diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Thermal_Engineering_by_A_V_Arasu | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Thermal_Engineering_by_A_V_Arasu')
7 files changed, 5955 insertions, 0 deletions
diff --git a/Thermal_Engineering_by_A_V_Arasu/1-Fuels_and_Combustion.ipynb b/Thermal_Engineering_by_A_V_Arasu/1-Fuels_and_Combustion.ipynb new file mode 100644 index 0000000..54cb6a5 --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/1-Fuels_and_Combustion.ipynb @@ -0,0 +1,696 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Fuels and Combustion" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: Volume_of_air_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 10, Page 23\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"H2=0.27;//Percentage composition of H2 by volume\n", +"CO2=0.18;//Percentage composition of CO2 by volume\n", +"CO=0.125;//Percentage composition of CO by volume\n", +"CH4=0.025;//Percentage composition of CH4 by volume\n", +"N2=0.4;//Percentage composition of N2 by volume\n", +"\n", +"//CALCULATIONS\n", +"v=(2.38*(H2+CO))+(9.52*CH4);//Volume of air required for complete combustion in (m^3)\n", +"\n", +"//OUTPUT\n", +"mprintf('Volume of air required for complete combustion is %3.3f (m^3)',v)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: Air_fuel_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 11, Page 24\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"H2=0.5;//Percentage composition of H2 by volume\n", +"CO2=0.1;//Percentage composition of CO2 by volume\n", +"CO=0.05;//Percentage composition of CO by volume\n", +"CH4=0.25;//Percentage composition of CH4 by volume\n", +"N2=0.1;//Percentage composition of N2 by volume\n", +"pCO2=8;//Percentage volumetric analysis of CO2\n", +"pO2=6;//Percentage volumetric analysis of O2\n", +"pN2=86;//Percentage volumetric analysis of N2\n", +"\n", +"\n", +"//CALCULATIONS\n", +"v=(2.38*(H2+CO))+(9.52*CH4);//Volume of air required for complete combustion in (m^3)\n", +"vN2=v*0.79;//Volume of nitrogen in the air in m^3\n", +"a=CO+CH4+CO2;//CO2 formed per m^3 of fuel gas burnt\n", +"b=vN2+N2;//N2 formed per m^3 of fuel gas burnt\n", +"vt=a+b;//Total volume of dry flue gas formed in m^3\n", +"ve=(pO2*vt)/(21-pO2);//Excess air supplied in m^3\n", +"V=v+ve;//Total quantity of air supplied in m^3\n", +"\n", +"//OUTPUT\n", +"mprintf('Air-fuel ratio by volume is %3.3f:1',V)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.12: Volume_and_analysis_of_products_of_combustion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 12, Page 24\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"H2=0.14;//Percentage composition of H2 by volume\n", +"CO2=0.05;//Percentage composition of CO2 by volume\n", +"CO=0.22;//Percentage composition of CO by volume\n", +"CH4=0.02;//Percentage composition of CH4 by volume\n", +"O2=0.02;//Percentage composition of O2 by volume\n", +"N2=0.55;//Percentage composition of N2 by volume\n", +"e=0.4;//Excess air supplied\n", +"//CALCULATIONS\n", +"v=(2.38*(H2+CO))+(9.52*CH4)-(4.76*O2);//Volume of air required for complete combustion in (m^3)\n", +"ve=v*e;//Volume of excess air supplied in m^3\n", +"vtN2=v-(v*0.21);//Volume of N2 in theoretical air in m^3\n", +"veN2=ve-(ve*0.21);//Volume of N2 in excess air in m^3\n", +"vt=vtN2+veN2;//Total volume of N2 in air supplied in m^3\n", +"vCO2=CO+CH4+CO2;//CO2 formed per m^3 of fuel gas\n", +"vN2=vt+N2;//N2 formed per m^3 of fuel gas\n", +"veO2=ve*0.21;//Volume of excess O2 per m^3 of fuel gas\n", +"vT=vCO2+vN2+veO2;//Total volume of dry combustion products\n", +"pCO2=(vCO2*100)/vT;//Percentage volume of CO2\n", +"pN2=(vN2*100)/vT;//Percentage volume of N2\n", +"pO2=(veO2*100)/vT;//Percentage volume of O2\n", +"\n", +"//OUTPUT\n", +"mprintf('Volume of air required for complete combustion is %3.3f (m^3) \n Volume of CO2 per m^3 of gas fuel is %3.2f m^3/m^3 of gas fuel \n Volume of N2 per m^3 of gas fuel