductor_band_gap.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate semiconductor band gap\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-2 in page 7\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"lambda=0.5*10^-6; // Wavelength of emitted light in m\n",
+"c=3*10^8; // Speed of light in vacuum in m/s\n",
+"h=1.05*10^-34;// Constant of calculation\n",
+"\n",
+"// Calculation\n",
+"E_g= (2*%pi*h*c)/lambda;\n",
+"A= E_g*10^19/1.6;\n",
+"\n",
+"printf('The material band gap has to be %0.3f eV',A);\n",
+"\n",
+"// Result\n",
+"//The material band gap is 2.474 eV\n",
+"// Semiconductors like C,BN,GaN,SiC meet this criterion"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Calculate_E_k_relation_of_conduction_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate E-k relation of conduction electrons\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-3 in page 20\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"m_c=0.1*0.91*10^-30; // Effective mass of conduction electron in kg\n",
+"k=0.3*10^10; // Wave vector in /m\n",
+"h=1.05*10^-34; // Constant of calculation in Js\n",
+"\n",
+"// Calculation\n",
+"E= (h^2*k^2)/(2*m_c);\n",
+"A= E/(1.6*10^-19);\n",
+"\n",
+"printf('Energy of conduction electrons = %0.1f eV',A);\n",
+"\n",
+"// Result\n",
+"//Energy of the conduction electrons in vertically upward direction is 3.4 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Energies_of_electrons_in_conduction_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Energies of electrons in conduction band\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-4 in page 21\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"k=0.01*10^10; // k-vector value /m\n",
+"h=1.05*10^-34; // Constant of calculation Js\n",
+"m_0=0.91*10^-30; // Mass of conduction electron Kg\n",
+"m_c1=0.067*m_0; // Effective mass of GaAs conduction electron Kg\n",
+"m_c2=0.01*m_0; // Effective mass if InAs conduction electron Kg\n",
+"\n",
+"// Calculation\n",
+"E_1=(h^2*(9*k^2))/(2*m_c1);\n",
+"A_1=(E_1)/(1.6*10^-19);\n",
+"\n",
+"printf('(a)Energy of conduction electron in GaAs = %0.2e eV\n',A_1);\n",
+"\n",
+"E_2=(h^2*(9*k^2))/(2*m_c2);\n",
+"A_2=(E_2)/(1.6*10^-19);\n",
+"\n",
+"printf('(b)Energy of conduction electron in InAs = %0.3e eV',A_2);\n",
+"\n",
+"// Results\n",
+"// (a) Energy of conduction electron in GaAs is 50.9 meV\n",
+"// (b) Energy of conduction electron in InAs is 340.7 meV\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Energies_of_electrons_in_conduction_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Energies of electrons in conduction band\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-5 in page 21\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"h=1.05*10^-34; // Constant of calculation Js\n",
+"k=0.1,0.1,0,0; // Values of k-vector\n",
+"m_c=0.067*0.091*10^-30; // Effective mass of conduction electron\n",
+"\n",
+"// Calculation\n",
+"E=(h^2*(((0.1*10^10)^2)+((0.1*10^10)^2)))/(2*m_c);\n",
+"A= E/(1.6*10^-19);\n",
+"\n",
+"printf('Energy of conduction electron is %0.3f eV',A);\n",
+"\n",
+"// Result\n",
+"// Energy of conduction electron in the vertically upward direction = 11.302 eV\n",
+"// The non parabolic E-k dispersion relation is more appropriate here"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Estimation_of_smallest_k_vector_along_x_direction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Estimation of smallest k-vector along x-direction\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-6 in page 21\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"x=1; // x-coordiante\n",
+"y=1; // y-coordinate\n",
+"z=1; // z-coordinate\n",
+"E=0.3*1.6*10^-19; // Energy separation in eV\n",
+"m_c=0.067*0.91*10^-30; // Effective mass of conduction electron in kg\n",
+"h=1.05*10^-34; // Constant of calculation in Js\n",
+"\n",
+"// Calculation\n",
+"k_x=(2*m_c*E)/(3*h^2);\n",
+"A=sqrt(k_x);\n",
+"\n",
+"printf('K vector along (111) direction is %0.1e m^-1',A);\n",
+"\n",
+"// Result\n",
+"//Value of k-vector along (111) direction is 4.2*10^8 m^-1\n",
+"//Parabolic expression has been used to compute the k-vector"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Energies_of_electrons_in_conduction_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Energies of electrons in conduction band\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-7 in page 22\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"k=0.01*10^10; // k-vector value /m\n",
+"h=1.05*10^-34; // Constant of calculation Js\n",
+"m_0=0.91*10^-30; // Mass of conduction electron Kg\n",
+"m_c1=0.067*m_0; // Effective mass of GaAs conduction electron Kg\n",
+"m_c2=0.01*m_0; // Effective mass if InAs conduction electron Kg\n",
+"\n",
+"// Calculation\n",
+"E_1=(h^2*(9*k^2))/(2*m_c1);\n",
+"A_1=(E_1)/(1.6*10^-19);\n",
+"\n",
+"printf('(a)Energy of conduction electron in GaAs = %0.2e eV\n',A_1);\n",
+"\n",
+"E_2=(h^2*(9*k^2))/(2*m_c2);\n",
+"A_2=(E_2)/(1.6*10^-19);\n",
+"\n",
+"printf('(b)Energy of conduction electron in InAs = %0.3e eV',A_2);\n",
+"\n",
+"// Results\n",
+"// (a) Energy of conduction electron in GaAs is 50.9 meV\n",
+"// (b) Energy of conduction electron in InAs is 340.7 meV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Find_position_of_Fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find position of Fermi level\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-8 in page 33\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"n_0=6*10^17; // Electron concentration in the conduction band /cm^3\n",
+"k_bT=0.026; // Expressed in eV at room temperature\n",
+"N_c=4.45*10^17; // Constant of Calculation /cm^3\n",
+"\n",
+"// Calculation\n",
+"E_f=k_bT*log(n_0/N_c);\n",
+"A=E_f*10^3;\n",
+"\n",
+"printf('Position of Fermi level is %0.2f meV',A);\n",
+"\n",
+"// Result\n",
+"// Position of Fermi level is 7.77 meV\n",
+"// Intrinsic carrier density is lesser than dopant density\n",
+"// Hence semiconductor is non-degenerate"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Find_Fermi_level_at_room_temperature.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Fermi level at room temperature\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 1-9 in page 34\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Data given\n",
+"k=1; // Assumed constant \n",
+"m_e=2*k; // Effective mass of an electron in Kg\n",
+"m_h=k; // Effective mass of only heavy hole in Kg\n",
+"k_bT=0.026; // Expressed in eV at room temperature\n",
+"\n",
+"// Calculation\n",
+"E_f=(3/4)*0.026*log(m_e/m_h);\n",
+"printf('E_f = ((-E_g/2) - %0.3f) eV\n',E_f);\n",
+"printf('Thus Fermi level is below center of forbidden gap by 0.014 eV');\n",
+"\n",
+"// Result\n",
+"// Fermi level in the intrinsic semiconductor is ((-E_g/2) - 0.014) eV"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/2-Diode_Fundamentals.ipynb b/Basic_Electronics_by_D_De/2-Diode_Fundamentals.ipynb
new file mode 100644
index 0000000..8887a74
--- /dev/null
+++ b/Basic_Electronics_by_D_De/2-Diode_Fundamentals.ipynb
@@ -0,0 +1,1514 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Diode Fundamentals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: Reverse_saturation_point_of_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Reverse saturation point of current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-10 in page 93\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"b=2.11; // Constant\n",
+"Lsigma=3*10^-4; // Constant\n",
+"Vt=0.026; // Threshold voltage in V\n",
+"A=1.5*10^-6; // Cross sectional area in mm^2\n",
+"sigmai=2.24; // Intrinsic conductivity /ohm-cm\n",
+"\n",
+"// Calculation\n",
+"I_0=((A*Vt*b*sigmai^2)/(1+b)^2)*((1/0.45)+(1/0.015));\n",
+"\n",
+"printf('Reverse saturation point of current is %0.2e A',I_0);\n",
+"\n",
+"// Result\n",
+"// Reverse saturation point of current is 2.94 mu-A"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.12: Find_reverse_saturation_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find reverse saturation current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-12 in page 94\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"A=5*10^-2; // Cross sectional area in m^2\n",
+"b=2.6; // Constant of calculation\n",
+"Lsigma=10^-4; // Constant of calculation\n",
+"sigmai=4.32*10^-6; // Intrinsic conductivity in ohm/cm\n",
+"Vt=0.026; // Constant in eV\n",
+"\n",
+"// Calculation\n",
+"I_0=A*Vt*(b/(1+b)^2)*sigmai^2*(2*10^4);\n",
+"\n",
+"printf('The reverse saturation current = %0.2e A',I_0);\n",
+"\n",
+"// Result\n",
+"// The reverse saturation current = 97.25 pA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: Ratio_of_reverse_saturation_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Ratio of reverse saturation current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-13 in page 95\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"b1=2.6; // Constant of calculation\n",
+"b2=2.11;// Constant of calculation\n",
+"sigmai1=4.32*10^-6; // Intrinsic conductivity for Si /ohm-cm\n",
+"sigmai2=2.24*10^-2; // Intrinsic conductivity for Ge /ohm-cm\n",
+"\n",
+"// Calculation\n",
+"printf('For Si:\n');\n",
+"Y1=((b1*sigmai1^2)/(1+b1)^2)*(2*10^4);\n",
+"printf('Y_Si = %0.2e ohm-cm^2\n',Y1);\n",
+"printf('For Ge:\n');\n",
+"Y2=((b2*sigmai2^2)/(1+b2)^2)*(2*10^2);\n",
+"printf('Y_Ge = %0.2e ohm-cm^2\n',Y2);\n",
+"Y=Y2/Y1;\n",
+"printf('Therefore the ratio is %0.1e',Y);\n",
+"\n",
+"\n",
+"// Result\n",
+"// Y_Si = 7.49*10^-8 ohm-cm^2\n",
+"// Y_Ge = 2.189*10^-2 ohm-cm^2\n",
+"// Ratio = 0.29*10^6"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Calculate_the_current_flowing.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate the current flowing\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-14 in page 96\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I_0=9*10^-7; // Current flowing in A\n",
+"V=0.1; // Applied forward bias in V\n",
+"\n",
+"// Calculation\n",
+"I=I_0*(exp(40*V)-1);\n",
+"printf('Current flowing through diode = %0.2e A',I);\n",
+"\n",
+"// Result\n",
+"// Current flowing through the diode under forward bias = 48.15 mu-A"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.15: Find_voltage_to_be_applied.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find voltage to be applied\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-15 in page 96\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"J_0=500*10^-3; // Saturation current density in mA/m^2\n",
+"J=10^5; // Forward current density in A/m^2\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"etaK=1.38*10^-23; // Constant of calculation\n",
+"T=350; // Temperature in K\n",
+"\n",
+"// Calculation\n",
+"A=2.303*log10(2*10^5);\n",
+"V=(A*etaK*T)/e;\n",
+"\n",
+"printf('Voltage to be applied = %0.4f V',V);\n",
+"\n",
+"// Result\n",
+"// The voltage to be applied = 0.3685 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: Find_current_when_forward_biased.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find current when forward biased\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-16 in page 97\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"k_T=1.38*10^-23; // Constant of calculation\n",
+"T=293; // Temperature in K\n",
+"I_s=1.5*10^-13; // Saturation current in A\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"V=0.55; // Forward bias voltage in V\n",
+"\n",
+"// Calculation\n",
+"printf('At T = 20 degrees:\n');\n",
+"V_T=(k_T*T)/e;\n",
+"I=I_s*(exp(V/0.02527)-1);\n",
+"printf('V_T = %0.4f V\n',V_T);\n",
+"printf('(a)I = %0.3e A\n',I);\n",
+"printf('At T = 100 degrees:\n');\n",
+"V_T=(k_T*373)/e;\n",
+"printf('V_T = %0.4f V\n',V_T);\n",
+"printf('I_s doubles 8 times ie I_s = 256.Therefore,\n');\n",
+"I=1.5*256*10^-13*(exp(0.55/0.032)-1);\n",
+"printf('(b)I = %0.3f A',I);\n",
+"\n",
+"// Result\n",
+"// (a) At T=20 degrees, I = 4.251*10^-4 A\n",
+"// (b) At T=100 degrees, I = 0.001 A"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.17: Calculate_current_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate current and voltage \n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-17 in page 97\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I1=2*10^-6; // Saturation current in A\n",
+"I2=4*10^-6; // Saturation current in A\n",
+"Vz=100; // Breakdown voltages are equal\n",
+"eta=2; // Constant of calculation \n",
+"\n",
+"// Calculation\n",
+"printf('At V=90V,none of the diodes will break down.I is determined by the diode with the smallest I_0\n');\n",
+"printf('Thus for D1,I = 1 mu-A and for D2,I = -1 mu-A\n');\n",
+"V2=eta*0.026*log(1-(I1/I2));\n",
+"printf('(a)V2 = %0.1e V\n',V2);\n",
+"printf('(b)V1 = -89.964 V');\n",
+"\n",
+"// Result\n",
+"// (a) V2 = -36 mV\n",
+"// (b) V1 = -89.964 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: Calculate_forward_currents_for_voltages.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate forward currents for voltages\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-18 in page 98\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vt=0.026; // Thermal voltage at room temperature in eV\n",
+"V=[0.1 0.2 0.3]; // Given voltages in V\n",
+"\n",
+"// Calculation\n",
+"V1=0.026*-2.3;\n",
+"printf('(a)V=%0.2f V\n',V1);\n",
+"R=(exp(1.92)-1)/(exp(-1.92)-1);\n",
+"printf('(b)Ration of forward bias current to reverse bias current=%0.2f\n',R);\n",
+"printf('(c):\n')\n",
+"for i=1:3\n",
+" I=15*(exp(V(i)/0.026)-1);\n",
+" printf('I = %0.3e A\n',I);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// (a) V = -0.060 V\n",
+"// (b) Ratio = -6.83\n",
+"// (c) Forward currents = 0.687 mA, 32.86 mA and 1.539 A respectively"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: Factor_to_be_multiplied_with_reverse_saturation_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Factor to be multiplied with reverse saturation current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-19 in page 98\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"T1=25; // Initial temperature for Ge in degree celcius\n",
+"T2=70; // Final temperature for Ge in degree celcius\n",
+"T_2=150; // Final temperature for Si in degree celcius\n",
+"\n",
+"// Calculation\n",
+"printf('(a)Let the reverse saturation current for Ge at 25 degrees be Io(25)\n');\n",
+"A=2^((T2-T1)/10);\n",
+"printf('The factor to be multiplied when temperature is raised to 70 degrees is %0.0f\n',A);\n",
+"printf('Therefore, Io(70) = %0.0f*Io(25)\n\n',A);\n",
+"printf('(b)Let the reverse saturation current for Si at 25 degrees be Io(25)\n');\n",
+"A1=2^((T_2-T1)/10);\n",
+"printf('The factor to be multiplied when temperature is raised to 150 degrees is %0.0f\n',A1);\n",
+"printf('Therefore, Io(150) = %0.0f*Io(25)',A1);\n",
+"\n",
+"// Results\n",
+"// (a) Io(70) = 23*Io(25)\n",
+"// (b) Io(150) = 5793*Io(25)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.1: Calculate_width_of_depletion_layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate height of potential-energy barrier\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-1 in page 77\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"rho1=1.5; // Resistivity of p-side of Ge diode in ohm-cm\n",
+"rho2=1; // Resistivity of n-side of Ge diode in ohm-cm\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"mu_p=1800; // Mobility of holes\n",
+"mu_n=3800; // Mobility of electrons\n",
+"\n",
+"// Calculation\n",
+"N_A=1/(rho1*e*mu_p);\n",
+"N_D=1/(rho2*e*mu_n);\n",
+"printf('(a) rho = 2 ohm-cm\n');\n",
+"printf('N_A=%0.2e /cm^3\n',N_A);\n",
+"printf('N_D=%0.2e /cm^3\n',N_D);\n",
+"printf('The height of the potential energy barrier is:\n');\n",
+"V_0=0.026*log((N_A*N_D)/(2.5*10^13)^2);\n",
+"printf('V_0=%0.3f eV\n\n',V_0);\n",
+"printf('(b)For silicon:\n');\n",
+"N_A1=1/(rho1*e*500);\n",
+"N_D1=1/(2*e*1300);\n",
+"printf('N_A=%0.2e /cm^3\n',N_A1);\n",
+"printf('N_D=%0.2e /cm^3\n',N_D1);\n",
+"V_01=0.026*log((N_A1*N_D1)/(1.5*10^10)^2);\n",
+"printf('The height of the potential energy barrier is:\n');\n",
+"printf('V_0=%0.3f eV',V_01);\n",
+"\n",
+"// Result\n",
+"// (a) For Ge, V_0 = 0.226 eV \n",
+"// (b) For Si, V_0 = 0.655 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: Leakage_resistance_shunting_the_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Leakage resistance shunting the diode\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-20 in page 99\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"// Kirchoff's law has been applied and equations solved to get final expression\n",
+"\n",
+"// Calculation\n",
+"I_R=(0.08*5*10^-6)/0.15;\n",
+"R=10/I_R;\n",
+"printf('Leakage resistance = %0.2e Mohm',R);\n",
+"\n",
+"// Result\n",
+"// Leakage resistance shunting the diode = 3.75 Mohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: Maximum_reverse_bias_voltage_to_be_maintained.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Maximum reverse-bias voltage to be maintained\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-21 in page 99\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rt=0.15*10^-3; // Thermal resistance of mechanical contact between diode and surroundings in mW/degree celcius\n",