is %3.3f m^3/m^3 of gas fuel \n Volume of excess O2 per m^3 of gas fuel is %3.2f m^3/m^3 of gas fuel \n Total volume of dry combustion products is %3.3f m^3/m^3 of gas fuel \n Percentage volume of CO2 is %3.1f percent \n Percentage volume of N2 is %3.2f percent \n Percentage volume of O2 is %3.2f percent',v,vCO2,vN2,veO2,vT,pCO2,pN2,pO2)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Minimum_mass_of_air_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 1, Page 15\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.91;//Percentage composition of Carbon\n", +"H=0.03;//Percentage composition of Hydrogen\n", +"O=0.02;//Percentage composition of Oxygen\n", +"N=0.008;//Percentage composition of Nitrogen\n", +"S=0.008;//Percentage composition of Sulphur\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)))+(4.3*S);//Mass of air per kg of coal in kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Minimum mass of air per kg of coal is %3.2f kg',m)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Theoretical_volume_of_air_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 2, Page 16\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.86;//Percentage composition of Carbon\n", +"H=0.12;//Percentage composition of Hydrogen\n", +"O=0.01;//Percentage composition of Oxygen\n", +"S=0.01;//Percentage composition of Sulphur\n", +"v=0.773;//Specific volume of air at N.T.P in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)))+(4.3*S);//Theoretical mass of air per kg of coal in kg\n", +"vth=m*v;//Theoretical volume of air at N.T.P per kg fuel in (m^3)/kg of fuel\n", +"\n", +"//OUTPUT\n", +"mprintf('Theoretical volume of air at N.T.P per kg fuel is %3.2f (m^3)/kg of fuel',vth)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Minimum_quantity_of_air_and_Total_mass_of_products_of_combustion.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 3, Page 16\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.78;//Percentage composition of Carbon\n", +"H=0.06;//Percentage composition of Hydrogen\n", +"O=0.078;//Percentage composition of Oxygen\n", +"N=0.012;//Percentage composition of Nitrogen\n", +"S=0.03;//Percentage composition of Sulphur\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)))+(4.3*S);//Minimum quantity of air required in kg\n", +"mt=((11*C)/3)+(9*H)+(2*S)+(8.32+N);//Total mass of products of combustion in kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Minimum quantity of air required for complete combustion is %3.2f kg \n Total mass of products of combustion is %3.3f kg',m,mt)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Mass_of_dry_flue_gas.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 4, Page 17\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.84;//Percentage composition of Carbon\n", +"H=0.09;//Percentage composition of Hydrogen\n", +"CO2=0.0875;//Volumetric composition of CO2\n", +"CO=0.0225;//Volumetric composition of CO\n", +"O2=0.08;//Volumetric composition of Oxygen\n", +"N2=0.81;//Volumetric composition of Nitrogen\n", +"M1=44;//Molecular mass of CO2\n", +"M2=28;//Molecular mass of CO\n", +"M3=32;//Molecular mass of O2\n", +"M4=28;//Molecular mass of N2\n", +"\n", +"//CALCULATIONS\n", +"c1=CO2*M1;//Proportional mass of CO2\n", +"c2=CO*M2;//Proportional mass of CO\n", +"c3=O2*M3;//Proportional mass of O2\n", +"c4=N2*M4;//Proportional mass of N2\n", +"c=c1+c2+c3+c4;//Total proportional mass of constituents\n", +"m1=c1/c;//Mass of CO2 per kg of flue gas in kg\n", +"m2=c2/c;//Mass of CO per kg of flue gas in kg\n", +"m3=c3/c;//Mass of O2 per kg of flue gas in kg\n", +"m4=c4/c;//Mass of N2 per kg of flue gas in kg\n", +"d1=m1*100;//Mass analysis of CO2\n", +"d2=m2*100;//Mass analysis of CO\n", +"d3=m3*100;//Mass analysis of O2\n", +"d4=m4*100;//Mass analysis of N2\n", +"m=((3*m1)/11)+((3*m2)/7);//Mass of carbon in kg\n", +"md=C/m;//Mass of dry flue gas in kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Mass