+"T1=25; // Ambient temperature in degree celcius\n",
+"T2=35; // Rise in ambient temperature in degree celcius\n",
+"I_25=5*10^-6; // Reverse saturation current at 25 degrees in mu-A\n",
+"\n",
+"// Calculation\n",
+"Po=Rt*(T2-T1);\n",
+"printf('P_out = %0.2e mW\n',Po);\n",
+"printf('We know that reverse saturation current doubles for every 10 degree rise in temperature\n');\n",
+"I_35=2*I_25;\n",
+"V=Po/I_35;\n",
+"printf('Thus the maximum reverse bias voltage to be maintained is %0.0f V',V);\n",
+"\n",
+"// Result\n",
+"// Maximum reverse bias voltage that can be maintained across diode is 150V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.22: Factor_to_be_multiplied_with_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Factor to be multiplied with current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-22 in page 100\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V_T=0.0364; // Thermal voltage in V\n",
+"// Simplified expression for I has been derived\n",
+"I_25=0.01; // Current at 25 degrees in mA\n",
+"I_150=2.42; // Current at 150 degrees in mA\n",
+"\n",
+"// Calculation\n",
+"printf('At 150 degrees:\n');\n",
+"I=5792*(exp(0.4/0.0728)-1);\n",
+"printf('I = %0.0f * Io(25)\n',I);\n",
+"printf('At 25 degrees:\n');\n",
+"I=exp(0.4/0.0514)-1;\n",
+"printf('I = %0.0f * Io(25)\n',I);\n",
+"R=I_150/I_25;\n",
+"printf('Factor to be multiplied with current = %0.0f',R);\n",
+"\n",
+"// Result\n",
+"// When temp is increased from 25-150 degrees,current has to be multiplied by 242"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.24: Find_the_diffusion_length.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the diffusion length\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-24 in page 101\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"C_D=1.5*10^-6; // Diffusion capacitance in F\n",
+"D_p=13; // Constant \n",
+"eta=2; // Constant\n",
+"V_t=0.026; // Voltage at room temperature in V\n",
+"I=1*10^-3; // Current in mA\n",
+"\n",
+"// Calculation\n",
+"L_p=sqrt((C_D*D_p*eta*V_t)/I);\n",
+"\n",
+"printf('Diffusion length = %0.3e m',L_p);\n",
+"\n",
+"// Result\n",
+"// Diffusion length = 31.84*10^-3 m"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.25: Find_static_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find static resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-25 in page 103\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I_0=20*10^-6; // Current in micro A\n",
+"V_F=0.2; // Forward voltage in V\n",
+"\n",
+"// Calculation\n",
+"I=I_0*(exp(40*V_F)-1);\n",
+"r_dc=(0.0343/(80*10^-6))*exp(0.2/0.0343);\n",
+"\n",
+"printf('Forward current through the diode = %0.3e A\n',I);\n",
+"printf('Static resistance = %0.3e ohm',r_dc);\n",
+"\n",
+"// Result\n",
+"// Forward current = 59.599 mA\n",
+"// Static resistance = 0.146 Mohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.26: Dynamic_resistance_in_Forward_Reverse_direction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Dynamic resistance in forward,reverse direction\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-26 in page 103\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"T=398; // Temperature in K\n",
+"I_0=80*10^-6; // Current in micro A\n",
+"eta=1; // Constant\n",
+"V_F=[-0.2 0.2]; // Forward voltages in Volts\n",
+"V_T=0.0343; // Thermal voltage in volts\n",
+"\n",
+"// Calculation\n",
+"alp=[1 2];\n",
+"for i=1:2\n",
+" R_ac=(V_T/I_0)*exp(V_F(i)/V_T);\n",
+" printf('(%0.0f)Dynamic resistance = %0.3e ohm\n',alp(i),R_ac);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// (a) Dynamic resistance in forward direction = 1.258 ohm\n",
+"// (b) Dynamic resistance in reverse direction = 0.146 Mohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.27: Dynamic_resistance_at_forward_bias.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Dynamic resistance at forward bias\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-27 in page 103\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"k_BT=25.86*10^-3; // Constant\n",
+"I_0=1.5*10^-6; // Current in microA\n",
+"V=0.15; // Forward bias voltage in volts\n",
+"V_T=0.02586; // Thermal voltage in volts\n",
+"\n",
+"// Calculation\n",
+"R_ac=k_BT/(I_0*exp(V/V_T));\n",
+"\n",
+"printf('Dynamic resistance = %0.2f W',R_ac);\n",
+"\n",
+"// Result\n",
+"// Dynamic resistance at forward bias = 52.17 W"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.28: Maximum_forward_current_forward_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Maximum forward current,forward resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-28 in page 104\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"P_max=2.5; // Maximum power in watt\n",
+"V_f=0.9; // Forward voltage in V\n",
+"I_max=2.2; // Maximum current in A\n",
+"\n",
+"// Calculation\n",
+"I_fmax=P_max/V_f;\n",
+"R_f=P_max/(I_max)^2;\n",
+"\n",
+"printf('(a)Maximum forward current = %0.2f A\n',I_fmax);\n",
+"printf('(b)Forward diode resistance = %0.3f ohm',R_f);\n",
+"\n",
+"// Result\n",
+"// Forward current = 2.78 A\n",
+"// Diode forward resistance = 0.517 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.29: Height_of_potential_energy_barrier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Height of potential energy barrier\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-29 in page 104\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"rho1=2; // Resistivity of p-side in ohm-cm\n",
+"rho2=1; // Resistivity of n-side in ohm-cm\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"\n",
+"// Calculation\n",
+"N_A1=1/(rho1*e*1800); \n",
+"N_D1=1/(rho2*e*3800); \n",
+"N_A2=1/(rho1*e*500);\n",
+"N_D2=1/(rho2*e*1300); \n",
+"V_01=0.026*log((N_A1*N_D1)/(2.5*10^13)^2);\n",
+"V_02=0.026*log((N_A2*N_D2)/(1.5*10^10)^2);\n",
+"printf('(a)For Ge:\n');\n",
+"printf('N_A = %0.2e /cm^3\nN_D = %0.2e /cm^3\n',N_A1,N_D1);\n",
+"printf('Therefore barrier potential energy for Ge = %0.2f eV\n\n',V_01);\n",
+"printf('(b)For Si:\n');\n",
+"printf('N_A = %0.2e /cm^3\nN_D = %0.2e /cm^3\n',N_A2,N_D2);\n",
+"printf('Therefore barrier potential energy for Si = %0.3f eV',V_02);\n",
+"\n",
+"// Result\n",
+"// (a) Height of barrier potential energy for Ge = 0.22 eV\n",
+"// (b) Height of barrier potential energy for Si = 0.667 eV"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: Width_of_depletion_zone_at_300K.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Width of depletion zone at 300K\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-2 in page 83\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"N_d=10^16; // Donor concentration /cm^3\n",
+"N_a=5*10^18; // Acceptor concentration /cm^3\n",
+"ni=1.5*10^10; // Intrinsic concentration /cm^3\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"epsln=11.8*8.85*10^-14; // Constant of calculation\n",
+"\n",
+"// Calculation\n",
+"V_0=0.0259*log((N_d*N_a)/(ni^2));\n",
+"printf('The height of the barrier energy is %0.2f V\n',V_0);\n",
+"\n",
+"W=sqrt(2*((epsln*V_0)/(e)*((1/N_a)+(1/N_d))));\n",
+"printf('Width of depletion zone is %0.3e cm',W);\n",
+"\n",
+"// Result\n",
+"// The height of the barrier energy is 0.86 V\n",
+"// Width of depletion zone in n-type Si is 3.354*10^-5 cm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.30: Dynamic_resistance_in_forward_reverse_direction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Dynamic resistance in forward,reverse direction\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-30 in page 105\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V_T=0.0343; // Thermal voltage at 398K in V\n",
+"eta=1; // Constant for Ge\n",
+"\n",
+"// Calculation\n",
+"// Final expression for r derived after differentiating w.r.t V\n",
+"r1=((35*10^-6)/(34.3*10^-3))*exp(5.83);\n",
+"A1=1/r1;\n",
+"r2=3.185*10^-6\n",
+"A2=1/r2;\n",
+"\n",
+"printf('(a)Dynamic resistance in forward direction = %0.3f ohm\n',A1);\n",
+"printf('(b)Dynamic resistance in reverse direction = %0.3e ohm',A2);\n",
+"\n",
+"// Result\n",
+"// (a) Resistance in forward direction = 2.879 ohm\n",
+"// (b) Resistance in reverse direction = 0.314 Mohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.31: Maximum_and_minimum_Zener_currents.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Maximum and minimum Zener currents\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-31 in page 110\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V_z=10; // Zener voltage in V\n",
+"R_s=1*10^3; // Shunt resistance in K-ohm\n",
+"R_l=10*10^3; // Load resistance in K-ohm\n",
+"Vi_max=40; // Maximum input voltage in V\n",
+"Vi_min=25; // Minimum input voltage in V\n",
+"\n",
+"// Calculation\n",
+"I_zmax=((Vi_max-V_z)/1000)-(5*10^-3);\n",
+"I_zmin=((Vi_min-V_z)/R_s)-(5*10^-3);\n",
+"\n",
+"printf('Maximum value of zener current = %0.2e A\n',I_zmax);\n",
+"printf('Minimum value of zener current = %0.2e A',I_zmin);\n",
+"\n",
+"// Result\n",
+"// Maximum zener current = 25 mA\n",
+"// Minimum zener current = 10 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.32: Find_the_range_for_R.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the range for R\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-32 in page 110\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"P=250; // Maximum power dissipation in mW\n",
+"V=15; // Supply voltage in V\n",
+"\n",
+"// Caluclation\n",
+"I=(250*10^-3)/5;\n",
+"printf('Maximum permissible current = %0.3e A\n',I);\n",
+"printf('10 percent of 50mA = 5mA\n');\n",
+"I1=I-(5*10^-3);\n",
+"printf('Maximum current through diode to maintain constant voltage = %0.1e A',I1);\n",
+"\n",
+"// Result\n",
+"// Maximum current to maintain constant voltage = 45mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.33: Find_breakdown_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find breakdown voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-33 in page 111\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"E=1.5*10^5; // Electric field in V/cm\n",
+"epsln=11.9*8.854*10^-16; // Constant\n",
+"e=1.6*10^-19; // Charge on an electron in eV\n",
+"N_d=2*10^15; // Doping concentration /cm^3\n",
+"\n",
+"// Calculation\n",
+"W=(E*epsln)/(e*N_d);\n",
+"V_b=(W*E)/2;\n",
+"\n",
+"printf('Width of depletion region = %0.3e m\n',W);\n",
+"printf('Therefore,breakdown voltage Vbr = %0.4f V',V_b);\n",
+"\n",
+"// Result\n",
+"// Breakdown voltage = 0.3704 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.35: Calculate_Vz.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate V_z\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-35 in page 112\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"// (a) Proof of V_z=51/sigma has been given\n",
+"sigmai=1/45; // Intrinsic conductivity in 1/ohm-cm\n",
+"sigmap=1/3.9; // Conductivity of p material in1/ohm-cm\n",
+"I_0=6*10^-6; // Current in microA\n",
+"\n",
+"// Calculation\n",
+"Vz1=51/sigmai;\n",
+"Vz2=51/sigmap;\n",
+"I=I_0*(exp(100/26)-1);\n",
+"printf('(a)Proof of V_z=51/sigmap has been given\n');\n",
+"printf('(b)When material is intrinsic, Vz = %0.3f V\n',Vz1);\n",
+"printf('(c)When resistivity drops, Vz = %0.1f V\n',Vz2);\n",
+"printf('(d)I = %0.3e A',I);\n",
+"\n",
+"// Result\n",
+"// (a) Vz = 51/sigmap is proved\n",
+"// (b) Vz1 = 2300V\n",
+"// (c) Vz2 = 198.9V\n",
+"// (d) I = 0.274 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.37: Find_the_ideality_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the ideality factor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-37 in page 112\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I1=0.5*10^-3; // Diode current in mA at 340mV\n",
+"I2=15*10^-3; // Diode current in mA at 465mV\n",
+"kb_T=5*10^-3; // Constant in mV\n",
+"\n",
+"// Calculation\n",
+"// After simplifying the current equation we get an expression for eta\n",
+"eta=5/(2.303*log10(30));\n",
+"\n",
+"printf('Ideality factor = %0.2f',eta);\n",
+"\n",
+"// Result\n",
+"// Ideality factor = 1.47"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.38: Temperature_coefficient_of_Avalanche_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Temperature coefficient of Avalanche diode\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-38 in page 113\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V=12; // Voltage of avalanche diode in V\n",
+"T=1.7*10^-3; // Temperature coeff of Si diode\n",
+"\n",
+"// Calculation\n",
+"A=(T/V)*100;\n",
+"printf('Temperature coeff in percentage = %0.4f percent/degree-C',A);\n",
+"\n",
+"// Result\n",
+"// Temperature coeff in percentage = 0.0142 %/degree-C"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.39: Limits_for_varying_V.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Limits for varying V\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-39 in page 113\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I_d=5*10^-3; // Diode current in mA\n",
+"R=2.5*10^3; // Resistance in K-ohm\n",
+"I_T=40*10^-3; // Diode current in mA\n",
+"\n",
+"// Calculation\n",
+"I_max=I_T-I_d;\n",
+"printf('(a)I_max = %0.2e A\n',I_max);\n",
+"printf('(b)Minimum I_d for good regulation is 5 mA,hence I_T=30 mA\n');\n",
+"V_max1=(30*3.5)+60;\n",
+"printf('V_max = %0.0f V\n',V_max1);\n",
+"printf('Maximum I_d for good regulation is 40 mA,hence I_T=65 mA\n');\n",
+"V_max2=(65*3.5)+60;\n",
+"printf('V_max = %0.1f V',V_max2);\n",
+"\n",
+"// Result\n",
+"// (a) I_max = 35 mA\n",
+"// (b) V_max1 = 165 V \n",
+"// (c) V_max2 = 287.5 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Find_thermal_and_barrier_volatge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find thermal and barrier volatge\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-3 in page 84\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"T=303; // Temperature in K\n",
+"ni=1.5*10^16; // Intrinsic concentration /cm^3\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"k_BT=1.38*10^-23; // Measured in eV at 303K\n",
+"N_A=10^22; // Acceptor concentration /cm^3\n",
+"N_D=1.2*10^21; // Donor concentration /cm^3\n",
+"\n",
+"// Calculation\n",
+"V_T=(k_BT*T)/e;\n",
+"printf('Thermal voltage = %0.2e V\n',V_T);\n",
+"ni1=ni^2;\n",
+"printf('ni^2 = %0.3e\n',ni1);\n",
+"V_0=V_T*log((N_A*N_D)/(ni1));\n",
+"printf('Barrier voltage = %0.3f V',V_0);\n",
+"\n",
+"// Result\n",
+"// Thermal voltage = 26.1 mV\n",
+"// Barrier voltage = 0.635 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: Barrier_potential_for_silicon_junction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Barrier potential for silicon junction\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-4 in page 84\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"t=[70 0]; // Declaring the variables\n",
+"t1=25; // Given temperature in K\n",
+"\n",
+"// Calculation\n",
+"alp=[1 2];\n",
+"for i=1:2\n",
+"delta_V=-0.002*(t(i)-t1);\n",
+"Vb=0.7+delta_V;\n",
+"printf('(%0.0f)delta_V at %d degrees = %0.2f V\n',alp(i),t(i),delta_V);\n",
+"printf('Thus the barrier potential at %d degress = %0.2f V\n',t(i),Vb);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// (a) Barrier potential at 70 degrees is 0.61 V\n",
+"// (b) Barrier potential at 0 degrees is 0.75 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: Find_depletion_layer_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find depletion layer capacitance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-5 in page 86\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"epsln=12/(36*%pi*10^11); // Constant for Si in F/cm\n",
+"A=8.11058*10^-1; // Cross sectional area in m^2\n",
+"mu_p=500; // Mobility of holes\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"V_j=4.9; // Junction potential in V\n",
+"\n",
+"// Calculation\n",
+"printf('(a)We have C_t/A = sqrt((e*epsnl)/2)*sqrt(Na/Vj)\n');\n",
+"K=sqrt((e*epsln)/2);\n",
+"printf('sqrt((e*epsln)/2) = %0.2e\n',K);\n",
+"printf('Hence C_t = %0.2e * sqrt(Na/Vj) F/cm^2\n',K);\n",
+"K1=K*10^12;\n",
+"printf('Or C_t = %0.2e * sqrt(Na/Vj) pF/cm^2\n',K1);\n",
+"N_A=1/(3*mu_p*e);\n",
+"C_T=(2.9*10^-4)*sqrt(N_A/V_j)*(8.14*10^-3);\n",
+"printf('(b)The depletion layer capacitance = %0.2f pF',C_T);\n",
+"\n",
+"// Result\n",
+"// (a) The expression for depletion layer capacitance is proved\n",
+"// (b) The depletion layer capacitance in silicon is 68.84 pF"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.6: Compute_decrease_in_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Compute decrease in capacitance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-6 in page 87\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V=6.5; // Incresed bias voltage in V\n",
+"lambda=(20*sqrt(5)); // Constant of calculation\n",
+"\n",
+"// Calculation\n",
+"C_T=lambda/sqrt(V);\n",
+"\n",