of dry flue gases per kg of coal burnt is %3.1f kg',md)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: EX1_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 5, Page 17\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.624;//Percentage composition of Carbon\n", +"H=0.042;//Percentage composition of Hydrogen\n", +"O=0.045;//Percentage composition of Oxygen\n", +"CO2=0.13;//Volumetric composition of CO2\n", +"CO=0.003;//Volumetric composition of CO\n", +"O2=0.06;//Volumetric composition of Oxygen\n", +"N2=0.807;//Volumetric composition of Nitrogen\n", +"M1=44;//Molecular mass of CO2\n", +"M2=28;//Molecular mass of CO\n", +"M3=32;//Molecular mass of O2\n", +"M4=28;//Molecular mass of N2\n", +"mw=0.378;//Mass of H2O in kg\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)));//Minimum air required in kg\n", +"c1=CO2*M1;//Proportional mass of CO2\n", +"c2=CO*M2;//Proportional mass of CO\n", +"c3=O2*M3;//Proportional mass of O2\n", +"c4=N2*M4;//Proportional mass of N2\n", +"c=c1+c2+c3+c4;//Total proportional mass of constituents\n", +"m1=c1/c;//Mass of CO2 per kg of flue gas in kg\n", +"m2=c2/c;//Mass of CO per kg of flue gas in kg\n", +"m3=c3/c;//Mass of O2 per kg of flue gas in kg\n", +"m4=c4/c;//Mass of N2 per kg of flue gas in kg\n", +"d1=m1*100;//Mass analysis of CO2\n", +"d2=m2*100;//Mass analysis of CO\n", +"d3=m3*100;//Mass analysis of O2\n", +"d4=m4*100;//Mass analysis of N2\n", +"mC=((3*m1)/11)+((3*m2)/7);//Mass of carbon in kg\n", +"md=C/mC;//Mass of dry flue gas in kg\n", +"mact=(md+mw)-(C+H+O);//Actual air supplied per kg of fuel in kg\n", +"me=mact-m;//Mass of excess air per kg of fuel in kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Minimum air required to burn 1 kg of coal is %3.2f kg \n Mass of air actually supplied per kg of coal is %3.3f kg \n Amount of excess air supplied per kg of coal burnt is %3.3f kg',m,mact,me)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Mass_of_air_to_be_supplied_and_Mass_of_gaseous_products.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 6, Page 19\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.78;//Percentage composition of Carbon\n", +"H=0.03;//Percentage composition of Hydrogen\n", +"O=0.03;//Percentage composition of Oxygen\n", +"S=0.01;//Percentage composition of Sulphur\n", +"me=0.3;//Mass of excess air supplied\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)))+(4.3*S);//Mass of air per kg of coal in kg\n", +"mec=me*m;//Excess air supplied per kg of coal in kg\n", +"mact=m+mec;//Actual mass of air supplied per kg of coal in kg\n", +"mCO2=(11*C)/3;//Mass of CO2 produced per kg of coal in kg\n", +"mHw=9*H;//Mass of H2O produced per kg of coal in kg\n", +"mSO2=2*S;//Mass of SO2 produced per kg of coal in kg\n", +"mO2=0.232*mec;//Mass of excess O2 produced per kg of coal in kg\n", +"mN2=0.768*mact;//Mass of N2 produced per kg of coal in kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Mass of air to be supplied is %3.2f kg \n Mass of CO2 produced per kg of coal is %3.2f kg \n Mass of H2O produced per kg of coal is %3.2f kg \n Mass of SO2 produced per kg of coal is %3.2f kg \n Mass of excess O2 produced per kg of coal is %3.2f kg \n Mass of N2 produced per kg of coal is %3.2f kg \n',m,mCO2,mHw,mSO2,mO2,mN2)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: EX1_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 7, Page 20\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.9;//Percentage composition of Carbon\n", +"H=0.033;//Percentage composition of Hydrogen\n", +"O=0.03;//Percentage composition of Oxygen\n", +"N=0.008;//Percentage composition of Nitrogen\n", +"S=0.009;//Percentage composition of Sulphur\n", +"M1=44;//Molecular mass of CO2\n", +"M2=64;//Molecular mass of SO2\n", +"M3=32;//Molecular mass of O2\n", +"M4=28;//Molecular mass of N2\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)))+(4.3*S);//Minimum mass of air per kg of coal in kg\n", +"mCO2=(11*C)/3;//Mass of CO2 produced per kg of coal in kg\n", +"mHw=9*H;//Mass of H2O produced per kg of coal in kg\n", +"mSO2=2*S;//Mass of SO2 produced per kg of coal in kg\n", +"mt=11.5*1.5;//Total mass of air supplied per kg of coal in kg\n", +"me=mt-m;//Excess air supplied in kg\n", +"mO2=0.232*me;//Mass of excess O2 produced per kg of coal in kg\n", +"mN2=0.768*mt;//Mass of N2 produced per kg of coal in kg\n", +"mtN2=mN2+N;//Total mass of Nitrogen in exhaust in kg\n", +"md=mCO2+mSO2+mO2+mtN2;//Total mass of dry flue gases per kg of fuel in kg\n", +"CO2=(mCO2/md)*100;//Percentage composition of CO2 by mass in percent\n", +"SO2=(mSO2/md)*100;//Percentage composition of SO2 by mass in percent\n", +"O2=(mO2/md)*100;//Percentage composition of O2 by mass in percent\n", +"N2=(mN2/md)*100;//Percentage composition of N2 by mass in percent\n", +"c1=CO2/M1;//Proportional volume of CO2\n", +"c2=SO2/M2;//Proportional volume of SO2\n", +"c3=O2/M3;//Proportional volume of O2\n", +"c4=N2/M4;//Proportional volume of N2\n", +"c=c1+c2+c3+c4;//Total proportional volume of constituents\n", +"m1=c1/c;//Volume of CO2 in 1 (m^3) of flue gas\n", +"m2=c2/c;//Volume of SO2 in 1 (m^3) of flue gas\n", +"m3=c3/c;//Volume of O2 in 1 (m^3) of flue gas\n", +"m4=c4/c;//Volume of N2 in 1 (m^3) of flue gas\n", +"d1=m1*100;//Volume analysis of CO2\n", +"d2=m2*100;//Volume analysis of SO2\n", +"d3=m3*100;//Volume analysis of O2\n", +"d4=m4*100;//Volume analysis of N2\n", +"\n", +"//OUTPUT\n", +"mprintf('Minimum mass of air required is %3.1f kg \n Total mass of dry flue gases per kg of fuel is %3.2f kg \n Percentage composition of CO2 by volume is %3.2f percent \n Percentage composition of SO2 by volume is %3.3f percent \n Percentage composition of O2 by volume is %3.1f percent \n Percentage composition of N2 by volume is %3.2f percent',m,md,d1,d2,d3,d4)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Mass_of_air_actually_supplied_and_Percentage_of_excess_air_supplied.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 8, Page 21\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.88;//Percentage composition of Carbon\n", +"H=0.036;//Percentage composition of Hydrogen\n", +"O=0.048;//Percentage composition of oxygen\n", +"CO2=0.109;//Volumetric composition of CO2\n", +"CO=0.01;//Volumetric composition of CO\n", +"O2=0.071;//Volumetric composition of Oxygen\n", +"N2=0.81;//Volumetric composition of Nitrogen\n", +"M1=44;//Molecular mass of CO2\n", +"M2=28;//Molecular mass of CO\n", +"M3=32;//Molecular mass of O2\n", +"M4=28;//Molecular mass of N2\n", +"\n", +"//CALCULATIONS\n", +"m=(11.5*C)+(34.5*(H-(O/8)));//Theoretical air required in kg\n", +"c1=CO2*M1;//Proportional mass of CO2\n", +"c2=CO*M2;//Proportional mass of CO\n", +"c3=O2*M3;//Proportional mass of O2\n", +"c4=N2*M4;//Proportional mass of N2\n", +"c=c1+c2+c3+c4;//Total proportional mass of constituents\n", +"m1=c1/c;//Mass of CO2 per kg of flue gas in kg\n", +"m2=c2/c;//Mass of CO per kg of flue gas in kg\n", +"m3=c3/c;//Mass of O2 per kg of flue gas in kg\n", +"m4=c4/c;//Mass of N2 per kg of flue gas in kg\n", +"mC=((3*m1)/11)+((3*m2)/7);//Mass of carbon in kg\n", +"md=C/mC;//Mass of dry flue gas in kg\n", +"hc=H*9;//Hydrogen combustion in kg of H2O\n", +"mair=(md+hc)-(C+H+O);//Mass of air supplied per kg of coal in kg\n", +"me=mair-m;//Excess air per kg of coal in kg\n", +"mN2=m4*md;//Mass of nitrogen per kg of coal in kg\n", +"mact=mN2/0.768;//Actual mass of air per kg of coal in kg\n", +"pe=(me/m)*100;//Perccentage excess air in percent\n", +"\n", +"//OUTPUT\n", +"mprintf('Mass of air actually supplied per kg of coal is %3.2f kg \n Percentage of excess air is %3.2f percent',mact,pe)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Mass_of_excess_air_supplied_and_air_fuel_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-1, Illustration 9, Page 22\n", +"//Title: Fuels and Combustion\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C=0.84;//Percentage