+"printf('Transition capacitance of abrupt junction at 6.5 V = %0.2f pF\n',C_T);\n",
+"printf('This corresponds to a decrese of 2.46 pF');\n",
+"\n",
+"// Result\n",
+"// Transition capacitance = 17.54 pF\n",
+"// This corresponds to a decrese of 2.46 pF"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: Calculate_barrier_capacitance_of_Ge.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate barrier capacitance of Ge\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-7 in page 87\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"epsln=1.41*10^-12; // Dielectric constant\n",
+"A=0.0225; // Junction area in cm^2\n",
+"W=2*10^-4; // Space-charge thickness in cm\n",
+"\n",
+"// Calculation\n",
+"C_T=epsln*(A/W);\n",
+"\n",
+"printf('Barrier capacitance = %0.2e F',C_T);\n",
+"\n",
+"// Result\n",
+"// Barrier capacitance = 159.3 pF"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.8: Calculate_width_of_depletion_layer.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate width of depletion layer\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 2-8 in page 87\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V=[10.2 0.3 0.1]; // Applied voltages in V\n",
+"epsln=16; // Constant of calculation\n",
+"A=1*10^-6; // Cross sectional area in m^2\n",
+"\n",
+"// Calculation\n",
+"alp=[1 2 3];\n",
+"for i=1:3\n",
+" W=sqrt((V(i)*10^-10)/14.3);\n",
+" printf('(%0.0f)Width of depletion layer for %0.2f V = %0.2e mu-m\n\n',alp(i),V(i),W);\n",
+"end\n",
+"W=[8.5 1.45];\n",
+"alp1=[1 2];\n",
+"for j=1:2\n",
+" C_T=(epsln*10^-9)/(36*%pi*W(j));\n",
+" printf('(%0.0f)Space charge capacitance for %0.2f mu-m = %0.2e F\n\n',alp(j),W(j),C_T);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// Widths of depletion layer are: \n",
+"// (a) 8.5 mu-m\n",
+"// (b) 1.45 mu-m \n",
+"// (c) 0.84 mu-m respectively\n",
+"// Space charge capacitances are:\n",
+"// (a) 16.65 pF \n",
+"// (b) 97.6 pF respectively"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/3-Diode_Circuits.ipynb b/Basic_Electronics_by_D_De/3-Diode_Circuits.ipynb
new file mode 100644
index 0000000..96a4b05
--- /dev/null
+++ b/Basic_Electronics_by_D_De/3-Diode_Circuits.ipynb
@@ -0,0 +1,1076 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Diode Circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Full_scale_reading_of_dc_meter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Full scale reading of dc metere\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-10 in page 158\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"R=5020; // Total resistance in ohm\n",
+"Vrms=5.58; // Input rms voltage in V\n",
+"// Calculation\n",
+"I_dc=(2*sqrt(2)*Vrms)/(%pi*5020);\n",
+"V_0=R*I_dc;\n",
+"printf('Full scale reading = %0.2f V',V_0);\n",
+"\n",
+"// Result\n",
+"// Full scale reading = 5.58 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: Find_dc_output_Peak_inverse_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find dc output,Peak inverse voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-11 in page 159\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vi=220; // AC input voltage in V\n",
+"N=10; // Turn ratio of transformer\n",
+"\n",
+"// Calculation\n",
+"V2=Vi/N;\n",
+"Vm=sqrt(2)*V2;\n",
+"V_dc=0.318*Vm;\n",
+"PIV=Vm;\n",
+"\n",
+"printf('(a)DC output voltage = %0.2f V\n',V_dc);\n",
+"printf('(b)PIV = %0.2f V',Vm);\n",
+"\n",
+"// Result\n",
+"// (a) Dc output voltage = 9.89V\n",
+"// (b) PIV = 31.11 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: Determine_maximum_and_average_values_of_power.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine maximum and average values of power\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-12 in page 159\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V1=230; // Input voltage in V\n",
+"N=1/3; // Turn ratio\n",
+"Rl=200; // Load resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"V2=V1*N;\n",
+"Vm=sqrt(2)*V2;\n",
+"Im=Vm/Rl;\n",
+"P=Im^2*Rl;\n",
+"Vdc=0.318*Vm;\n",
+"Idc=Vdc/Rl;\n",
+"Pdc=Idc^2*Rl;\n",
+"printf('Maximum load power = %0.2f W\n',P);\n",
+"printf('Average load power = %0.2f W',Pdc);\n",
+"\n",
+"// Result\n",
+"// Maximum power = 58.78 W\n",
+"// Average power = 5.94 W"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: Find_maximum_value_of_ac_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find maximum value of ac voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-13 in page 160\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vdc=30; // DC voltage in V\n",
+"Rf=25; // Internal resistance in ohms\n",
+"Rl=500; // Load resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"Idc=Vdc/Rl;\n",
+"Im=%pi*Idc;\n",
+"Vi=Im^2*(Rf+Rl);\n",
+"printf('Voltage required at the input = %0.2f V',Vi);\n",
+"\n",
+"// Result\n",
+"// Voltage required at the input is = 18.65 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: Calculate_ac_voltage_rectification_efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate ac voltage,rectification efficiency\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-14 in page 160\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vdc=100; // DC voltage in V\n",
+"Rl=500; // Load resistance in ohms\n",
+"Rf=20; // Internal resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"Idc=Vdc/Rl;\n",
+"Im=Idc*%pi;\n",
+"Vm=Im*(Rl+Rf);\n",
+"eta=(0.406/(1+(Rf/Rl)))*100;\n",
+"\n",
+"printf('(a)AC voltage required = %0.2f V\n',Vm);\n",
+"printf('(b)Rectification efficiency = %0.0f percent',eta);\n",
+"\n",
+"// Result\n",
+"// (a) Vm = 326.73V\n",
+"// (b) Rectification efficiency = 39 percent"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: Find_current_dc_voltage_voltage_across_load.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find current,dc voltage,voltage across load\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-15 in page 150\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vm=50; // Maximum voltage in V\n",
+"f=50; // Frequency in Hz\n",
+"Rf=20; // Internal resistance in ohms\n",
+"Rl=5000; // Load resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"Im=Vm/(Rl+Rf);\n",
+"printf('Since diode conducts only during pisitive half of the input,Im = %0.0e A\n',Im);\n",
+"printf('(a)Hence i = 10*sin100*pi*t\n');\n",
+"Vdc=(Im/%pi)*Rl;\n",
+"printf('(b)V_dc = %0.1f V\n',Vdc);\n",
+"printf('Hence V_0v=15.9sin100*pi*t\n');\n",
+"printf('(c)When diode is reverse biased,voltage across diode = %0.1f*sin100*pi*t for 0<100*pi*t<pi and 0 for pi,100*pi*t<2*pi',Vdc);\n",
+"\n",
+"// Result\n",
+"// (a) Current in the circuit = 10sin100*pi*t\n",
+"// (b) DC output voltage across load = 15.9sin100*pi*t\n",
+"// (c) Voltage across diode = 15.9sin100*pi*t for 0<100*pi*t and 0 for pi<100*pi*t<2*pi"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: Estimate_value_of_capacitance_needed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Estimate value of capacitance needed\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-16 in page 161\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vrms=230; // RMS voltage in V\n",
+"f=50; // Frequency in Hz\n",
+"gamma_hwr=0.003; // Ripple factor assumed\n",
+"I=0.5; // Load current in A\n",
+"\n",
+"// Calculation\n",
+"Vm=sqrt(2)*Vrms;\n",
+"Vdc=(Vm/%pi);\n",
+"Rl=Vdc/I;\n",
+"C=1/(2*sqrt(3)*f*gamma_hwr*Rl);\n",
+"printf('Capacitance needed = %0.2e F',C);\n",
+"\n",
+"// Result\n",
+"// Capacitance needed = 9.29 mF"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.17: Calculate_the_ripple_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate the ripple factor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-17 in page 161\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rl=3.15*10^3; // Load resistance in K-ohms\n",
+"Rf=20; // Internal resistance in ohms\n",
+"Vm=230; // Maximum voltage in volts\n",
+"f=50; // Frequency in Hertz\n",
+"\n",
+"// Calculation\n",
+"Irms=0.707*(Vm/(Rl+Rf));\n",
+"Idc=0.637*(Vm/(Rl+Rf));\n",
+"gamma_fwr=sqrt((Irms/Idc)^2-(1));\n",
+"\n",
+"printf('Ripple factor = %0.2f',gamma_fwr);\n",
+"\n",
+"// Result\n",
+"// Ripple factor = 0.48"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.18: Find_DC_output_voltage_pulse_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find DC output voltage,pulse frequency\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-18 in page 162\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vp=230; // Peak voltage in V\n",
+"f=50; // Frequency in Hz\n",
+"Rl=200; // Load resistance in ohms\n",
+"N=1/4; // Turn ratio\n",
+"\n",
+"// Calculation\n",
+"Vs=Vp*N;\n",
+"Vm=Vs*sqrt(2);\n",
+"Idc=(2*Vm)/(%pi*Rl);\n",
+"Vdc=Idc*Rl;\n",
+"fout=2*f;\n",
+"printf('(a)DC output voltage = %0.2f V\n',Vdc);\n",
+"printf('(b)Pulse frequency of output = %0.0f Hz',fout);\n",
+"\n",
+"// Result\n",
+"// (a) Vdc = 51.77 V\n",
+"// (b) F_out = 100 HZ"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.19: Find_maximum_dc_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find maximum dc voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-19 in page 162\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vp=220; // Peak voltage in V\n",
+"f=50; // Frequency in Hz\n",
+"Rl=1.5*10^3; // Load resistance in ohms\n",
+"N=0.1; // Turn ratio\n",
+"\n",
+"// Calculation\n",
+"Vs=Vp*N;\n",
+"Vrms=Vs*sqrt(2);\n",
+"Vm=Vrms/2;\n",
+"Idc=(2*Vm)/(%pi*Rl);\n",
+"Vdc=Idc*Rl;\n",
+"printf('Maximum dc output voltage = %0.2f V',Vdc);\n",
+"\n",
+"// Result\n",
+"// Dc output voltage = 9.9 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: Calculate_the_dc_load_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find current if diode is forwar-biased\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-1 in page 143\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I=29.8*10^-3; // Current in mA\n",
+"V=0.208; // Voltage in V\n",
+"\n",
+"// Calculation\n",
+"I=(45-V)/(1.5*10^3);\n",
+"printf('I = %0.2e A\n',I);\n",
+"printf('For this current,V = 0.2 V\n');\n",
+"printf('(a)Therefore I = 29.8 mA\n');\n",
+"printf('(b)If battery is inserted with reverse polarity,voltage drop across the 1.5 K resistors is only 15 mV and may be neglected\n');\n",
+"printf('(c)In forward direction, I=29.8 mA\n');\n",
+"printf('In reverse direction we draw a load line from V=-30 V to I=-30 mA\n');\n",
+"y=[-30 -25 -20 -15 -10 -5 0];\n",
+"x=[-30 -25 -20 -15 -10 -5 0];\n",
+"x=-30-y;\n",
+"plot(x,y);\n",
+"xlabel('Voltage');\n",
+"ylabel('Current');\n",
+"title('Current in forward direction');\n",
+"I=-30*(20/30);\n",
+"printf('Then,I = %0.0f mA\n',I);\n",
+"printf('Current=20 mA as there is a 10 V drop');\n",
+"\n",
+"// Result\n",
+"// Graph shows current in reverse direction\n",
+"// I' = -20 mA\n",
+"// Set axis positions to 'origin' in axis properties to view the graph correctly"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: Calculate_input_voltage_value_of_filter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate input voltage,value of filter\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-20 in page 163\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vdc=30; // DC voltage in volts\n",
+"Rl=1000; // Load resistance in ohms\n",
+"gamma_fwr=0.015; // Ripple factor\n",
+"\n",
+"// Calculation\n",
+"Idc=Vdc/Rl;\n",
+"C=2900/(gamma_fwr*Rl);\n",
+"Vm=Vdc+((5000*Idc)/C);\n",
+"Vi=(2*Vm)/sqrt(2);\n",
+"printf('Value of capacitor filter = %0.0f mu-F',C);\n",
+"printf('Input voltage required = %0.2f V\n',Vi);\n",
+"\n",
+"\n",
+"// Result\n",
+"// V_in = 43.52 V\n",
+"// C = 193 mu-F"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.21: Calculate_inductance_for_L_section_filter.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate inductance for L-section filter\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-21 in page 163\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"C=40*10^-6; // Capacitance in micro-F\n",
+"r=0.0001; // Ripple factor\n",
+"Vm=40; // Maximum voltage in V\n",
+"Idc=0.1; // DC current in A\n",
+"R=40; // Circuit resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"L=(1.76/C)*sqrt(0.472/r);\n",
+"Vdc=((2*sqrt(2)*Vm)/%pi)-(Idc*R);\n",
+"\n",
+"printf('(a)Inductance L = %0.2e H\n',L);\n",
+"printf('(b)Output voltage = %0.0f V',Vdc);\n",
+"\n",
+"// Result\n",
+"// (a) L = 3.02*10^6 H\n",
+"// (b) V_dc = 32 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.22: DC_output_voltage_and_ripple_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// DC output voltage and ripple voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-22 in page 164\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"C=4; // Capacitances in micro-F\n",
+"L=20; // Inductance choke in H\n",
+"Il=50*10^-6; // Load current in micro-A\n",
+"R=200; // Resistance of choke in ohm\n",
+"\n",
+"// Calculation\n",
+"Vdc=(300*sqrt(2))-((4170/C)*0.05)-(0.05*R);\n",
+"r=(3300*0.05)/(4*4*20*353);\n",
+"Vrms=r*Vdc;\n",
+"\n",
+"printf('(a)Output voltage = %0.2f V\n',Vdc);\n",
+"printf('(b)Ripple voltage = %0.3f V',Vrms);\n",
+"\n",
+"// Result\n",
+"// (a) Output voltage = 362.13 V\n",
+"// (b) Ripple voltage = 0.529 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.23: Sketch_steady_state_output.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Sketch steady state output\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-23 in page 168\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rf=0; // Forward resistance of diode\n",
+"Rr=2*10^6; // Reverse resistance of diode\n",
+"\n",
+"// Calculation\n",
+"printf('Diode conducts when Vi<2.5 V\n');\n",
+"printf('Diode is open when Vi>2.5 V and Vo = 2.5+((Vi-2.5)/3)\n');\n",
+"printf('Diode conducts when Vi>2.5 V');\n",
+"\n",
+"// Result\n",
+"// Diagram shows the output of the clipping circuit to a sinusoidal input"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.24: Sketch_output_voltage_Vo.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Sketch output voltage Vo\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-24 in page 169\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"// Data is provided in the diagrams\n",
+"\n",
+"// Calculation\n",
+"printf('(a)When Vi<50 V, Second diode conducts\n');\n",
+"Vo=100-((2/3)*27);\n",
+"printf('Vo = %0.0f V\n',Vo);\n",
+"printf('When 50<Vi<100 both diodes conduct and Vo=Vi.When Vi>100, only the first diode conducts.Hence Vo = 100 V\n');\n",
+"printf('(b)When Vi<25 V,neither diodes conduct and Vo = 25 V.When Vi>25,upper diode conducts\n');\n",
+"Vi=((100-25)*(3/2))+25;\n",
+"printf('When Vo reaches 100 V, Vi rises to %0.1f V',Vi);\n",
+"\n",
+"// Result\n",
+"// The output voltage is shown in the xcos diagrams"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.25: Devise_a_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Devise a circuit\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-25 in page 169\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// The xcos diagram shows the devised circuit"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.27: Find_currents_and_voltages.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find currents and voltages\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-27 in page 179\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"//Diode acts as short circuited.Both diodes are forward biased\n",
+"V1=0; // Voltage at junction 1 in V\n",
+"V2=0; // Voltage at junction 2 in V\n",
+" \n",
+"//Calculation\n",
+"I1=(20-V1)/(20*10^3);\n",
+"I2=(V2-(-10))/(20*10^3);\n",
+"\n",
+"printf('I1 = %0.0e A\n',I1);\n",
+"printf('I2 = %0.1e A',I2);\n",
+"\n",
+"// Result\n",
+"// I1 = 1 mA\n",
+"// I2 = 0.5 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.28: Find_voltage_across_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find voltage across diode\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-28 in page 180\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I=0.1075; // Cirremt across diode in A\n",
+"Rd=1; // Internal resistance of diode in ohm\n",
+"\n",
+"// Calculation\n",
+"Vd=I*Rd;\n",
+"printf('Voltage across diode = %0.4f V',Vd);\n",
+"\n",
+"// Result\n",
+"// Voltage across diode = 0.1075 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Find_the_diode_currents.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the diode currents\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-2 in page 144\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"R=10*10^3; // Resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"printf('(a) R = 10K.Assume both diodes are conducting.We have:\n');\n",
+"printf('100 = 10.02*I1 + 10*I2 + 0.2\n 100 = 10.01*I2 + 10*I1 + 0.6\n');\n",
+"function y=f(i);\n",
+" y(1)=10.02*i(1)+10*i(2)+0.2-100\n",
+" y(2)=10.015*i(2)+10*i(1)+0.6-100\n",
+"endfunction\n",
+"ans=fsolve([0.1;0.1],f);\n",
+"I1=ans([1]);\n",
+"I2=ans([2]);\n",
+"printf('I1 = %0.3f A,I2 = %0.3f A\n',I1,I2);\n",
+"printf('Solving,we find I2<0.Thus D is not ON\n');\n",