composition of Carbon\n", +"H=0.14;//Percentage composition of Hydrogen\n", +"O=0.02;//Percentage composition of oxygen\n", +"CO2=8.85;//Volumetric composition of CO2\n", +"CO=1.2;//Volumetric composition of CO\n", +"O2=6.8;//Volumetric composition of Oxygen\n", +"N2=83.15;//Volumetric composition of Nitrogen\n", +"M1=44;//Molecular mass of CO2\n", +"M2=28;//Molecular mass of CO\n", +"M3=32;//Molecular mass of O2\n", +"M4=28;//Molecular mass of N2\n", +"a=8/3;//O2 required per kg C\n", +"b=8;//O2 required per kg H2\n", +"mair=0.23;//Mass of air\n", +"\n", +"//CALCULATIONS\n", +"c=C*a;//O2 required per kg of fuel for C\n", +"d=H*b;//O2 required per kg of fuel for H2\n", +"tO2=c+d+O;//Theoreticcal O2 required in kg/kg of fuel\n", +"tm=tO2/mair;//Theoretical mass of air in kg/kg of fuel\n", +"c1=CO2*M1;//Proportional mass of CO2 by Volume\n", +"c2=CO*M2;//Proportional mass of CO by Volume\n", +"c3=O2*M3;//Proportional mass of O2 by Volume\n", +"c4=N2*M4;//Proportional mass of N2 by Volume\n", +"c=c1+c2+c3+c4;//Total proportional mass of constituents\n", +"m1=c1/c;//Mass of CO2 per kg of flue gas in kg\n", +"m2=c2/c;//Mass of CO per kg of flue gas in kg\n", +"m3=c3/c;//Mass of O2 per kg of flue gas in kg\n", +"m4=c4/c;//Mass of N2 per kg of flue gas in kg\n", +"mC=((m1*12)/M1)+((m2*12)/M2);//Mass of carbon per kg of dry flue gas in kg\n", +"md=C/mC;//Mass of dry flue per kg of fuel in kg\n", +"p=(4*m2)/7;//Oxygen required to burn CO in kg\n", +"meO2=md*(m3-p);//Mass of excess O2 per kg of fuel in kg\n", +"me=meO2/mair;//Mass of excess air in kg/kg fuel\n", +"mt=tm+me;//Total air required per kg fuel\n", +"\n", +"//OUTPUT\n", +"mprintf('Mass of excess air supplied per kg of fuel burnt is %3.1f kg/kg of fuel \n Air-fuel ratio is %3.1f:1',me,mt)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Thermal_Engineering_by_A_V_Arasu/2-Gas_Power_Cycles.ipynb b/Thermal_Engineering_by_A_V_Arasu/2-Gas_Power_Cycles.ipynb new file mode 100644 index 0000000..a5de6ed --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/2-Gas_Power_Cycles.ipynb @@ -0,0 +1,1170 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Gas Power Cycles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: Thermal_efficiency_and_MEP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 10, Page 66\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=20;//Compression ratio\n", +"P1=95;//Pressure at point 1 in kPa\n", +"T1=293;//Temperature at point 1 in K\n", +"T3=2200;//Temperature at point 3 in K\n", +"y=1.4;//Ratio of specific heats\n", +"R=287;//Universal gas constant in J/kg-K\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"P2=P1*(rv^y);//Pressure at point 2 in kPa\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"v2=(R*T2)/(P2*1000);//Specific volume at point 2 in (m^3)/kg\n", +"v3=v2*(T3/T2);//Specific volume at point 3 in (m^3)/kg\n", +"rc=v3/v2;//Cut-off ratio\n", +"nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Thermal efficiency\n", +"q23=Cp*(T3-T2);//Heat flow between points 2 and 3 in kJ/kg\n", +"wnet=(nth*q23)/100;//Net workdone in kJ/kg\n", +"MEP=wnet/(v2*(rv-1));//Mean effective pressure in kPa\n", +"\n", +"//OUTPUT\n", +"mprintf('Thermal efficiency is %3.1f percent \n Mean effective pressure is %3.2f kPa',nth,MEP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: Cutoff_ratio_and_air_standard_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 11, Page 68\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=21;//Compression ratio\n", +"re=10.5;//Expansion ratio\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"rc=rv/re;//Cut-off ratio\n", +"nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Air standard efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Cut-off ratio is %3.0f \n Air standard efficiency is %3.2f percent',rc,nth)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.12: Ideal_efficiency_of_cycle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 