+"I1=(100-0.2)/10.02;\n",
+"printf('I1 = %0.2e A and I2 = 0\n\n',I1);\n",
+"printf('(b) R=1K.Assume both diodes are ON,we have:\n');\n",
+"printf('100 = 1.52*I1 + 1.5*I2 + 0.2\n 100 = 1.515*I2 + 1.5*I1 + 0.6\n');\n",
+"function y1=g(j);\n",
+" y1(1)=1.52*j(1)+1.5*j(2)+0.2-100\n",
+" y1(2)=1.515*j(2)+1.5*j(1)+0.6-100\n",
+"endfunction\n",
+"ans1=fsolve([0.1;0.1],g);\n",
+"I1=ans1([1]);\n",
+"I2=ans1([2]);\n",
+"printf('Solving,we find\nI1 = %0.3f A and I2 = %0.3f A.Hence assumption is valid',I1,I2);\n",
+"\n",
+"// Result\n",
+"// Since both currents are positive,assumption is valid for I1 = 39.717 mA and I2 = 26.287 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.30: Calculate_R_Il_max.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate R,I_l(max)\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-30 in page 181\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"V_0=50; // Zener diode voltage in V\n",
+"I_L=0; // Load current in A\n",
+"\n",
+"// Calculation\n",
+"R=(150)/(40*10^-3);\n",
+"printf('(a)R = %0.2e ohm\n',R);\n",
+"printf('I_L = I_max when Id = Id_min = 10mA\n');\n",
+"I_Lmax=40-10;\n",
+"printf('(b)Maximum load current = %0.0f mA',I_Lmax);\n",
+"\n",
+"// Result\n",
+"// (a) R = 3.75 K-ohms\n",
+"// (b) I_Lmax = 30 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.3: Calculate_break_regio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate break region\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-3 in page 145\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"R=10^4; // Factor multiplied with dynamic resistance of diode\n",
+"Vt=26; // Thermal voltage in volts\n",
+"eta1=2; // Constant at room temperature for Si\n",
+"eta2=1; // Constant at room temperature for Ge\n",
+"\n",
+"// Calculation\n",
+"printf('r1/r2 = 10^4\n');\n",
+"V1=eta1*Vt*4*2.3;\n",
+"V2=eta2*Vt*4*2.3;\n",
+"printf('Break region for silicon = %0.0f mV\n',V1);\n",
+"printf('Break region for Germanium = %0.0f mV',V2);\n",
+"\n",
+"// Result\n",
+"// Break region for silicon = 478 mV\n",
+"// Break region for Germanium = 239 mV "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: Calculate_the_peak_load_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate the peak load current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-4 in page 153\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rf=30; // Internal resistance in ohms\n",
+"Rl=990; // Load resistance in ohms\n",
+"Vm=110; // Rms supply voltage in in V\n",
+"\n",
+"// Calculation\n",
+"Im=(Vm/2)/(Rf+Rl);\n",
+"I_dc=Im/%pi;\n",
+"I_rms=Im/2;\n",
+"V_dc=(Im*Rl)/%pi;\n",
+"Pi=I_rms^2*(Rf+Rl);\n",
+"R=(((Vm/%pi)-(I_dc*Rl))/(I_dc*Rl))*100;\n",
+"\n",
+"printf('(a)Im = %0.2e A\n',Im);\n",
+"printf('(b)I_dc = %0.2e A\n',I_dc);\n",
+"printf('(c)I_rms = %0.2e A\n',I_rms);\n",
+"printf('(d)V_dc = %0.3e V\n',V_dc);\n",
+"printf('(e)Input power = %0.2f W\n',Pi);\n",
+"printf('(f)Percentage regulation = %0.3f percent',R);\n",
+"\n",
+"// Result\n",
+"// (a) Im=53.9mA\n",
+"// (b) Idc=17.2mA\n",
+"// (c) Irms=27mA\n",
+"// (d) Vdc=16.99V \n",
+"// (e) Pi=0.74W \n",
+"// (f) Percentage regulation=106%"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: Calculate_the_dc_load_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate the dc load current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 3-8 in page 157\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vm=280; // Supply voltage in V\n",
+"Rl=2000; // Load resistance in ohms\n",
+"Rf=500; // Internal resistance of the diodes in ohms\n",
+"\n",
+"// Calculation\n",
+"Idc=(2*Vm)/(%pi*2500);\n",
+"Idc_t=Idc/2;\n",
+"printf('(a)I_dc = %0.2e A\n(b)I_dc(tube) = %0.2e A\n',Idc,Idc_t);\n",
+"printf('(c)Voltage across conducting diode is sinusoidal with a peak value 0.2 Vm\n');\n",
+"V_rms=0.905*(280*sqrt(2));\n",
+"Pdc=Idc^2*Rl;\n",
+"R=(Rf/Rl)*100;\n",
+"printf('Rms voltage V_rms = %0.0f V\n',V_rms);\n",
+"printf('(d)DC output power = %0.1f W\n',Pdc);\n",
+"printf('(e)Percentage regulation = %0.0f percent',R);\n",
+"\n",
+"// Result\n",
+"// (a) Idc = 71 mA,\n",
+"// (b) Idc_tube = 35.7 mA, \n",
+"// (c) V_rms = 358 V,\n",
+"// (d) P_dc = 10.167W, \n",
+"// (e) Percentage regulation = 25%"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/4-BJT_Fundamentals.ipynb b/Basic_Electronics_by_D_De/4-BJT_Fundamentals.ipynb
new file mode 100644
index 0000000..809b56c
--- /dev/null
+++ b/Basic_Electronics_by_D_De/4-BJT_Fundamentals.ipynb
@@ -0,0 +1,557 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: BJT Fundamentals"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Measurement_of_Circuit_Voltage_changes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Measurement of Circuit Voltage changes\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-10 in page 211\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Vb=-5; // Base Voltage of BJT in V\n",
+"Rc=1*10^3; // Collector Resistance in K-ohms\n",
+"Ie=2*10^-3; // Emitter Current of BJT in mA\n",
+"delB=+0.4; // Change in Base Voltage\n",
+"\n",
+"// Calculations\n",
+"delE=+0.4; \n",
+"delC=0; \n",
+"\n",
+"printf('(a)Change in Emitter voltage is +%0.2f V\n',delE);\n",
+"printf('(b)Change in Collector Voltage is %0.2f V\n',delC);\n",
+"\n",
+"// Results\n",
+"// (a) Change in Emitter Voltage in the Circuit = +0.4 V\n",
+"// (b) Change in Collector Voltage in the Circuit = 0.0 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: To_Determine_mode_of_operation_of_BJT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine mode of operation of BJT\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-11 in page 212\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Vbe=0.7; // Base-Emitter Voltage in V\n",
+"beta_bjt=100; // beta gain of BJ\n",
+"\n",
+"// Calculation\n",
+"printf('Assume active mode for circuit 1\n');\n",
+"Vb1=2; \n",
+"Ve_1=Vb1-Vbe; \n",
+"Ie1=1*10^-3;\n",
+"Ic1=Ie1*(beta_bjt/(1+beta_bjt));\n",
+"Ve1=6-(3*0.99);\n",
+"printf('(a)Ve = %0.2f V\n(b)Ic = %0.2e A\n(c)Ve = %0.2f V\n',Ve_1,Ic1,Ve1);\n",
+"printf('Thus the circuit operates in an active mode\n\n');\n",
+"\n",
+"printf('For circuit 2,assume active mode\n');\n",
+"Vcc=1;\n",
+"Ve2=Vcc+Vbe;\n",
+"Ie2=(6-Ve2)/(10*10^3);\n",
+"Vc=0+(10*0.43);\n",
+"printf('(a)Ve = %0.1f V\n(b)Ie = %0.2e A\n(c)Vc = %0.2f V\n',Ve2,Ie2,Vc);\n",
+"printf('This circuit operates in a saturated mode\n\n');\n",
+"\n",
+"printf('For circuit 3,assume active mode\n');\n",
+"Ve3=-5+Vbe;\n",
+"Ie3=(9.5-Ve3)/(200*10^3);\n",
+"Ic=Ie3*(beta_bjt/(1+beta_bjt));\n",
+"Vc3=-50+(0.492*20);\n",
+"printf('(a)Ve = %0.1f V\n(b)Ie = %0.4e A\n(c)Ic = %0.3e A\n(d)Vc = %0.1f V\n',Ve3,Ie3,Ic,Vc3);\n",
+"printf('The circuit operates in an active mode\n\n');\n",
+"\n",
+"printf('For circuit 4,assume active mode\n');\n",
+"Ve4=-20.7;\n",
+"Ie4=(30+Ve4)/(5*10^3);\n",
+"Vc4=(-Ie4*(beta_bjt/(1+beta_bjt))*(2*10^3))-10;\n",
+"printf('(a)Ie = %0.2e A\n(b)Vc = %0.2f V\n',Ie4,Vc4);\n",
+"printf('The circuit operates in an active mode');\n",
+"\n",
+"// Result\n",
+"// (a) Circuit 1 operates in active mode\n",
+"// (b) Circuit 2 operates in saturation mode\n",
+"// (c) Circuit 3 operates in active mode\n",
+"// (d) Circuit 4 operates in active mode"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1: Calculate_Base_and_Collector_Currents.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Base and Collector Currents\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-1 in page 208\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"alpha=0.90; // Current Gain in CB mode\n",
+"Ico=15*10^-6; // Reverse saturation Current in micro-A\n",
+"Ie=4*10^-3; // Emitter Current in mA\n",
+"\n",
+"// Calculations\n",
+"Ic=Ico+(alpha*Ie);\n",
+"Ib=Ie-Ic; \n",
+"\n",
+"printf('(a)The value of the Base Current is %0.2e A \n',Ib);\n",
+"printf('(b)The value of the Collector Current is %0.3e A \n',Ic);\n",
+"\n",
+"// Results\n",
+"// (a) The value of the Base Current is 385 mu-A\n",
+"// (b) The value of the Collector Current is 3.615 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2: Calculate_alpha_using_beta.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate alpha using beta\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-2 in page 209\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"beta_bjt=90; // beta gain for the BJT\n",
+"Ic=4*10^-3; // Collector Current in mA\n",
+"\n",
+"// Calculations\n",
+"alpha=beta_bjt/(1+beta_bjt); \n",
+"Ib=Ic/beta_bjt; \n",
+"Ie=Ic+Ib; \n",
+"\n",
+"printf('(a)The Current gain alpha for BJT is %0.3f \n',alpha);\n",
+"printf('(b)The value of the base Current is %0.2e A \n',Ib);\n",
+"printf('(c)The value of the Emitter Current is %0.2e A \n',Ie);\n",
+"\n",
+"// Results\n",
+"// (a) The Current Gain alpha for BJT is 0.989\n",
+"// (b) The value of the Base Current is 44.44 mu-A\n",
+"// (c) The value of the Emitter Current is 4.04 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3: Collector_Current_in_C_E_mode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Collector Current in C-E mode\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-3 in page 209\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"alpha=0.90; // Current Gain of BJT\n",
+"Ico=15*10^-6; // Reverse Saturation Current of BJT in micro-A\n",
+"Ib=0.5*10^-3; // Base Current in C-E mode in mA\n",
+"\n",
+"// Calculations\n",
+"beta_bjt=alpha/(1-alpha);\n",
+"Ic=(beta_bjt*Ib)+(beta_bjt+1)*Ico; \n",
+"\n",
+"printf('(a)The value of Current gain beta for BJT is %0.0f \n',beta_bjt);\n",
+"printf('(b)The value of the Collector Current is %0.2e A \n',Ic);\n",
+"\n",
+"// Results\n",
+"// (a) The value of Current Gain beta for BJT is 9\n",
+"// (b) The value of the Collector Current is 4.65 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4: Calculate_beta_for_the_BJT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate beta for the BJT\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-4 in page 209\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Ib=20*10^-6; // Base current in micro-A\n",
+"Ic=5*10^-3; // Collector Current in mA\n",
+"\n",
+"// Calculations\n",
+"beta_bjt=Ic/Ib;\n",
+"\n",
+"printf('The Current gain beta for the Device is %0.0f \n',beta_bjt);\n",
+"\n",
+"// Results\n",
+"// The Current Gain beta for the Device is 250"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: To_Compute_Alpha_Beta_and_Emitter_Current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To Compute alpha, beta and Emitter Current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-5 in page 209\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Ib=50*10^-6; // Base Current in mu-A\n",
+"Ic=5*10^-3; // Collector Current in mA\n",
+"\n",
+"// Calculations\n",
+"Ie=Ic+Ib; \n",
+"beta_bjt=Ic/Ib;\n",
+"alpha=Ic/Ie;\n",
+"\n",
+"printf('(a)The value of the Emitter Current is %0.2e A \n',Ie);\n",
+"printf('(b)The value of beta gain of the BJT is %0.0f \n',beta_bjt);\n",
+"printf('(c)The value of alpha gain of the BJT is %0.3f \n',alpha);\n",
+"\n",
+"// Results\n",
+"// (a) The value of the Emitter Current is 5.05 mA\n",
+"// (b) The value of the beta gain of the BJT is 100\n",
+"// (c) The value of the alpha gain of the BJT is 0.990"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Calculate_alpha_reverse_and_beta_reverse.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate alpha reverse and beta reverse\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-6 in page 210\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Ie=10*10^-3; // Emitter Current in mA\n",
+"Ib=5*10^-3; // Base Current in mu-A\n",
+"\n",
+"// Calculations\n",
+"Ic=Ie-Ib; \n",
+"beta_reverse=Ib/Ic; \n",
+"alpha_reverse=Ie/Ic; \n",
+"\n",
+"printf('The value of inverse beta of the BJT is %0.0f \n',beta_reverse);\n",
+"printf('The value of inverse alpha of the BJT is %0.0f \n',alpha_reverse);\n",
+"\n",
+"// Results\n",
+"// The value of inverse beta of the BJT is 1\n",
+"// The value of inverse alpha of the BJT is 2"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Calculate_Labeled_Currents_and_Voltages.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Labeled Currents and Voltages\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-7 in page 210\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"beta_bjt=100; // beta gain of BJT\n",
+"Vbe=0.7; // Base-Emitter voltage of BJT in V\n",
+"\n",
+"//Calculation\n",
+"Vcc1=10; \n",
+"Vee1=-10; \n",
+"Ve1=-0.7; \n",
+"R1=10*10^3; \n",
+"Ie1=(Vcc1-Vbe)/R1; \n",
+"Ib1=Ie1/(beta_bjt+1);\n",
+"Vc1=Vcc1-R1*(Ie1-Ib1); \n",
+"Vcc2=10; \n",
+"Vee2=-15; \n",
+"Ve2=-0.7; \n",
+"R2=5*10^3; \n",
+"Ie2=(Vcc2-Vbe)/R2; \n",
+"Ic2=(beta_bjt/(beta_bjt+1))*Ie2; \n",
+"Vc2=Vee2+R2*(Ie2); \n",
+"printf('Circuit 1:\n(a)Emitter Current=%0.2e A\n(b)Base Current=%0.2e A\n(c)Collector Voltage=%0.3f V\n\n',Ie1,Ib1,Vc1);\n",
+"printf('Circuit 2:\n(a)Emitter Current=%0.2e A\n(b)Collector Current=%0.3e A\n(c)Collector Voltage=%0.3f V\n',Ie2,Ic2,Vc2);\n",
+"\n",
+"// Results\n",
+"// (a) Circuit 1 : Emitter Current = 0.93 mA\n",
+"// (b) Circuit 1 : Base Current = 9.2 mu-A\n",
+"//(c) Circuit 1 : Collector Voltage = 0.792 V\n",
+"\n",
+"//(a) Circuit 2 : Emitter Current = 1.86 mA\n",
+"//(b) Circuit 2 : Collector Current = 1.842 mA\n",
+"//(c) Circuit 2 : Collector Voltage : -5.7 V\n",
+" "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Calculate_labeled_Voltages.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate labeled Voltages\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-8 in page 211\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Vbe=0.7; // Base-Emitter voltage of BJT in V\n",
+"Vcc2=10; // DC voltage across Collector in V\n",
+"Vee2=-15; // DC voltage across Emitter in V\n",
+"Rc2=5*10^3; // Collector Resistance in K-ohms\n",
+"// Beta Current Gain of BJT is Infinity\n",
+"\n",
+"// Calculations\n",
+"Vb1=0; \n",
+"Ve1=-0.7;\n",
+"Ve2=0.7; \n",
+"Vc2=Vee2+Rc2*((Vcc2-Vbe)/Rc2); \n",
+"\n",
+"printf('Circuit 1:\n(a)Base Voltage = %0.1f V\n(b)Emitter Voltage = %0.1f V\n',Vb1,Ve1);\n",
+"printf('Circuit 2:\n(a)Emitter Voltage = %0.1f V\n(b)Collector Voltage = %0.1f V\n',Ve2,Vc2);\n",
+"\n",
+"//Results\n",
+"// Circuit 1 : Base Voltage = 0 V\n",
+"// Circuit 1 : Emitter Voltage = -0.7 V\n",
+"// Circuit 2 : Emitter Voltage = 0.7 V\n",
+"// Circuit 2 : Collector Voltage = -5.7 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Calculating_BJT_parameters_assuming_Vbe.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculating BJT parameters assuming Vbe\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 4-9 in page 211\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Ve=1; // Emitter Voltage of BJT in V\n",
+"Vbe=0.7; // Base-Emitter Voltage of BJT in V\n",
+"Rb=20*10^3; // Base Resistance of Circuit in K-ohms\n",
+"Rc=5*10^3; // Collector Resistance of Circuit in K-ohms\n",
+"Re=5*10^3; // Emitter Resistance of Circuit in K-ohms\n",
+"Vcc=5; // DC voltage across Collector in V\n",
+"Vee=-5; // DC voltage across Emitter in V\n",
+"\n",
+"// Calculations\n",
+"Vb=Ve-Vbe;\n",
+"Ib=Vb/Rb; \n",
+"Ie=(Vcc-1)/Re; \n",
+"Ic=Ie-Ib;\n",
+"Vc=(Rc*Ic)-Vcc;\n",
+"beta_bjt=Ic/Ib;\n",
+"alpha=Ic/Ie; \n",
+"\n",
+"printf('Circuit Parameters:\n(a)Base Voltage = %0.3f V\n(b)Base Current = %0.3e A\n(c)Emitter Current = %0.3e A\n(d)Collector Current = %0.3e A\n(e)Collector Voltage = %0.3f V\n(f)beta gain = %0.3f\n(g)alpha gain = %0.3f\n',Vb,Ib,Ie,Ic,Vc,beta_bjt,alpha);\n",
+"\n",
+"// Results\n",
+"// For the BJT Circuit,\n",
+"// (a) Base Voltage = 0.3 V\n",
+"// (b) Base Current = 0.015 mA\n",
+"// (c) Emitter Current = 0.8 mA\n",
+"// (d) Collector Current = 0.785 mA\n",
+"// (e) Collector Voltage = -1.075 volt\n",
+"// (f) Beta gain = 52.3\n",
+"// (g) Alpha gain = 0.98"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/5-BJT_Circuits.ipynb b/Basic_Electronics_by_D_De/5-BJT_Circuits.ipynb
new file mode 100644
index 0000000..f3c3faa
--- /dev/null
+++ b/Basic_Electronics_by_D_De/5-BJT_Circuits.ipynb
@@ -0,0 +1,337 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: BJT Circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Calculate_BJT_parameters_using_beta_gain.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate BJT parameters using beta gain\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 5-1 in page 235\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Part 1\n",
+"// Given Data\n",
+"beta_bjt=100; // Beta Gain of BJT\n",
+"Vcc=10; // DC voltage across Collector in V\n",
+"Rb=100000; // Base Resistance of BJT in ohm\n",
+"Rc=2000; // Collector Resistance of BJT in ohm\n",
+"Vbe=0.7; // Base-Emitter voltage of BJT\n",
+"\n",
+"// Calculations\n",
+"Ib=(Vcc-Vbe)/((beta_bjt*Rc)+Rc+Rb); \n",
+"Ic=beta_bjt*Ib;\n",
+"\n",
+"Vce=Vcc-(Ib+Ic)*Rc;\n",
+"\n",
+"printf('Part 1 \n');\n",
+"printf('(a)The value of Base Current in the BJT circuit is %0.3e A \n',Ib);\n",
+"printf('(b)The value of Collector Current in the BJT circuit is %0.3e A \n',Ic);\n",
+"printf('(c)The value of Collector-Emitter voltage in the circuit is %0.3f V \n',Vce);\n",
+"\n",
+"// Part 2\n",
+"// Given Data\n",
+"Vce2=7; // Collector-Emitter voltage of BJT\n",
+"Vcc=10; // DC voltage across Collector in V\n",
+"Rc=2000; // Collector Resistance of BJT in ohm\n",
+"Vbe=0.7; // Base-Emitter voltage of BJT\n",
+"Rc2=2000; // Collector Resistance of BJT in ohm\n",
+"\n",
+"// Calculations\n",
+"constant=(Vcc-Vce2)/Rc;\n",
+"Ib2=constant/101;\n",
+"Ic2=100*Ib2; \n",
+"Rb2=(Vcc-Vbe-(Rc2*constant))/Ib2;\n",
+"\n",
+"printf('\nPart 2 \n');\n",
+"printf('(a)The value of the Base Resistance of the Circuit is %0.3e ohm \n ',Rb2);\n",
+"\n",
+"// Results\n",
+"// Circuit 1: Value of Base Current of circuit = 0.031 mA\n",
+"// Circuit 1: Value of Collector Current of circuit = 3.1 mA\n",
+"// Circuit 1: Value of Collector-Emitter voltage of BJT circuit = 3.779 V\n",
+"// Circuit 2: Value of BAse Resistance required = 424.24 K-ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: To_establish_Operating_Point_and_Stability_Factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To establish Operating Point & Stability Factor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 5-4 in page 238\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"beta_bjt=50; // Beta Gain of the BJT circuit\n",
+"Vbe=0.7; // Base-Emitter voltage of BJT in V\n",
+"Vcc=22.5; // DC voltage across Collector in V\n",
+"Rc=5600; // Resistance across Collector in ohm\n",
+"Vce=12; // Operating Collector-Emitter voltage of circuit in V\n",
+"Ic=1.5*10^-3; // Operating Collector current of circuit in mA\n",
+"sfactor=3; // Stability factor of the circuit\n",
+"\n",
+"// Calculations\n",
+"Re=((Vcc-Vce)/Ic)-Rc; \n",
+"constant=((beta_bjt+1)*(sfactor-1))/((beta_bjt+1)-sfactor); \n",
+"Rb=constant*Re; \n",
+"Ib=Ic/beta_bjt;\n",
+"voltage=(Ib*Rb)+Vbe+((Ib+Ic)*Re); \n",
+"R1=Rb*(Vcc/voltage); \n",
+"R2=(R1*voltage)/(Vcc-voltage); \n",
+"\n",
+"printf('(a)The value of Emitter Resistance of the BJT circuit is %0.2e ohm \n',Re);\n",
+"printf('(b)The value of Resistance-1 of the BJT circuit is %0.2e ohm \n',R1);\n",
+"printf('(c)The value of Resistance-2 of the BJT circuit is %0.2e ohm \n',R2);\n",
+"\n",
+"// Results\n",
+"// The value of Emitter Resistance of the BJT circuit is 1.4 K-ohm\n",
+"// The value of Resistance-1 of the BJT circuit is 22.8 K-ohm\n",
+"// The value of Resistance-2 of the BJT circuit is 3.4 K-ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: Design_Bias_Circuit_for_given_Stability_Factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Design Bias Circuit for given Stability Factor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 5-5 in page 239\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vcc=20; // Supply DC Voltage in V\n",
+"Rc=1.5*10^3; // Collector Resistance in ohm\n",
+"Vce=8; // Collector-Emitter Resistance in V\n",
+"Ic=4*10^-3; // Collector Current in A\n",
+"S=12; // Stability Factor of circuit\n",
+"beta_bjt=50; // Beta Gain of BJT\n",
+"\n",
+"// Calculations\n",
+"Ib=Ic/beta_bjt;\n",
+"Re=(Vcc-Vce-Ic*Rc)/(Ib+Ic);\n",
+"Rb=Re*((S*beta_bjt)/((beta_bjt+1)-S));\n",
+"Ie=Ic+Ib;\n",
+"Vbn=0.2+Ie*Re;\n",
+"Vth=Vbn+Ib*Rb;\n",
+"R1=(Vcc*Rb)/Vth;\n",
+"Ir1=(Vcc-Vbn)/R1;\n",
+"Ir2=Ir1-Ib;\n",
+"R2=Vbn/Ir2;\n",
+"\n",
+"// For S=3\n",
+"S_2=3;\n",
+"Rc_2=1.47*10^3;\n",
+"Re_2=Re;\n",
+"Rb_2=Re*((S_2*beta_bjt)/((beta_bjt+1)-S_2));\n",
+"Vth_2=Vbn+(Ib*Rb_2)+6.16;\n",
+"R1_2=(Vcc*Rb_2)/Vth_2;\n",
+"Ir1_2=(Vcc-Vbn)/R1_2;\n",
+"Ir2_2=Ir1_2-Ib;\n",
+"R2_2=Vbn/Ir2-2;\n",
+"\n",
+"printf('For S=12 \n');\n",
+"printf('(a)Ib = %0.2e A \n(b)Ir1 = %0.2e A \n(c)Ir2 = %0.2e A \n',Ib,Ir1,Ir2);\n",
+"printf('(d)Re = %0.2e ohm \n(e)Rb = %0.2e ohm \n(f)R1 = %0.2e ohm \n(g)R2 = %0.2e ohm \n',Re,Rb,R1,R2);\n",
+"printf('(h)Base-Ground Voltage Vbn = %0.2f V \n(i)Thevenin Voltage Vth = %0.2f V \n',Vbn,Vth);\n",
+"printf('\n For S=3 \n');\n",
+"printf('(a)Re = %0.2e ohm \n(b)Rb = %0.2e ohm \n(c)R1 = %0.2e ohm \n(d)R2 = %0.2e ohm \n',Re_2,Rb_2,R1_2,R2_2);\n",
+"printf('(e)Thevenin Voltage Vth = %0.2f V \n(f)Ir1 = %0.2e A \n(g)Ir2 = %0.2e A \n',Vth_2,Ir1_2,Ir2_2);\n",
+"\n",
+"// Results\n",
+"// S=12\n",
+"// (a) Ib=80 mu-A\n",
+"// (b) Re=1.47 K-ohm\n",
+"// (c) Rb=21.17 K-ohm\n",
+"// (d) Vbn=5.91 V\n",
+"// (e) Vth=7.60 V\n",
+"// (f) R1=55.71 K-ohm\n",
+"// (g) R2=37.16 K-ohm\n",
+"// (h) IR1=0.253 mA\n",
+"// (i) IR2=0.173 mA\n",
+"// S=3\n",
+"// (a) Rb=3.13 K-ohm\n",
+"// (b) R1=10.16 K-ohm\n",
+"// (c) IR1=1.387 mA\n",
+"// (d) R2=4.52 K-ohm\n",
+"// (e) IR2=1.307 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.8: Calculate_circuit_parameters_of_a_Emitter_Follower.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate circuit parameters of a Emitter Follower\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 5-8 in page 251\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rs=0.5*10^3; // Source resistance in ohm\n",
+"Rl=5*10^3; // Load resistance in ohm\n",
+"hfe=50; // h-parameter value of the BJT\n",
+"hie=1*10^3; // h-parameter value of the BJT in ohm\n",
+"hoe=25*10^-6; // h-parameter value of the BJT in A/V\n",
+"\n",
+"// Calculations\n",
+"Ai=(1+hfe)/(1+hoe*Rl);\n",
+"Ri=hie+Ai*Rl;\n",
+"Av=1-(hie/Ri);\n",
+"Avs=Av*(Ri/(Ri+Rs));\n",
+"\n",
+"printf('(a)The current gain of circuit Ai = %0.1f \n',Ai);\n",
+"printf('(b)The input resistance of circuit Ri = %0.2e ohm \n',Ri);\n",
+"printf('(c)The voltage gain of circuit Av = %0.4f \n',Av);\n",
+"printf('(d)The voltage gain of circuit Avs = %0.4f \n',Avs);\n",
+"\n",
+"// Results\n",
+"// (a) The current gain of circuit Ai=45.3\n",
+"// (b) The input resistance of circuit Ri=227 ohm\n",
+"// (c) The voltage gain of circuit Av=0.9956\n",
+"// (d) The voltage gain of circuit Avs=0.9934"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Design_of_an_Emitter_Follower.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Design of an Emitter Follower\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 5-9 in page 252\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ri=500*10^3; // Input Resistance in ohm\n",
+"Ro=20; // Output Resistance in ohm\n",
+"hfe=50; // h-parameter of BJT\n",
+"hie=1*10^3; // h-parameter of BJT in ohm\n",
+"hoe=25*10^-6; // h-parameter of BJT in A/V\n",
+"const=499*10^3; // Product of Ai and Rl in ohm\n",
+"Av=0.999; // Voltage gain of circuit\n",
+"const_2=10^6; // Product of Ai and Rl in ohm for Av=0.999\n",
+"\n",
+"// Calculations\n",
+"Ai=1+hfe-(const*hoe);\n",
+"Rl=const/Ai;\n",
+"Rs=((hfe+1)*hoe*Ro)-hie;\n",
+"Ri_2=hie/(1-Av);\n",
+"Rl_2=(((1+hfe)/const_2)-1)/hoe;\n",
+"\n",
+"printf('The current gain of circuit=%0.1f \n',Ai);\n",
+"printf('When Av=0.999, \n(a)Ri=%0.2e ohm \n(b)Rl=%0.2e ohm \n',Ri_2,Rl_2);\n",
+"\n",
+"// Results\n",
+"// The current gain of circuit = 38.5\n",
+"// For Av = 0.999, \n",
+"// (a) Ri = 1 M-ohm, \n",
+"// (b) Rl = -40.0 K-ohm"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/6-Field_Effect_Transistor.ipynb b/Basic_Electronics_by_D_De/6-Field_Effect_Transistor.ipynb
new file mode 100644
index 0000000..9bd37b3
--- /dev/null
+++ b/Basic_Electronics_by_D_De/6-Field_Effect_Transistor.ipynb
@@ -0,0 +1,980 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Field Effect Transistor"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: Find_pinch_off_saturation_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find pinch off,saturation voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-10 in page 279\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Nd=3*10^21; // Donor concentration in /m^3\n",
+"epsln=12; // Dielectric constant of silicon\n",
+"epsln_0=12*8.85*10^-12; // Constant of calculation\n",
+"e=1.6*10^-19; // Charge on an electron in C\n",
+"a=2*10^-6; // Constant of calculation\n",
+"\n",
+"// Calculation\n",
+"Vp=(e*Nd*(a)^2)/(2*epsln_0);\n",
+"printf('(a)Pinch off voltage = %0.3f V\n',Vp);\n",
+"Vds=Vp-2;\n",
+"printf('(b)Saturation voltage = %0.3f V',Vds);\n",
+"\n",
+"// Result\n",
+"// (a) Pinch off voltage = 9.040 V\n",
+"// (b) Saturation voltage = 7.040 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: Determine_drain_source_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine drain-source resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-11 in page 287\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=10*10^-3; // Drain current in mA\n",
+"Vp=-2; // Peak voltage in V\n",
+"Vgs=[1 2]; // Gate-source voltage in V\n",
+"\n",
+"// Calculation\n",
+"for i=1:2\n",
+" rds=Vp^2/(2*Ids*(Vgs(i)-Vp));\n",
+" printf('Rds = %0.1f ohm\n',rds);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// Rds = 66.7 ohm, 50 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.12: Determine_approximate_Rds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine approximate Rds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-12 in page 287\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"K=0.25*10^-3; // Constant in mA/V^2\n",
+"Vt=2; // Voltage in V\n",
+"Vgs=[4 6 10]; // Drain-source voltage in V\n",
+"\n",
+"// Calculation\n",
+"for i=1:3\n",
+" rds=1/(2*K*(Vgs(i)-Vt));\n",
+" printf('Rds = %0.0f ohm\n',rds);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// Rds = 1 K-ohm, 500 ohm, 250 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: Find_Vgs_operating_region_Id_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Vgs,operating region,Id,Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-13 in page 288\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vdd=10; // Drain voltage in in V\n",
+"Vds=6; // Drain-source voltage in V\n",
+"K=0.2*10^-3; // Constant in mA/V^2\n",
+"Vt=1; // Voltage given\n",
+"\n",
+"// Calculation\n",
+"Vgs=Vds;\n",
+"printf('(a)Vgs = %0.0f V\n',Vgs);\n",
+"printf('Vds=6V>Vgs-Vt=5V\n');\n",
+"Id=K*(Vgs-Vt)^2;\n",
+"Rd=(Vdd-Vds)/Id;\n",
+"printf('(b)Id = %0.0e A\n',Id);\n",
+"printf('(c)Rd = %0.0f ohms',Rd);\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = 6 V\n",
+"// (b) Id = 5 mA\n",
+"// (c) Rd = 800 ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.14: Find_operating_region_Vgs_Vds_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find operating region,Vgs,Vds,Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-14 in page 288\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"K=0.2*10^-3; // Constant in mA/V^2\n",
+"Vt=1; // Given voltage in V\n",
+"Vdd=10; // Drain voltage in V\n",
+"Id=3.2*10^-3; // Drain current in mA\n",
+"\n",
+"// Calculation\n",
+"printf('Vds=Vgs>Vgs-Vt=Active region operation\n');\n",
+"Vgs=Vt+sqrt(Id/K);\n",
+"Vds=Vgs;\n",
+"Rd=(Vdd-Vds)/Id;\n",
+"printf('(a)Vgs = %0.0f V,\n(b)Vds = %0.0f V,\n(c)Rd = %0.2e ohm',Vgs,Vds,Rd);\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = 5 V\n",
+"// (b) Vds = 5 V\n",
+"// (c) Rd = 1.56 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.15: Find_Id_when_Vgs_equals_4V.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Id when Vgs=4V\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-15 in page 288\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"K=0.15*10^-3; // Constant in mA/V^2\n",
+"Vt=2; // Given voltgae in V\n",
+"Vdd=12; // Drain voltage in V\n",
+"Vgs=4; // Gate-source voltage in V\n",
+"\n",
+"// Calculation\n",
+"Vgg=sqrt(5.4/0.15)+2;\n",
+"Id=K*(Vgs-Vt)^2;\n",
+"printf('(a)Vgg = %0.0f V,\n(b)Id = %0.1e A',Vgg,Id);\n",
+"\n",
+"// Result\n",
+"// (a) Vgg = 8 V\n",
+"// (b) Id = 0.6 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.16: Determine_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-16 in page 289\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"K=0.25*10^-3; // Constant in mA/V^2\n",
+"Vt=2; // Voltage given in V\n",
+"Vdd=16; // Drain voltage in V\n",
+"Vgg=[4 10]; // Gate voltage values in V\n",
+"\n",
+"// Calculation\n",
+"for i=1:2\n",
+" id=K*(Vgg(i)-2)^2;\n",
+" rd=(16-(Vgg(i)-2))/id;\n",
+" printf('Rd when Vgg is %d V = %0.1e ohm\n',Vgg(i),rd);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// (a) Rd = 14 K-ohm\n",
+"// (b) 500 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.17: Determine_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-17 in page 289\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"K=0.25*10^-3; // Constant in mA/V^2;\n",
+"Vt=2; // Given voltage in V\n",
+"Rd=1*10^3; // Drain resistance in ohms\n",
+"Vdd=16; // Drain voltage in V\n",
+"Vgg=4; // Gate voltage in V\n",
+"\n",
+"// Calculation\n",
+"id=K*(4-Vt)^2;\n",
+"Vd=(-1*10^3*id)+16;\n",
+"printf('(a)Id = %0.0e A,\n(b)Vd = %0.0f V\n',id,Vd);\n",
+"printf('Since Vds=15>Vgs-Vt=2,active region operation is confirmed');\n",
+"\n",
+"// Result\n",
+"// (a) Id = 1 mA\n",
+"// (b) Vds = 15 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.18: Find_Id_Vds1_Vds2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Id,Vds1,Vds2\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-18 in page 289\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids1=8*10-3; // Drain-source current of M1 in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Ids2=16*10^-3; // Drain-source current of M2 in mA\n",
+"Vdd=11; // Drain voltage in V\n",
+"Vgg=10; // Gate voltage in V\n",
+"\n",
+"// Calculation\n",
+"Id=Ids2;\n",
+"printf('(a)Id = %0.2e A\n',Id);\n",
+"Vds=(28+sqrt(28^2-128))/2;\n",
+"Vds1=(28-sqrt(28^2-128))/2;\n",
+"printf('(b)Vds1 = %0.2f V, %0.2f V\n',Vds,Vds1);\n",
+"printf('For ohmic operation Vds1 = 1.19 V\n');\n",
+"Vds2=Vdd-1.19;\n",
+"printf('(c)Vds2 = %0.2f V',Vds2);\n",
+"\n",
+"// Result\n",
+"// (a) Id = 16 mA\n",
+"// (b) Vds1 = 1.19 V\n",
+"// (c) Vds2 = 9.81 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.19: Find_operating_region_Vgs_Vds_Id.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find operating region,Vgs,Vds,Id\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-19 in page 290\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids = 4*10^-3; // Drain-source current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vdd=10; // Drain voltage in V\n",
+"Rd=1*10^3; // Drain resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"printf('(a)Vd=Vgs<Vgs-Vp.Hence ohmic region operation is confirmed\n');\n",
+"Vgs1=(-12+sqrt(12^2+160))/2;\n",
+"Vgs2=(-12-sqrt(12^2+160))/2;\n",
+"printf('(b)Vgs = %0.2f V,%0.2f V\n',Vgs1,Vgs2);\n",
+"Vds=Vgs1;\n",
+"id=(10-Vds)/(1*10^3);\n",
+"printf('(c)Vds = %0.2f V,\n(d)Id = %0.2e A',Vds,id);\n",
+"\n",
+"// Result\n",
+"// (a) Ohmic region operation is confirmed\n",
+"// (b) Vgs = 2.72V\n",
+"// (c) Vds = 2.72V\n",
+"// (d) Id = 7.28mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Determine_approximate_drain_source_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine approximate drain-source resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-1 in page 274\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"I_ds=10*10^-3; // Drain current in mA\n",
+"Vp=-2; // Peak voltage in V\n",
+"Vgs=[0 -0.5]; // Values of Vgs in V\n",
+"\n",
+"// Calculation\n",
+"alp=[1 2];\n",
+"for i=1:2\n",
+" r=Vp^2/(2*I_ds*(Vgs(i)-Vp));\n",
+" printf('(%0.0f)r_ds when Vgs = %d V is %0.2f ohm\n',alp(i),Vgs(i),r);\n",
+"end\n",
+"\n",
+"// Result\n",
+"// (a) When Vgs = 0 V, r_ds = 100 ohms\n",
+"// (b) When Vgs = 0.5 V, r_ds = 133.33 ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.20: Find_Vgs_Id_operating_region.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Vgs,Id,operating region\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-20 in page 290\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=4*10^-3; // Drain-source current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vdd=10; // Drain voltage in V\n",
+"Vds=6; // Drain-source voltage in V\n",
+"\n",
+"// Calculation\n",
+"Vgs=Vds;\n",
+"printf('(a)Vgs = %0.0f V\n',Vgs);\n",
+"printf('(b)Vds=Vgs<Vgs-Vp.Hence ohmic region operation\n');\n",
+"Id=4*10^-3*((2*(5/2)*(3/2))-(9/4));\n",
+"printf('(c)Id = %0.1e A',Id);\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = 6 V\n",
+"// Ohmic region operation is confirmed\n",
+"// (c) Id = 21 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.21: Find_operating_region_Vgs_Vds_Id.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find operating region,Vgs,Vds,Id\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-21 in page 290\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"K=0.2*10^-3; // Constant in mA/V^2\n",
+"Vt=1; // Voltage in V\n",
+"Vdd=10; // Drain voltage in V\n",
+"Rd=1*10^3; // Drain resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"printf('(a)Vds=Vgs>Vgs-Vt.Hence active region operation\n');\n",
+"printf('0.2*Vgs^2+0.6*Vgs-9.8=0\n');\n",
+"Vgs1=(-0.6+sqrt(0.6^2-4*0.2*-9.8))/(2*0.2);\n",
+"Vgs2=(-0.6-sqrt(0.6^2-4*0.2*-9.8))/(2*0.2);\n",
+"printf('(b)Vgs = %0.2f V or %0.2f V\n',Vgs1,Vgs2);\n",
+"printf('Since 0<Vgs<10, Vgs = %0.2f V\n',Vgs1);\n",
+"Id=(Vdd-5.66)/Rd;\n",