12, Page 69\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=16;//Compression ratio\n", +"rp=1.5;//Pressure ratio\n", +"y=1.4;//Ratio of specific heats\n", +"cp=8;//Cut-off percentage\n", +"\n", +"//CALCULATIONS\n", +"rc=2.2;//Cut-off ratio\n", +"ntd=(1-((rp*(rc^y)-1)/((rv^(y-1)*((rp-1)+(y*rp*(rc-1)))))))*100;//Dual cycle efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Ideal efficiency of engine is %3.1f percent',ntd)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: Ideal_efficiency_of_engine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 13, Page 69\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"d=0.2;//Bore in m\n", +"L=0.5;//Stroke in m\n", +"c=0.06;//Cut-off percentage\n", +"y=1.4;//Ratio of specific heats\n", +"rv=15;//Compression ratio\n", +"rp=1.4;//Pressure ratio\n", +"\n", +"//CALCULATIONS\n", +"Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3\n", +"DV=c*Vs;//Difference in volumes at points 4 and 3\n", +"V3=Vs/(rv-1);//Specific volume at point 3 in m^3\n", +"V4=V3+DV;//Specific volume at point 4 in m^3\n", +"rc=V4/V3;//Cut-off ratio\n", +"ntd=(1-((rp*(rc^y)-1)/((rv^(y-1)*((rp-1)+(y*rp*(rc-1)))))))*100;//Ideal efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Ideal efficiency of the engine is %3.1f percent',ntd)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: Amount_of_heat_added_and_rejected_and_Work_done_and_Thermal_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 14, Page 70\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"d=0.2;//Bore in m\n", +"L=0.3;//Stroke in m\n", +"c=0.04;//Cut-off percentage\n", +"y=1.4;//Ratio of specific heats\n", +"rv=8;//Compression ratio\n", +"P1=1;//Pressure at point 1 in bar\n", +"P3=60;//Pressure at point 3 in bar\n", +"T1=298;//Temperature at point 1 in K\n", +"R=287;//Universal gas constant in J/kg\n", +"Cv=0.718;//Speific heat at constant volume in kJ/kg-K\n", +"Cp=1.005;//Speific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3\n", +"V2=Vs/(rv-1);//Specific volume at point 2 in m^3\n", +"V3=V2;//Specific volume at point 3 in m^3\n", +"V1=V2+Vs;//Specific volume at pont 1 in m^3\n", +"V5=V1;//Specific volume at pont 5 in m^3\n", +"P2=P1*(rv^y);//Pressure at point 2 in bar\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"T3=T2*(P3/P2);//Temperature at point 3 in K\n", +"V4=V3+(c*(V1-V2));//Specific volume at point 4 in m^3\n", +"T4=T3*(V4/V3);//Temperature at point 4 in K\n", +"T5=T4*((V4/V5)^(y-1));//Temperature at point 5 in K\n", +"q1=(Cv*(T3-T2))+(Cp*(T4-T3));//Heat added in kJ/kg\n", +"q2=Cv*(T5-T1);//Heat rejected in kJ/kg\n", +"nth=(1-(q2/q1))*100;//Thermal efficiency\n", +"m=(P1*V1*(10^5))/(R*T1);//Mass of air supplied in kg\n", +"W=m*(q1-q2);//Workdone in kJ/cycle\n", +"\n", +"//OUTPUT\n", +"mprintf('Amount of heat added is %3.1f kJ/kg \n Amount of heat rejected is %3.2f kJ/kg \n Workdone per cycle is %3.2f kJ/cycle \n Thermal efficiency is %3.2f percent',q1,q2,W,nth)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.15: MEP_and_Thermal_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 15, Page 72\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in bar\n", +"P3=70;//Pressure at point 3 in bar\n", +"T1=310;//Temperature at point 1 in K\n", +"rv=10;//Compression ratio\n", +"y=1.4;//Ratio of specific heats\n", +"qin=2805;//Heat added in kJ/kg\n", +"m=1;//Mass of air in kg\n", +"R=287;//Universal gas constant in J/kg\n", +"Cv=0.718;//Speific heat at constant volume in kJ/kg-K\n", +"Cp=1.005;//Speific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"V1=(m*R*T1)/(P1*(10^5));//Volume at point 1 in m^3\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"P2=P1*(rv^y);//Pressure at point 2 in K\n", +"T3=T2*(P3/P2);//Temperature at point 3 in K\n", +"q23=Cv*(T3-T2);//Heat supplied at constant volume in kJ/kg\n", +"q34=qin-q23;//Heat supplied at constant pressure in kJ/kg\n", +"T4=(q34/Cp)+T3;//Temperature