+"printf('(c)Vds = Vgs = 5.66 V\n(d)Id = %0.2e A',Id);\n",
+"\n",
+"//Result\n",
+"// (a) The region of operation is active\n",
+"// (b) Vgs = 5.66 V\n",
+"// (c) Vds = 5.66 V\n",
+"// (c) Id = 4.34 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: Find_Id_and_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Id and Vds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-2 in page 274\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=12*10^-3; // Drain current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vgs=-2; // Gate to source voltage in V\n",
+"Rd=3*10^3; // Drain resistance in K-ohms\n",
+"Vcc=15; // Supply voltage in V\n",
+"\n",
+"// Calculation\n",
+"id=Ids*(1-(Vgs/Vp))^2;\n",
+"Vds=-id*Rd+Vcc;\n",
+"\n",
+"printf('(a)Id = %0.0e A\n',id);\n",
+"printf('(b)Vds = %0.0f V',Vds);\n",
+"\n",
+"// Result\n",
+"// (a) Id = 3mA\n",
+"// (b) Vds = 6V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Find_the_value_of_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the value of Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-3 in page 275\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=12*10^-3; // Drain current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Rs=0; // Source resistance in ohms\n",
+"Vds=0.1; // Drain-source voltage in V\n",
+"Vgg=0; // Gate voltage in V\n",
+"\n",
+"// Calculation\n",
+"id=Ids*(50*10^-3-625*10^-6);\n",
+"Rd=(15-Vds)/id;\n",
+"\n",
+"printf('(a)i_d = %0.3e A\n',id);\n",
+"printf('(b)Rd = %0.3e ohm',Rd);\n",
+"\n",
+"// Result\n",
+"// (a) i_d = 592.6 mu-A\n",
+"// (b) Rd = 25.15 k-ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.4: Find_id_Vds_slope_of_operation_of_JFET.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find id,Vds,slope of operation of JFET\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-4 in page 275\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=12*10^-3; // Drain current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Rd=1*10^3; // Drain resistance in k-ohm\n",
+"Vdd=15; // Drain voltage in V\n",
+"\n",
+"// Calculation\n",
+"Id=Ids;\n",
+"Vds=(-Rd*Id)+Vdd;\n",
+"printf('Id = %0.2e A\n',Id);\n",
+"printf('Vds = %0.0f V\n',Vds);\n",
+"printf('Consider it to be operating in the ohmic region\n');\n",
+"Vds1=(7+sqrt(49-45))/(3/2);\n",
+"Vds2=(7-sqrt(49-45))/(3/2);\n",
+"printf('Then Vds = %0.2f V,%0.2f V\n',Vds1,Vds2);\n",
+"printf('6V is neglected since it is lesser than -Vp\n');\n",
+"id=(15-Vds2)/(1*10^3);\n",
+"Vds=Vds2;\n",
+"printf('(a)Id = %0.3e A\n',id);\n",
+"printf('(b)Vds = %0.2f V',Vds);\n",
+"printf('Since Vds<Vgs-Vp,operation region is confirmed in the ohmic region');\n",
+"\n",
+"// Result\n",
+"// (a) Id = 11.67 mA\n",
+"// (b) Vds = 3.33 V\n",
+"// (c) Operation region is in the ohmic region"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: Find_id_Vgs_Rd_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find id,Vgs,Rd,Vds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-5 in page 276\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=10*10^-3; // Drain current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vdd=12; // Drain voltage in V\n",
+"Vgg=0; // Gate voltage in V\n",
+"\n",
+"// Calculation\n",
+"id=10*10^-3*(1-(2/4))^2;\n",
+"Vgs=(sqrt(9/10)-1)*4;\n",
+"Rd=(12-7.5)/(0.625*10^-3);\n",
+"Vds=12-2-(3*0.625);\n",
+"printf('(a)Id = %0.2e A\n',id);\n",
+"printf('(b)Vgs = %0.3f V\n',Vgs);\n",
+"printf('(c)Rd = %0.2e ohm\n',Rd);\n",
+"printf('(d)Vds = %0.3f V',Vds);\n",
+"\n",
+"// Result\n",
+"// (a) Id = 2.5 mA\n",
+"// Vgs = -0.205 V \n",
+"// (c) Rd = 7.2 k-ohm \n",
+"// (d) Vds = 8.125 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Determine_Vgs_Id_Vds_operating_region.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine Vgs,Id,Vds,operating region\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-6 in page 276\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=16*10^-3; // Drain current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vdd=18; // Drain voltage in V\n",
+"Rd=500; // Drain resistance in ohms\n",
+"\n",
+"// Calculation\n",
+"vgs1=(-10+sqrt(100-64))/2;\n",
+"vgs2=(-10-sqrt(100-64))/2;\n",
+"printf('(a)Vgs = %d V,%d V\n',vgs1,vgs2);\n",
+"id=-vgs1/500;\n",
+"Vds=18-((1*10^3)*(4*10^-3));\n",
+"printf('(b)id = %0.0e A\n',id);\n",
+"printf('(c)Vds = %0.0f V\n',Vds);\n",
+"printf('Saturation region operation is confirmed from above results');\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = -2V\n",
+"// (b) Id = 4 mA, \n",
+"// (c) Vds = 14 V, "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: Determine_Vgs_Id_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine Vgs,Id,Vds\n",
+"// Determine Vgs,Id,Vds,operating region\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-7 in page 277\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=8*10^-3; // Drain current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vdd=18; // Drain voltage in V\n",
+"Rd=8*10^3; // Drain resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"vgs1=(-214+sqrt(214^2-(4*63*180)))/(2*63);\n",
+"vgs2=(-214-sqrt(214^2-(4*63*180)))/(2*63);\n",
+"printf('(a)Vgs = %0.2f V,%0.2f V\n',vgs1,vgs2);\n",
+"id1=-vgs1/(1*10^3);\n",
+"id2=-vgs2/(1*10^3);\n",
+"printf('(b)Id = %0.2e A,%0.2e A\n',id1,id2);\n",
+"Vds1=((-9*10^3)*id1)+18;\n",
+"Vds2=((-9*10^3)*id2)+18;\n",
+"printf('(c)Vds = %0.2f V,%0.2f V',Vds1,Vds2);\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = -1.53 V,-1.86 V\n",
+"// (b) Id = 1.53 mA,1.86 mA\n",
+"// (c) Vds = 4.23 V,1.26 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Determine_R_Ids_Vgs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine R,Ids,Vgs\n",
+"// Determine Vgs,Id,Vds,operating region\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-8 in page 277\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vp=-3; // Peak voltage in V\n",
+"Vgg=5; // Gate voltage in V\n",
+"Ids=10*10^-3; // Drain current in mA\n",
+"\n",
+"// Calculation\n",
+"R=5/(10*10^-3);\n",
+"printf('(a)R = %0.0f ohm\n',R);\n",
+"Ids=5/400;\n",
+"Vds=(2*Ids*R)+15;\n",
+"printf('(b)Idss = %0.2e A\n',Ids);\n",
+"printf('(c)Vds = %0.0f V\n',Vds);\n",
+"printf('This confirms active region\n');\n",
+"Rid=14/2;\n",
+"Vgs=Vgg-Rid;\n",
+"printf('(d)Vgs = %0.0f V\n',Vgs);\n",
+"printf('Vds=2>Vgs-Vp=-1.5+3=1.5 -> Active region');\n",
+"\n",
+"// Result\n",
+"// (a) R = 500ohm, \n",
+"// (b) Ids = 12.5mA,\n",
+"// (c) Vgs = -2V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: Find_Id_Vgs_Vds_region_of_operation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Id,Vgs,Vds,region of operation\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 6-9 in page 277\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=4*10^-3; // Drain current in mA\n",
+"Vp=-2; // Peak voltage in V\n",
+"Vdd=10; // Supply voltage in V\n",
+"Vgs=0; // Gate source voltage in V\n",
+"\n",
+"// Calculation\n",
+"Id=Idss*(1-(Vgs/Vp));\n",
+"printf('(a)Id = %0.0e A\n',Id);\n",
+"printf('(b)Since Id=Idss, Vgs=0 V\n');\n",
+"Vds=10-Vgs;\n",
+"printf('(c)Vds = %0.0f V\n',Vds);\n",
+"printf('Since Vds=10V>Vgs-Vp=2V,Active region operation of upper JFET is confirmed');\n",
+"\n",
+"// Result\n",
+"// (a) Id = 4 mA,\n",
+"// (b) Vgs = 0 V,\n",
+"// (c) Vds = 10 V"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/7-FET_Circuits.ipynb b/Basic_Electronics_by_D_De/7-FET_Circuits.ipynb
new file mode 100644
index 0000000..2c9a076
--- /dev/null
+++ b/Basic_Electronics_by_D_De/7-FET_Circuits.ipynb
@@ -0,0 +1,1904 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: FET Circuits"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: Find_voltage_gain_output_impedance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find voltage gain,output impedance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-11 in page 320\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"// The Thevenin equivalent of fig. is derived\n",
+"\n",
+"// Calculation\n",
+"A=(9.5*10)/(10+20);\n",
+"R_0=(1/(10*10^3))+(1/(20*10^3));\n",
+"R=1/R_0;\n",
+"printf('(a)Voltage gain = %0.2f\n',A);\n",
+"printf('(b)Output impedance = %0.2e',R);\n",
+"\n",
+"// Result\n",
+"// (a) A = 3.17\n",
+"// (b) R_0 = 6.67 K"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: Find_voltage_gain_A1_and_A2.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find voltage gain A1 and A2\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-12 in page 321\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rd=30*10^3; // Drain resistance in K-ohm\n",
+"Rs=2*10^3; // Source resistance in K-ohm\n",
+"mu=19; // Constant for FET\n",
+"rd=10*10^3; // Dynamic resistance in K-ohm\n",
+"\n",
+"// Calculation\n",
+"A1=(-mu*(Rd+rd+((mu+1)*Rs))*Rd)/((rd+Rd)*(Rd+rd+(2*(mu+1)*Rs)));\n",
+"A2=(mu*(mu+1)*Rs*Rd)/((rd+Rd)*(Rd+rd+(2*(mu+1)*Rs)));\n",
+"printf('(a)For the given values of Rd,Rs,rd and mu we have:\n');\n",
+"printf('A1 = %0.2f\nA2 = %0.2f\n\n',A1,A2);\n",
+"printf('(b)If Rs-->infinity,\n');\n",
+"A_1=(-mu*Rd)/(2*(rd+Rd));\n",
+"printf('A1 = %0.2f = -A2\nOr A1 = -A2 = %0.2f',A_1,A_1);\n",
+"\n",
+"// Result\n",
+"// (a) A1 = -9.5; A2 = 4.75\n",
+"// (b) A1 = -A2 = -7.13"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: Determine_Vgs_Id_Vds_Av.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine Vgs,Id,Vds,Av\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-13 in page 322\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rd=12; // Drain resistance in K-ohms\n",
+"Rg=1; // Gate resistance in M-ohms\n",
+"Rs=0.47; // Source resistance in ohms\n",
+"Vdd=30; // Drain voltage in volts\n",
+"Idds=3*10^-3; // Drain-source current in mA\n",
+"\n",
+"// Calculation\n",
+"printf('Vgs=-1.41* (1+ 2Vgs/2.4 + Vgs^2/2.4)\n');\n",
+"Vgs1=(-1.175+sqrt(1.175^2-4*0.245*1.41))/(2*0.245);\n",
+"Vgs2=(-1.175-sqrt(1.175^2-4*0.245*1.41))/(2*0.245);\n",
+"printf('(a)Upon solving we get Vgs = %0.3f V or %0.3f V\n',Vgs1,Vgs2);\n",
+"Id=3*(1-(2.398/2.4))^2;\n",
+"Vds=Vdd-Id*(Rd+Rs);\n",
+"gm=((2*Idds)/2.4)*(1-(2.398/2.4));\n",
+"Av=gm*12;\n",
+"printf('(b)Drain current Ids = %0.1e A\n',Id);\n",
+"printf('(c)Vds = %0.2f V\n',Vds);\n",
+"printf('(d)Small signal voltage gain Av = %0.2e',Av);\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = -2.398 V\n",
+"// (b) Ids = 2.1*10^-6 A\n",
+"// (c) Vds = 30 V\n",
+"// (d) Av = 2.5*10^-5"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14: Find_the_value_of_R1.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the value of R1\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-14 in page 322\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=2*10^-3; // Drain-source current in mA\n",
+"Vp=-1; // Voltage in volts\n",
+"Rd=56*10^3; // Drain resistance in K-ohms\n",
+"Vdn=10; // Drain to ground voltage in volts\n",
+"Vdd=24; // Drain voltage in volts\n",
+"\n",
+"// Calculation\n",
+"Id=(Vdd-Vdn)/Rd;\n",
+"Vgs=-0.65;\n",
+"R1=-Vgs/Id;\n",
+"printf('R1 = %0.1e ohms',R1);\n",
+"\n",
+"// Result\n",
+"// R1 = 2.6 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: Find_Vo_for_given_Vi.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Vo for given Vi\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-15 in page 323\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=5.6*10^-3; // Drain-source current in mA\n",
+"Vp=-4; // Peak voltage in V\n",
+"Vi=[0 10]; // Input voltage values in V\n",
+"\n",
+"// Calculation\n",
+"alp=[1 2];\n",
+"for i=1:2\n",
+" Vg=(-2.8+sqrt(2.8^2-(4*0.35*5.6)))/(2*0.35);\n",
+" Id=(Vi(i)+12-Vg)/10;\n",
+" Vo=(10*Id)-12;\n",
+" printf('(%0.0f)For Vi = %d V, Vo = %0.1f V\n',alp(i),Vi(i),Vo);\n",
+"end\n",
+"printf('If Vo = 0,\n');\n",
+"Vgs=4*(sqrt(0.214)-1);\n",
+"printf('(3)Then Vi = Vgs = %0.2f V',Vgs);\n",
+"\n",
+"// Result\n",
+"// When Vi=0,Vo=4V\n",
+"// When Vi=10,Vo=14V\n",
+"// When Vo=0,Vi=-2.15V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.16: Calculate_quiescent_values_of_Id_Vgs_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate quiescent values of Id,Vgs,Vds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-16 in page 324\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"// We find Thevenins equivalent to the left of the gate\n",
+"\n",
+"// Calculation\n",
+"Rth=(1/(200*10^3))+(1/(1.3*10^6));\n",
+"A=1/Rth;\n",
+"Vth=(200/1500)*60;\n",
+"printf('(a)Rth = %0.3e ohms and Vth = %0.0f V\n',A,Vth);\n",
+"Vgs=(8+sqrt(8^2-(4*16)))/2;\n",
+"Id=-2-(Vgs/4);\n",
+"printf('(b)Vgs = %0.0f V and Id = %0.2f mA\n',Vgs,Id);\n",
+"Vds=-60+((18+4)*2.25);\n",
+"printf('(c)Vds = %0.1f V',Vds);\n",
+"\n",
+"// Result\n",
+"// (a) Id = -3 mA\n",
+"// (b) Vgs = 4 V\n",
+"// (c) Vds = -10.5 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.20: Calculate_transconductance_amplification_factor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate transconductance,amplification factor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-20 in page 328\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Id=2*10^-3; // Drain current in mA\n",
+"Vgs=2; // Gate-source voltage in V\n",
+"Rd=200*10^3; // Drain resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"gm=Id/Vgs;\n",
+"mu=gm*Rd;\n",
+"printf('(a)Transconductance gm = %0.0e A/V\n',gm);\n",
+"printf('(b)Amplification factor mu = %0.0f',mu);\n",
+"\n",
+"// Result\n",
+"// (a) gm = 1 mA/V\n",
+"// (b) mu = 200"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.21: Calculate_dynamic_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate dynamic resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-21 in page 328\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"mu=80; // Amplification factor\n",
+"gm=400*10^-6; // Transconductance in micro-mho\n",
+"\n",
+"// Calculation\n",
+"rd=mu/gm;\n",
+"printf('Dynamic resistance Rd = %0.1e ohm',rd);\n",
+"\n",
+"// Result\n",
+"// Rd = 0.2*10^6 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.22: Calculate_Rd_gm_mu.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Rd,gm,mu\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-22 in page 329\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vds1=6; // Drain-source voltage when Vgs is zero\n",
+"Vds2=16; // Drain-source voltage when Vgs is 0.3\n",
+"Id1=12*10^-3; // Drain current in mA when Vgs is zero\n",
+"Id2=12.3*10^-3; // Drain current in mA when Vgs is zero\n",
+"\n",
+"// Calculation\n",
+"rd=(Vds2-Vds1)/(Id2-Id1);\n",
+"gm=(Id2-Id1)/(0-0.3*10^-3);\n",
+"mu=-gm*rd*10^-4;\n",
+"printf('(a)Drain resistance Rd = %0.2e ohms\n',rd);\n",
+"printf('(b)Transconductance gm = %0.0f(neglecting the sign)\n',-gm);\n",
+"printf('(c)Amplification factor mu = %0.2f',mu);\n",
+"\n",
+"// Result\n",
+"// (a) Rd = 33.33k-ohms\n",
+"// (b) gm = 1\n",
+"// (c) mu = 3.33"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.23: Find_the_value_of_Rs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the value of Rs\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-23 in page 329\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vgs=1.5; // Gate-source voltage in V\n",
+"Id=2*10^-3; // Drain saturation current in mA\n",
+"\n",
+"// Calculation\n",
+"Rs=Vgs/Id;\n",
+"printf('Rs = %0.0f ohm',Rs);\n",
+"\n",
+"// Result\n",
+"// Rs = 750 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.24: Find_voltage_gain_of_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find voltage gain of amplifier\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-24 in page 329\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rl=250; // Load resistance in k-ohms\n",
+"gm=0.5; // Transconductance in mA/V\n",
+"rd=200; // Dynamic resistance in k-ohms\n",
+"\n",
+"// Calculation\n",
+"mu=rd*gm;\n",
+"Av=(-mu*Rl)/(rd+Rl);\n",
+"printf('Voltage gain Av = %0.2f',Av);\n",
+"\n",
+"// Result\n",
+"// Voltage gain Av = -55.55"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.25: Find_pinch_off_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find pinch off voltage\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-25 in page 330\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=10; // Drain-source current in mA\n",
+"Vp=-4; // Original pinch off voltage in V\n",
+"Vgs=-2; // Gate-source voltage in V\n",
+"gm=4; // Transcondonductance in m-mho\n",
+"\n",
+"// Calculation\n",
+"Ids=Idss*(1-(Vgs/Vp))^2;\n",
+"A=(-2*Ids)/gm;\n",
+"printf('Pinch off voltage Vp = %0.0f V',A);\n",
+"\n",
+"// Result\n",
+"// Vp at gm = 4 m-mho is -1V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.26: Calculate_quiescent_values_of_Id_Vds_Vgs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate quiescent values of Id,Vds,Vgs\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-26 in page 330\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Ids=20*10^-3; // Drain-souce current in mA\n",
+"Vp=-4; // Pinch off voltage in volts\n",
+"\n",
+"// Calculation\n",
+"printf('We get the equation:\n0.3125*Id^2-6*Id+20=0\n');\n",
+"Id1=(6+sqrt(6^2-4*0.3125*20))/(2*0.3125);\n",