at point 4 in K\n", +"V2=V1/rv;//Volume at point 2 in m^3\n", +"V4=V2*(T4/T3);//Volume at point 4 in m^3\n", +"V5=V1;//Volume at point 5 in m^3\n", +"T5=T4*((V4/V5)^(y-1));//Temperature at point 5 in K\n", +"qout=Cv*(T5-T1);//Heat rejected in kJ/kg\n", +"nth=(1-(qout/qin))*100;//Thermal efficiency\n", +"W=qin-qout;//Workdone in kJ/kg\n", +"Vs=V1*(1-(1/rv));//Swept volume in (m^3)/kg\n", +"MEP=(W/Vs)/100;//Mean effective pressure in bar\n", +"\n", +"//OUTPUT\n", +"mprintf('Mean effective pressure is %3.2f bar \n Thermal efficiency is %3.2f percent',MEP,nth)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.16: EX2_16.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 16, Page 74\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in bar\n", +"T1=298;//Temperature at point 1 in K\n", +"P2=3;//Pressure at point 2 in bar\n", +"T3=923;//Temperature at point 3 in K\n", +"y=1.4;//Ratio of specific heats\n", +"Cp=1.005;//Speific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"rp=P2/P1;//Pressure ratio\n", +"nth=(1-(1/(rp^x)))*100;//Cycle efficiency\n", +"T2=T1*(rp^x);//Temperature at point 2 in K\n", +"q1=Cp*(T3-T2);//Heat supplied in kJ/kg\n", +"Wout=(nth*q1)/100;//Work output in kJ/kg\n", +"q2=q1-Wout;//Heat rejected in kJ/kg\n", +"T4=T3*((1/rp)^x);//Temperature at point 4 in K\n", +"\n", +"//OUTPUT\n", +"mprintf('Cycle efficiency is %3.2f percent \n Heat supplied to air is %3.1f kJ/kg \n Work available at the shaft is %3.2f kJ/kg \n Heat rejected in the cooler is %3.2f kJ/kg \n Turbine exit temperature is %3.2f K',nth,q1,Wout,q2,T4)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.17: EX2_17.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 17, Page 75\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=283;//Temperature at point 1 in K\n", +"T3=1353;//Temperature at point 3 in K\n", +"y=1.41;//Ratio of specific heats\n", +"Cp=1.007;//Specific heat constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"rpmax=((T3/T1)^(1/x));//Maximum pressure ratio\n", +"rpopt=sqrt(rpmax);//Optimum pressure ratio\n", +"T2=T1*(rpopt^x);//Temperature at point 2 in K\n", +"T4=T2;//Maximum temperature at point 4 in K\n", +"Wmax=Cp*((T3-T4)-(T2-T1));//Maximum net specific work output in kJ/kg\n", +"nth=(Wmax/(Cp*(T3-T2)))*100;//Thermal efficiency\n", +"WR=nth/100;//Work ratio\n", +"nc=((T3-T1)/T3)*100;//Carnot efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Optimum pressure ratio is %3.2f \n Maximum net specific work output %3.0f kJ/kg \n Thermal efficiency %3.0f percent \n Work ratio is %3.2f \n Carnot efficiency is %3.0f percent',rpopt,Wmax,nth,WR,nc)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.18: Maximum_work_output_and_Cycle_efficiency_and_Comparison_with_carnot_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 18, Page 76\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Tmin=300;//Minimum temperature in K\n", +"Tmax=1073;//Maximum temperature in K\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"Wmax=Cp*((sqrt(Tmax)-sqrt(Tmin))^2);//Maximum work output in kJ/kg\n", +"nB=(1-sqrt(Tmin/Tmax))*100;//Brayton cycle efficiency\n", +"nC=(1-(Tmin/Tmax))*100;//Carnot efficiency\n", +"r=nB/nC;//Ratio of brayton cycle efficiency to carnot efficieny\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum work per kg of air is %3.2f kJ/kg \n Cycle efficiency is %3.0f percent \n Ratio of brayton cycle efficiency to carnot efficieny is %3.3f',Wmax,nB,r)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.19: Net_power_output_and_Thermal_efficiency_and_Work_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 19, Page 77\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=291;//Temperature at point 1 in K\n", +"P1=100;//Pressure at point 1 in kN/(m^2)\n", +"nC=0.85;//Isentropic efficiency of compressor\n", +"nT=0.88;//Isentropic effficiency of turbine\n", +"rp=8;//Pressure ratio\n", +"T3=1273;//Temperature at point 3 in K\n", +"m=4.5;//Mass flow