+"Id2=(6-sqrt(6^2-4*0.3125*20))/(2*0.3125);\n",
+"printf('Id = %0.1f mA and %0.1f mA\n',Id1,Id2);\n",
+"printf('We consider only %0.1f mA\n',Id2);\n",
+"Vgs=-Id2*0.5;\n",
+"Vds=30-(Id2*(5+0.5));\n",
+"printf('Vgs = %0.2f V\n(c)Vds = %0.2f V',Vgs,Vds);\n",
+"\n",
+"// Result\n",
+"// Id = 4.3 mA\n",
+"// Vgs = -2.15 V\n",
+"// Vds = 6.35 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.27: Find_Id_Vds_Vgs_Av.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Id,Vds,Vgs,Av\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-27 in page 331\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=3; // Drain-source current in mA\n",
+"Vp=-2.4; // Pinch off voltage in volts\n",
+"\n",
+"// Calculation\n",
+"printf('Id^2-6.73*Id+5.76=0\n');\n",
+"Id1=(6.73+sqrt(6.73^2-4*1*5.76))/2;\n",
+"Id2=(6.73-sqrt(6.73^2-4*1*5.76))/2;\n",
+"printf('Id = %0.2f mA or %0.2f mA\n',Id1,Id2);\n",
+"printf('(a)The possible value is 1.01 mA\n');\n",
+"Vgs=-Id2*1;\n",
+"Vds=20-(1.09*(1+10));\n",
+"printf('Vgs = %0.2f V\nVds = %0.2f V\n',Vgs,Vds);\n",
+"gm=(-2/Vp)*sqrt(Id2*Idss);\n",
+"Av=gm*10;\n",
+"printf('(b)Voltage gain Av = %0.1f',Av);\n",
+"\n",
+"// Result\n",
+"// Id = 1.01 mA\n",
+"// Vgs = -1.01 V\n",
+"// (a) Vds = 8.01 V\n",
+"// (b) Av = 14.5"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.28: Calculate_Av_Zo_Zi.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Av,Zo,Zi\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-28 in page 332\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rd=15; // Drain resistance in k-ohms\n",
+"Rg=1; // Gate resistance in M-ohms\n",
+"rd=5; // Dynamic resistance in k-ohms\n",
+"gm=5; // Transconductance in m-mho\n",
+"Vdd=20; // Drain voltage in volts\n",
+"\n",
+"// Calculation\n",
+"mu=rd*gm;\n",
+"Av=(mu*Rd)/(rd+Rd);\n",
+"Zo=rd;\n",
+"Zi=Rg;\n",
+"printf('(a)Av = %0.2f\n(b)Zo = %0.0f k-ohms\n(c)Zi = %0.0f M-ohms',Av,Zo,Zi);\n",
+"\n",
+"// Result\n",
+"// (a) Av = 18.75\n",
+"// (b) Zo = 5 K-ohms\n",
+"// (c) Zi = 1 M-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.29: Calculate_Vo_Vi.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Vo,Vi\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-29 in page 333\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=5*10^-3; // Drain-source current in mA\n",
+"Vp=-4.5; // Pinch off voltage in V\n",
+"\n",
+"// Calculation\n",
+"printf('When Vi is zero:\n');\n",
+"Vgs1=(-25.67+sqrt(25.67^2-(4*2.963*55)))/(2*2.963);\n",
+"Vgs2=(-25.67-sqrt(25.67^2-(4*2.963*55)))/(2*2.963);\n",
+"printf('(a)Vgs = %0.2f V or %0.2f V\n',Vgs1,Vgs2);\n",
+"printf('Since the gate is connected to ground,Vo = -Vgs.Hence Vo = %0.2f V or %0.2f V\n',-Vgs1,-Vgs2);\n",
+"printf('When Vo is zero:\n');\n",
+"Id=5/(12*10^3);\n",
+"Vgs=4.5*(0.288-1);\n",
+"Vi=Vgs;\n",
+"printf('(b)Vi = %0.1f V',Vi);\n",
+"\n",
+"// Result\n",
+"// (a) When Vi is zero, Vo = 4.78V or 3.88V\n",
+"// (b) When Vo is zero, Vi = -3.2V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Find_amplification.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find amplification\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-2 in page 312\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"mu=30; // FET parameter\n",
+"rd=5; // FET parameter\n",
+"Rd=10; // FET parameter value in ohms\n",
+"R=50; // Resistor value in ohms\n",
+"\n",
+"// Calculation\n",
+"Av=(-299/50)/((1/rd)+(1/Rd)+(1/R));\n",
+"printf('Amplification Av = %0.1f',Av);\n",
+"\n",
+"// Result\n",
+"// Av = -18.7"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.30: Calculate_Av_Zo.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Av,Zo\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-30 in page 334\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"gm=5; // Transconductance in mA/V\n",
+"rd=10*10^3; // Dynamic resistance in K-ohms\n",
+"mu=50; // Amplification factor\n",
+"Rd=5*10^3; // Drain resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"Av=(-mu*Rd)/(rd+Rd+((mu+1)*0.1*10^3));\n",
+"Avs=Av*(100/110);\n",
+"Zo=rd+((mu+1)*0.1*10^3);\n",
+"Zo1=(1/15.1)+(1/5);\n",
+"A=1/Zo1;\n",
+"printf('Av = %0.2f\n',Av);\n",
+"printf('Over all voltage gain Avs = %0.1f\n',Avs);\n",
+"printf('Output impedance = %0.2e K\n',Zo);\n",
+"printf('Effective output impedance Zo = %0.2f k-ohms',A);\n",
+"\n",
+"// Result\n",
+"// (a) Avs = -11.3\n",
+"// (b) Zo = 3.75 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.31: Calculate_Vgsq_gm_Rs_Vdsq_Rl.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Vgsq,gm,Rs,Vdsq,Rl\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-31 in page 335\n",
+"clear; clc; close;\n",
+"// Given data\n",
+"Vp=-4; // Pinch off voltage in V\n",
+"Idss=1.65*10^-3; // Drain-source current in mA\n",
+"Idq=0.8*10^-3; // Desired operating point of current in mA\n",
+"Av=10; // Voltage gain in dB\n",
+"// Calculation\n",
+"printf('We know that Id = Idss*(1-(Vgs/Vp))^2\n');\n",
+"Vgs=4*(sqrt(0.485)-1);\n",
+"gmo=(-2*Idss)/Vp;\n",
+"gm=gmo*(1-(Vgs/Vp));\n",
+"Rs=Vgs/-Idq;\n",
+"Rl=Av/gm;\n",
+"Vds=24-(Idq*Rl)-(Idq*Rs);\n",
+"printf('(a)Vgsq = %0.3f V\n(b)gm = %0.3e A/V\n(c)Rs = %0.3e ohms\n(d)Rl = %0.2e ohms\n(e)Vds = %0.3f V\n',Vgs,gm,Rs,Rl,Vds);\n",
+"printf('Therefore,\n(e)Vdsq = 16.48 V');\n",
+"// Result\n",
+"// (a) Vgsq = -1.214 V\n",
+"// (b) gm = 0.575 mA/V\n",
+"// (c) Rs = 1.518 K-ohm\n",
+"// (d) Rl = 17.4 K-ohm\n",
+"// (e) Vdsq = 16.48 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.32: Calculate_Zo_for_rd_equals_50_k_ohms.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate Zo for rd=50k-ohms\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-32 in page 337\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"rd=50*10^3; // Dynamic resistance in K-ohms\n",
+"Rd=20*10^3; // Drain resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"Zo=(rd*Rd)/(rd+Rd);\n",
+"printf('Output impedance Zo = %0.3e ohms',Zo);\n",
+"\n",
+"// Result\n",
+"// Zo = 14.28 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.33: Find_voltage_gain_Current_gain_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find voltage gain,Current gain ratio\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-33 in page 337\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Rd=5*10^3; // Drain resistance in K-ohms\n",
+"Rg=500*10^3; // Gate resistance in K-ohms\n",
+"mu=60; // Amplification factor\n",
+"rds=30*10^3; // Dynamic resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"Av=(mu*Rd)/(Rd+rds);\n",
+"Ai=(mu*Rg)/(rds+Rd);\n",
+"printf('(a)Voltage gain Av = %0.2f\n(b)Current gain Ai = %0.2f',Av,Ai);\n",
+"\n",
+"// Reuslt\n",
+"// (a) Av = 8.57\n",
+"// (b) Ai = 857.14"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.34: Determine_Zo_draw_small_signal_model.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Determine Zo,draw small signal model\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-34 in page 338\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"gm=1; // Transconductance in m-mho\n",
+"rd=50*10^3; // Dynamic resistance in K-ohms\n",
+"Rd=5*10^3; // Drain resistance in K-ohms\n",
+"\n",
+"// Calculation\n",
+"printf('The equivalent circuit at low-frequency small signal model is as shown in the figure\n');\n",
+"Zo=(rd*Rd)/(Rd+rd);\n",
+"printf('Zo = %0.2e ohms',Zo);\n",
+"\n",
+"// Result\n",
+"// Zo = 4.54 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.35: Find_values_of_R2_Vdd_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find values of R2,Vdd,Vds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-35 in page 338\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vp=-5; // Pinch off voltage in V\n",
+"Idss=12*10^-3; // Drain-source current in mA\n",
+"Vdd=18; // Drain voltage in V\n",
+"Rs=2*10^3; // Source resistance in K-ohms\n",
+"Rd=2*10^3; // Drain resistance in K-ohms\n",
+"R2=90*10^3; // Original value of R2 in K-ohms\n",
+"\n",
+"// Calculation\n",
+"Vgs1=(-5.3+sqrt(5.3^2-(4*0.48*10.35)))/(2*0.48);\n",
+"Vgs2=(-5.3-sqrt(5.3^2-(4*0.48*10.35)))/(2*0.48);\n",
+"printf('Vgs = %0.2f V or %0.2f V\nTherefore Vgs = -2.53 V\n',Vgs1,Vgs2);\n",
+"Id=(3.306-Vgs2)/2;\n",
+"Vds=18-(Id*Rd)-(Id*Rs);\n",
+"r2=(13.47*400)/4.53;\n",
+"vdd=((16-2.53)*(400+90))/90;\n",
+"vds=vdd-16-16;\n",
+"printf('(a)The new value of R2 is %0.1f K-ohm\n',r2);\n",
+"printf('(b)The new value of Vdd = %0.2f V\n',vdd);\n",
+"printf('(c)The new value of Vds = %0.2f V',vds);\n",
+"\n",
+"// Result\n",
+"// (a) R2 = 1189.4 K-ohm\n",
+"// (b) Vdd = 73.34 V\n",
+"// (c) Vds = 41.34 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.36: Equation_for_drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Equation for drain current\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-36 in page 340\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given\n",
+"Idss=12; // Drain source current in mA\n",
+"Vgs=-5; // Gate source voltage in V when off\n",
+"\n",
+"// Calculation\n",
+"printf('Equation for drain current:Id = %0.0f*(1-(Vgs/%0.0f))^2',Idss,Vgs);\n",
+"x=[-5 -4 -3 -2 -1 0];\n",
+"y=[12 11 10 9 8 7 6 5 4 3 2 1 0];\n",
+"y=12*(1+(x/5))^2;\n",
+"plot(x,y);\n",
+"xlabel('Vgs');\n",
+"ylabel('Id');\n",
+"title('Transfer characteristics of FET');\n",
+"\n",
+"// Result\n",
+"// Graph shows the transfer characteristics of FET for the given values\n",
+"// Set axis properties to 'origin' to view graph correctly"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.37: Find_Vgs_Vp.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find Vgs,Vp\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-37 in page 340\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=12; // Drain-source current in mA\n",
+"Vgs_off=-6; // Gate-source voltage when FET is off\n",
+"\n",
+"// Calculation\n",
+"Vgs=6*(sqrt(5/12)-1);\n",
+"Vp=Vgs_off;\n",
+"printf('(a)Vgs = %0.2f V\n(b)Vp = -Vgs(off) = 6V',Vgs);\n",
+"\n",
+"// Result\n",
+"// (a) Vgs = -2.13 V\n",
+"// (b) Vp = 6 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.38: Find_the_values_of_Rs_and_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the values of Rs and Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-38 in page 341\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Id=1.5*10^-3; // Drain current in mA\n",
+"Vds=10; // Drain-source voltage in V\n",
+"Idss=5*10^-3; // Drain-source current in mA\n",
+"Vp=-2; // Pinch off voltage in V\n",
+"Vdd=20; // Drain voltage in V\n",
+"\n",
+"// Calculation\n",
+"Vgs=2*(sqrt(1.5/5)-1);\n",
+"Vs=-Vgs;\n",
+"Rs=Vs/Id;\n",
+"Rd=(20-10.9)/Id;\n",
+"printf('Rs = %0.1e ohms\nRd = %0.2e ohms',Rs,Rd);\n",
+"\n",
+"// Result\n",
+"// Rs = 0.6 K-ohms\n",
+"// Rd = 6.06 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.39: Find_the_value_of_Rs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the value of Rs\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-39 in page 341\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Id=2.5*10^-3; // Drain current in mA\n",
+"Vds=8; // Drain-source voltage in V\n",
+"Vdd=30; // Drain voltage in V\n",
+"R1=1*10^6; // R1 value in M-ohms\n",
+"R2=500*10^3; // R2 value in K-ohms\n",
+"Idss=15*10^-3; // Drain-source current in mA\n",
+"Vp=-5; // Pinch off voltage in volts\n",
+"\n",
+"// Calculation\n",
+"Vgs=5*(sqrt(5/30)-1);\n",
+"V2=(Vdd*R2)/(R1+R2);\n",
+"Rs=(V2-Vgs)/Id;\n",
+"printf('Rs = %0.2e ohms\n',Rs);\n",
+"Rd=(Vdd-Vds-(Id*Rs))/Id;\n",
+"printf('Rd = %0.2e ohms',Rd);\n",
+"\n",
+"// Result\n",
+"// Rs = 5.18 K-ohms\n",
+"// Rd = 3.62 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: Find_amplification_with_40k_resistor_instead.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find amplification with 40k resistor instead\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-3 in page 313\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Av=-18.7; // Amplification from prev problem\n",
+"R1=2.54; // Resistance value in ohms\n",
+"R=40; // Load resistor in K-ohms\n",
+"\n",
+"// Calculation\n",
+"Avs=(Av)*(R1/(R1+R));\n",
+"printf('Amplification Avs = %0.2f',Avs);\n",
+"\n",
+"// Result\n",
+"// Avs = -1.11"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.40: Calculate_voltage_gain_Av.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate voltage gain Av\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-40 in page 342\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"gm=2*10^-3; // Transconductance in mA/V\n",
+"rd=10*10^3; // Dynamic resistance in K-ohms\n",
+"Zc=31.83*10^3; // Capacitive impedance in K-ohms\n",
+"Vth=16.67; // Thevenin voltage in V at 1 KHz\n",
+"\n",
+"// Calculation\n",
+"R=(rd*25*10^3)/(rd+(25*10^3));\n",
+"Av=-gm*R;\n",
+"printf('(a)Av after neglecting capacitance = %0.2f\n',Av);\n",
+"Rth=(rd*50*10^3)/(rd+50*10^3);\n",
+"Av1=(-50*10^3*Vth)/((50*10^3+Rth)-%i*Zc);\n",
+"printf('(b)Av after considering capacitance = %0.2f',Av1);\n",
+"\n",
+"// Result\n",
+"// Av after neglecting capacitance = -14.28\n",
+"// Av after considering capacitance = -11.01"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.41: Calculate_voltage_amplification_in_circuit.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate voltage amplification in circuit\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-41 in page 343\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"gfs=2*10^-3; // Transconductance in mS\n",
+"Rl=10*10^3; // Load resistance\n",
+"\n",
+"// Calculation\n",
+"Av=gfs*Rl;\n",
+"printf('Av = %0.0f',Av);\n",
+"\n",
+"// Result \n",
+"// Av = 20"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.43: Find_the_value_of_Rs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the value of Rs\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-43 in page 344\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=10*10^-3; // Drain-source current in mA\n",
+"Vp=-5; // Pinch off voltage in V\n",
+"\n",
+"// Calculation\n",
+"Vgs = 5*(sqrt(6.4/10)-1);\n",
+"Rs=-Vgs/(6.4*10^-3);\n",
+"printf('Rs = %0.0f ohms',Rs);\n",
+"\n",
+"// Result\n",
+"// Rs = 156 ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.44: Calculate_value_of_Id_Vgs_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate value of Id,Vgs,Vds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-44 in page 345\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Idss=4*10^-3; // Drain-source current in mA\n",
+"Vp=4; // Pinch off voltage in V\n",
+"\n",
+"// Calculation\n",
+"Rth=(200*10^3*1.3*10^6)/((200*10^3)+(1.3*10^6));\n",
+"Vth=(200/1500)*(1-60);\n",
+"Vgs=1;\n",
+"Id=(-8-Vgs)/4;\n",
+"Vds=-60-((18+4)*Id);\n",
+"printf('Id = %0.2f mA\nVgs = %0.0f V\nVds = %0.1f V',Id,Vgs,Vds);\n",
+"\n",
+"// Result\n",
+"// Vgs = 1 V\n",
+"// Vds = -10.5 V\n",
+"// Id = -2.25 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.45: Calculate_input_admittance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate input admittance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-45 in page 348\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"mu=20; // Amplification factor\n",
+"rd=10*10^3; // Dynamic resistance in K-ohms\n",
+"gm=2*10^-3; // Transconductance in mA/V\n",
+"Cgs=3*10^-12; // Gate-source capacitance in pF\n",
+"Cds=1*10^-12; // Drain-source capacitance in pF\n",
+"Cgd=2*10^-12; // Gate-drain capacitance in pF\n",
+"\n",
+"// Calculation\n",
+"printf('(a)Rd = 50 K\n');\n",
+"printf('At f=1000Hz\n');\n",
+"Ygs=%i*2*%pi*10^3*Cgs;\n",
+"Yds=%i*2*%pi*10^3*Cds;\n",
+"Ygd=%i*2*%pi*10^3*Cgd;\n",
+"Yd=2*10^-6;\n",
+"gd=10^-4;\n",
+"Av=(-gm+Ygd)/(gd+Yd+Yds+Ygs);\n",
+"C1=Cgs+(17.7*Cgd);\n",
+"printf('Av = %0.1f\nC1 = %0.1e F\n\n',Av,C1);\n",
+"printf('At f=10^6Hz\n');\n",
+"Ygs1=%i*1.88*10^-6;\n",
+"Yds1=%i*0.628*10^-6;\n",
+"Ygd1=%i*1.26*10^-6;\n",
+"Av1=(-gm+Ygd1)/(gd+Yd+Yds+Ygs);\n",
+"R1=10^6/2.48;\n",
+"C2=37.6*10^-12;\n",
+"printf('Av = %0.1f\nR1 = %0.2e ohm\nC1=%0.1e F\n\n',Av1,R1,C2);\n",
+"Zl=%i*5*10^4;\n",
+"Yl=%i*2*10^-6;\n",
+"printf('(b)Zl = j5*10^4;Yl = j2*10^-6\n');\n",
+"printf('For f=1000Hz\n');\n",
+"Av2=-gm/(gd+Yl);\n",
+"C3=Cgs+(20.2*Cgd);\n",
+"R2=20.8*10^6;\n",
+"printf('Av = %0.2f\nR1 = %0.2e ohm\nC1 = %0.1e F\n\n',Av2,R2,C3);\n",
+"printf('For f=10^6Hz\n');\n",
+"Av3=(-200+(%i*1.26))/(10+(%i*3.88));\n",
+"C4=Cgs+(18.4*Cgd);\n",
+"R3=10^6/8.64;\n",
+"printf('Av = %0.2f\nR1 = %0.2e ohm\nC1 = %0.2e F',Av3,R3,C4);\n",
+"\n",
+"// Result\n",
+"// (a)Rd = 50 K\n",
+"// At f=1000Hz\n",
+"// Av = -19.6\n",
+"// C1 = 3.8e-011 F\n",
+"\n",
+"// At f=10^6Hz\n",
+"// Av = -19.6\n",
+"// R1 = 4.03e+005 ohm\n",
+"// C1=3.8e-011 F\n",
+"\n",
+"// (b)Zl = j5*10^4;Yl = j2*10^-6\n",
+"// For f=1000Hz\n",
+"// Av = -19.99\n",
+"// R1 = 2.08e+007 ohm\n",
+"// C1 = 4.3e-011 F\n",
+"\n",
+"// For f=10^6Hz\n",
+"// Av = -17.34\n",
+"// R1 = 1.16e+005 ohm\n",
+"// C1 = 3.98e-011 F "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.47: Calculate_gain_and_frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate gain and frequency\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-47 in page 351\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"gm=2*10^-3; // Transconductance in mA/V\n",
+"Rs=100*10^3; // Source resistance in K-ohms\n",
+"rd=50*10^3; // Dynamic resistance in K-ohms\n",
+"Ct=9*10^-12; // Total capacitance in pF\n",
+"gd=2*10^-5; // Constant\n",
+"\n",
+"// Calculation\n",
+"omega=(gm+gd)/Ct;\n",
+"f=omega/(2*%pi);\n",
+"printf('(a)f = %0.1e Hz\n',f);\n",
+"Av=gm*Rs/(1+(gm+gd)*Rs);\n",
+"printf('For f=35.6MHz,\n');\n",
+"Av1=(10^2*(sqrt(4.45)))/(202*sqrt(2));\n",
+"printf('(b)Av = %0.3f',Av1);\n",
+"\n",
+"// Result\n",
+"// (a) f = 35.6 MHz\n",
+"// (b) Av = 0.738"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.48: Calculate_the_values_of_Id_Vgs_Vds.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate the values of Id,Vgs,Vds\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-48 in page 351\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vp=3; // Pinch off voltage in V\n",
+"// Id = 0.2(Vgs-3)^2\n",
+"\n",
+"// Calculation\n",
+"Id1=(25+7)/10;\n",
+"Id2=(25-7)/10;\n",
+"printf('Id = %0.1f mA or %0.1f mA\n',Id1,Id2);\n",
+"printf('FET will be cut off at Id=3.2mA.Hence Id=1.8mA\n');\n",
+"Vgs=0.5*(30-18);\n",
+"Vds=30-(1.8*10);\n",
+"printf('Vgs = %0.0f V\nVds = %0.0f V',Vgs,Vds);\n",
+"\n",
+"// Result\n",
+"// Id = 1.8 mA\n",
+"// Vgs = 6 V\n",
+"// Vds = 12 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.52: Calculate_complex_voltage_gain_Input_admittance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate complex voltage gain,Input admittance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-52 in page 355\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"mu=100; // Amplification factor\n",
+"rd=40*10^3; // Dynamic resistance in K-ohms\n",
+"gm=2.5*10^-3; // Transconductance in mA/V\n",
+"Cgs=4*10^-12; // Gate-source capacitance in pF\n",
+"Cds=0.6*10^-12; // Drain-source capacitance in pF\n",
+"Cgd=2.4*10^-12; // Gate-drain capacitance in pF\n",
+"\n",
+"// Calculation\n",
+"Ygs=%i*2*%pi*10^2*4*10^-12;\n",
+"Yds=%i*2*%pi*10^2*0.6*10^-12;\n",
+"Ygd=%i*2*%pi*10^2*2.4*10^-12;\n",
+"gd=2.5*10^-5;\n",
+"Yd=10^-5;\n",
+"Av=(-2.5/3.5)*10^2;\n",
+"Ci=Cgs+(1-Av)*Cgd;\n",
+"printf('Av = %0.2f\nCi = %0.3e F\n',Av,Ci);\n",
+"printf('For f=10^6 Hz,\n');\n",
+"Ygs1=%i*2.51*10^-6;\n",
+"Yds1=%i*0.377*10^-6;\n",
+"Ygd=%i*1.51*10^-6;\n",
+"Av=((-2.5*3.5*10^2)/12.30)+%i*((2.5*0.188*10^2)/12.30);\n",
+"C1=Cgs+(72*Cgd);\n",
+"G1=2*%pi*2.4*10^-12*3.82;\n",
+"R1=1/G1;\n",
+"printf('Av =');\n",
+"disp(Av);\n",
+"printf('C1 = %0.3e F\nR1 = %0.3e ohms',C1,R1);\n",
+"\n",
+"// Result\n",
+"// Av = -71.4\n",
+"// Ci = 177.8 pF\n",
+"// At f=10^6 Hz,\n",
+"// Av = -71.2+j3.82\n",
+"// C1 = 177 pF\n",
+"// R1 = 173.5 K-ohms"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.54: Find_the_maximum_transconductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find the maximum transconductance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-54 in page 358\n",
+"clear; clc; close;\n",
+"// Given data\n",
+"Idss=1*10^-3; // Drain-source current in mA\n",
+"Vp=-5; // Pinch off voltage in V\n",
+"// Calculation\n",
+"gm=(2*Idss)/-Vp;\n",
+"printf('gm = %0.1e mho',gm);\n",
+"// Result\n",
+"// gm = 0.4 m-mho"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.55: Evaluate_Vds_and_Rd.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Evaluate Vds and Rd\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-55 in page 358\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"b=10^-4; // Constant in A/V^2\n",
+"Vdd=10; // Drain voltage in V\n",
+"Vt=1; // Voltage expressed in volts\n",
+"Ids=0.5*10^-3; // Drain-source current in mA\n",
+"\n",
+"// Calculation\n",
+"Vds=1+sqrt(5);\n",
+"Rd=(Vdd-Vds)/Ids;\n",
+"printf('Vds = Vgs = %0.2f V\nRd = %0.2e ohm',Vds,Rd);\n",
+"\n",
+"// Result\n",
+"// Vds = 3.24 V\n",
+"// Rd = 13.5 K-ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.56: Verify_FET_operation_in_pinch_off_region.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Verify FET operation in pinch-off region\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-56 in page 358\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vp=-2; // Pinch off voltage in V\n",
+"Idss=4*10^-3; // Drain-source current in mA\n",
+"Rd=910; // Drain resistance in ohms\n",
+"Rs=3*10^3; // Source resistance in K-ohms\n",
+"R1=12*10^6; // R1 value in M-ohms\n",
+"R2=8.57*10^6; // R2 value in M-ohms\n",
+"Vdd=24; // Drain voltage in V\n",
+"\n",
+"// Calculation\n",
+"Vgg = Vdd*R2/(R1+R2);\n",
+"Id1=(73+sqrt(73^2-(4*9*144)))/(2*9);\n",
+"Id2=(73-sqrt(73^2-(4*9*144)))/(2*9);\n",
+"printf('Id = %0.2e A or %0.2e A\n',Id1,Id2);\n",
+"printf('A value of 3.39 mA is selected\n');\n",
+"Vgsq=10-(3.39*10^-3*3*10^3);\n",
+"Vdsq=Vdd-(3.39*10^-3*3.91*10^3);\n",
+"Vdgq=Vdsq-Vgsq;\n",
+"printf('Vgsq = %0.2fV\nVdsq = %0.2fV\nVdgq = %0.3f V\n',Vgsq,Vdsq,Vdgq);\n",
+"printf('Vdgq>Vd.Hence the FET is in the pinch off region');\n",
+"\n",
+"// Result\n",
+"// FET operates in the pinch off region"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.57: Calculate_voltage_gain_Av.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate voltage gain Av\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-57 in page 359\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"gm=2*10^-3; // Transconductance in mA/V\n",
+"rd=10*10^3; // Dynamic resistance in K-ohms\n",
+"C=0.025*10^-6; // Capacitance in microF \n",
+"\n",
+"// Calculation\n",
+"Rl=(30*30)/(30+30);\n",
+"Av=(-gm*rd*Rl*10^3)/(Rl+rd);\n",
+"f1=1/(2*%pi*37.5*10^3*C);\n",
+"Avl=Av/sqrt(1+(f1/(5*10^3))^2);\n",
+"printf('(a)Av = %0.0f\n(b)Avl = %0.2f',Av,Avl);\n",
+"\n",
+"// Result\n",
+"// (a) Av = -30\n",
+"// (b) Avl = -29.94"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.59: Design_a_source_follower.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Design a source follower\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-59 in page 361\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"Vds=14; // Drain-source voltage in V\n",
+"Idq=3*10^-3; // Drain-source current in mA\n",
+"Vdd=20; // Drain voltage in V\n",
+"gm=2*10^-3; // Transconductance in mS\n",
+"rd=50*10^3; // Dynamic resistance in K-ohms\n",
+"Vgs=-1.5; // Gate-source voltage in V\n",
+"\n",
+"// Calculation\n",
+"R=(20-14)/Idq;\n",
+"R1=Vgs/-Idq;\n",
+"R2=R-R1;\n",
+"Ro=1/gm;\n",
+"Av=R/(R+Ro);\n",
+"R_1=1/(1-(Av*(R2/R)));\n",
+"printf('R1 = %0.1e ohms\nR2 = %0.1e ohms\nRo = %0.1e ohms\n',R1,R2,Ro);\n",
+"printf('Av = %0.1f*Av1\n',Av);\n",
+"printf('Effective input resistance R1 = %0.1f*R3',R_1);\n",
+"\n",
+"// Result\n",
+"// R1 = 0.5 K\n",
+"// R2 = 1.5 K\n",
+"// Ro = 0.5 K\n",
+"// Av = 0.8*Av'\n",
+"// R1(effective) = 2.5*R3"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Find_gain_if_v2_v1_are_zero.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Find gain if v2,v1 are zero\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 7-6 in page 315\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given data\n",
+"mu=30; // FET parameter\n",
+"rd=15; // Resistance value in k-ohms\n",
+"Rd=1; // Drain resistance value in k-ohms\n",
+"Rs=0.5; // Source resistance in k-ohms\n",
+"\n",
+"// Calculation\n",
+"Av1=(-mu*(rd+Rd))/(Rd+((mu+1)^2*Rs)+((mu+2)*rd));\n",
+"Av2=((mu/(mu+1))*(((mu+1)*Rs)+rd))/(((Rd+rd)/(mu+1))+((mu+1)*Rs)+rd);\n",
+"printf('(a)Av when v2 is zero = %0.3f\n',Av1);\n",
+"printf('(b)Av when v1 is zero = %0.3f',Av2);\n",
+"\n",
+"// Result\n",
+"// (a) Av1 = -0.499\n",
+"// (b) Av2 = 0.952"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb b/Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb
new file mode 100644
index 0000000..a925f49
--- /dev/null
+++ b/Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb
@@ -0,0 +1,471 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Special Semiconductor Devices"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.10: Design_of_Triggering_Circuit_for_a_UJT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Design of Triggering Circuit for a UJT\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-10 in page 390\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Vs=30; // DC source voltage in V\n",
+"eta=0.51; // Intrinsic stand off ratio\n",
+"Ip=10*10^-6; // Peak Emitter current of UJT in mu-A\n",
+"Vv=3.5; // Valley voltage in V\n",
+"Iv=10*10^-3; // Valley current in A\n",
+"f=60; // Source frequency in Hz\n",
+"tg=50*10^-6; // width of triggering pulse in seconds\n",
+"C=0.5*10^-6; // Assumption for circuit Capacitance in mu-F\n",
+"Vd=0.5; // Fixed value of Vb in V\n",
+"\n",
+"// Calculations\n",
+"Vp=(eta*Vs)+Vd;\n",
+"Rlow=(Vs-Vp)/Ip; \n",
+"Rup=(Vs-Vv)/Iv;\n",
+"tou=1/f;\n",
+"R=(tou/C)*(1/log(1/(1-eta))); \n",
+"Rb1=tg/C; \n",
+"Rb2=10^4/(eta*Vs); \n",
+"\n",
+"printf('(a)The value of Base-1 Resistance of UJT is %0.2f ohm \n',Rb1);\n",
+"printf('(b)The value of Base-2 Resistance of UJT is %0.2f ohm \n',Rb2);\n",
+"printf('(c)Circuit resistance of the arrangement is %0.2e ohm \n',R);\n",
+"\n",
+"// Results\n",
+"// (a) The value of Base-1 Resistance of UJT is 100 ohm\n",
+"// (b) The value of Base-2 Resistance of UJT is 654 ohm\n",
+"// (c) Circuit resistance of the arrangement is 46.7 K-ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.11: To_determine_Emitter_source_voltage_of_UJT.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To determine Emitter source voltage of UJT\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-11 in page 391\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Re=1*10^3; // Emitter Resistance of UJT in ohm\n",
+"Iv=5*10^-3; // Valley current of UJT in A\n",
+"Vv=2; // Valley voltage of UJT in V\n",
+"\n",
+"// Calculations\n",
+"Ve=Vv;\n",
+"Ie=Iv; \n",
+"Vee=(Ie*Re)+Ve;\n",
+"\n",
+"printf('The value of Emitter source voltage of UJT for turn-off is %0.2f V',Vee);\n",
+"\n",
+"// Results\n",
+"// The value of Emitter source voltage of UJT for turn-off is 7 V"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.1: Calculate_the_Gate_Source_Resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate the Gate Source Resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-1 in page 376\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"P=0.5; // Value of Allowable Gate Power Dissipation in watt\n",
+"Es=14; // Trigger Source Voltage in V\n",
+"slope=130; // Slope of Gate-Cathode Characteristic line\n",
+"\n",
+"// Calculations\n",
+"Ig=sqrt(P/slope); \n",
+"Vg=slope*Ig;\n",
+"Rs=(Es-Vg)/Ig; \n",
+"\n",
+"printf('(a)The value of Gate Resistance for the Circuit is %0.2e ohm \n',Rs);\n",
+"printf('(b)The value of the Gate Voltage is %0.2e V \n',Vg);\n",
+"printf('(c)The value of the Gate Current is %0.2e A \n',Ig);\n",
+"\n",
+"// Results\n",
+"// (a) The value of Gate Resistance for the Circuit is 95.3 ohm\n",
+"// (b) The value of the Gate Voltage is 8.06 V\n",
+"// (c) The value of the Gate Current is 62 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.2: Firing_angle_of_Thyristor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Firing angle of Thyristor\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-2 in page 377\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Il=50^10*-3; // Latching current of the Thyristor in mA\n",
+"t=50^10*-6; // Duration of firing pulse in second\n",
+"Es=50; // DC voltage of the circuit in V\n",
+"R=10; // Resistance of the circuit in ohm\n",
+"L=0.25; // Inductance of the circuit in H\n",
+"e=2.718282; // Constant of calculation\n",
+"\n",
+"// Calculations\n",
+"tou=0.025; \n",
+"i=(Es/R)*(1-exp((-(50*10^-6))/tou));\n",
+"printf('(a) i = %0.3e A\n',i); \n",
+"\n",
+"if(i<Il)\n",
+" printf('Since the Gate current is less than Latching Current, SCR will not get fired \n');\n",
+"else\n",
+" printf('Since the Gate current is more than Latching Current, SCR will get fired \n');\n",
+"end\n",
+"\n",
+"// Results\n",
+"// SCR will not get fired in the Circuit"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Calculate_width_of_Gating_pulse.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate width of Gating pulse\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-3 in page 377\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Il=4*10^-3; // Latching current of SCR in A\n",
+"V=100; // DC voltage of the circuit in V\n",
+"L=0.1; // Inductance of the circuit in H\n",
+"\n",
+"// Calculations\n",
+"t=(L/V)*Il;\n",
+"\n",
+"printf('Required width of the gating pulse is %0.2e s',t);\n",
+"\n",
+"// Results\n",
+"// Required width of the gating pulse is 4 mu-s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.4: To_calculate_required_Gate_source_Resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To calculate required Gate source Resistance\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-4 in page 378\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"P=0.012; // Value of Allowable Gate Power Dissipation in watt\n",
+"Es=10; // Trigger Source Voltage in V\n",
+"slope=3*10^3; // Slope of Gate-Cathode Characteristic line\n",
+"\n",
+"// Calculations\n",
+"Ig=sqrt(P/slope); \n",
+"Vg=slope*Ig; \n",
+"Rs=(Es-Vg)/Ig; \n",
+"\n",
+"printf('(a)The value of Gate Resistance for the Circuit is %0.0f ohm \n',Rs);\n",
+"printf('(b)The value of the Gate Voltage is %0.2e V \n',Vg);\n",
+"printf('(c)The value of the Gate Current is %0.2e A \n',Ig);\n",
+"\n",
+"\n",
+"// Results\n",
+"// (a) The value of Gate Resistance for the Circuit is 2 K-ohm\n",
+"// (b) The value of the Gate Voltage is 6 V\n",
+"// (c) The value of the Gate Current is 2 mA"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: To_calculate_series_Resistance_across_SCR.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To calculate series Resistance across SCR\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010 \n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-5 in page 378\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Ig_min=0.5; // Minimum gate current for quick ON, in A\n",
+"Vs=15; // Gate source voltage in V\n",
+"slope=16; // Slope of Gate-Cathode Characteristic line\n",
+"\n",
+"// Calculations\n",
+"Vg=slope*Ig_min; \n",
+"Rg=(Vs-Vg)/Ig_min; \n",
+"\n",
+"printf('The value of Gate Resistance is %0.2f ohm \n',Rg);\n",
+"\n",
+"// Results\n",
+"// The value of Gate Resistance is 14 ohm"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.6: To_determine_critical_value_of_dv_by_dt.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// To determine critical value of dv/dt\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-6 in page 379\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"ij2=32*10^-3; // Limiting value of the charging current in A\n",
+"Cj2=40*10^-12; // Capacitance of reverse biased junction J2 in F\n",
+"\n",
+"// Calculations\n",
+"dv_dt=ij2/Cj2; \n",
+"\n",
+"printf('The value of dv/dt of the given SCR is %0.2e volt/second \n',dv_dt);\n",
+"\n",
+"// Results\n",
+"// The value of dv/dt of the given SCR is 800 V/mu-s"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Calculate_surge_current_and_I2t_ratings.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Calculate surge current & I2t ratings\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-7 in page 379\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"ish=3000; // half cycle surge current rating of SCR in A\n",
+"f=50; // Frequency of operation of supply in Hz\n",
+"\n",
+"// Calculations\n",
+"I=ish*sqrt(2*f)/sqrt(4*f); \n",
+"I2t_rate=(I*I)/(2*f); \n",
+"\n",
+"printf('(a)The surge current rating of one cycle for the SCR is %0.2f A \n',I);\n",
+"printf('(b)The I2t rating of one cycle for the SCR is %0.2f A^2-second \n',I2t_rate);\n",
+"\n",
+"// Results\n",
+"// (a) The surge current rating of one cycle for the SCR is 2121.32 A\n",
+"// (b) The I2t rating of one cycle for the SCR is 45000 A^2-second"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.8: Max_and_Min_firing_delays.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"// Max and Min firing delays\n",
+"// Basic Electronics\n",
+"// By Debashis De\n",
+"// First Edition, 2010\n",
+"// Dorling Kindersley Pvt. Ltd. India\n",
+"// Example 8-8 in page 386\n",
+"\n",
+"clear; clc; close;\n",
+"\n",
+"// Given Data\n",
+"Vc=40; // Breakdown voltage of DIAC in V\n",
+"C=470*10^-9; // Capacitance in nF\n",
+"E=240; // Rms voltage at 50 Hz in V\n",
+"omga=2*%pi*50; // Angular frequency\n",
+"\n",
+"// Calculation\n",
+"printf('When DIAC is not conducting:\n')\n",
+"A=asind(40/335.8)+8.4;\n",
+"Z=1/(omga*C);\n",
+"R1=atand(1/(omga*1000*C));\n",
+"Zd=sqrt(R1^(2+(1/omga^2*C^2)));\n",
+"printf('Minimum delay = %0.2f degrees\n\n',A);\n",
+"printf('When DIAC conducts:\n');\n",
+"A1=asind(40/88.6)+74.84;\n",
+"printf('Maximum delay = %0.2f degrees',A1);\n",
+"\n",
+"// Result\n",
+"// Minimum delay = 15.24 degrees\n",
+"// Maximum delay = 101.6 degrees"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}