rate of air in kg/s\n", +"y=1.4;//Ratio of speciifc heats\n", +"Cp=1.006;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"T2s=T1*(rp^x);//Temperature at point 2s in K\n", +"T2=T1+((T2s-T1)/nC);//Temperature at point 2 in K\n", +"t2=T2-273;//Temperature at point 2 in oC\n", +"T4s=T3*((1/rp)^x);//Temperature at point 4s in K\n", +"T4=T3-((T3-T4s)*nT);//Temperature at point 4 in K\n", +"t4=T4-273;//Temperature at point 4 in oC\n", +"W=m*Cp*((T3-T4)-(T2-T1));//Net power output in kW\n", +"nth=(((T3-T4)-(T2-T1))/(T3-T2))*100;//Thermal efficiency\n", +"WR=W/(m*Cp*(T3-T4));//Work ratio\n", +"\n", +"//OUTPUT\n", +"mprintf('Net power output of the turbine is %3.0f kW \n Thermal efficiency of the plant is %3.0f percent \n Work ratio is %3.3f',W,nth,WR)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: EX2_1.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 1, Page 55\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=0.1;//Pressure of air supplied in MPa\n", +"T1=308;//Temperature of air supplied in K\n", +"rv=8;//Compression ratio\n", +"q1=2100;//Heat supplied in kJ/kg\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"Cv=0.718;//Specific heat at constant volume in kJ/kg-K\n", +"R=0.287;//Universal gas constant in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"y=Cp/Cv;//Ratio of specific heats\n", +"n=(1-(1/(rv^(y-1))))*100;//Cycle efficiency\n", +"v1=(R*T1)/(P1*1000);//Specific volume at point 1 in (m^3)/kg\n", +"v2=v1/rv;//Specific volume at point 2 in (m^3)/kg\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"T3=(q1/Cv)+T2;//Temperature at point 3 in K\n", +"P2=P1*(rv^y);//Pressure at point 2 in MPa\n", +"P3=P2*(T3/T2);//Pressure at point 3 in MPa\n", +"wnet=(q1*n)/100;//Net workdone in J/kg\n", +"MEP=(wnet/(v1-v2))/1000;//Mean effective pressure in MPa\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum pressure of the cycle is %3.3f MPa \n Maximum temperature of the cycle is %3.0f K \n Cycle efficiency is %3.1f percent \n Mean effective pressure is %3.3f MPa',P3,T3,n,MEP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.20: Percentage_increase_in_cycle_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 20, Page 79\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=0.1;//Pressure at point 1 in MPa\n", +"T1=303;//Temperature at point 1 in K\n", +"T3=1173;//Temperature at point 3 in K\n", +"rp=6;//Pressure ratio\n", +"nC=0.8;//Compressor efficiency\n", +"nT=nC;//Turbine efficiency\n", +"e=0.75;//Regenerator effectiveness\n", +"y=1.4;//Ratio of specific heats\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"T2s=T1*(rp^x);//Temperature at point 2s in K\n", +"T4s=T3/(rp^x);//Temperature at point 4s in K\n", +"DTa=(T2s-T1)/nC;//Difference in temperatures at point 2 and 1 in K\n", +"DTb=(T3-T4s)*nT;//Difference in temperatures at point 3 and 4 in K\n", +"wT=Cp*DTb;//Turbine work in kJ/kg\n", +"wC=Cp*DTa;//Compressor work in kJ/kg\n", +"T2=DTa+T1;//Temperature at point 2 in K\n", +"q1=Cp*(T3-T2);//Heat supplied in kJ/kg\n", +"nth1=((wT-wC)/q1)*100;//Cycle efficiency without regenerator\n", +"T4=T3-DTb;//Temperature at point 4 in K\n", +"T5=T2+(e*(T4-T2));//Temperature at point 5 in K\n", +"q2=Cp*(T3-T5);//Heat supplied with regenerator in kJ/kg\n", +"nth2=((wT-wC)/q2)*100;//Cycle efficiency with regenerator\n", +"p=((nth2-nth1)/nth1)*100;//Percentage increase due to regeneration\n", +"\n", +"//OUTPUT\n", +"mprintf('Percentage increase in the cycle efficiency due to regeneration is %3.2f percent',p)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21: Velocity_of_air_leaving_nozzle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 21, Page 80\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in atm\n", +"P3=5;//Pressure at point 3 in atm\n", +"T1=288;//Temperature at point 1 in K\n", +"T4=1143;//Temperature at point 4 in K\n", +"y=1.4;//Ratio of specific heats\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"rp=P3/P1;//Pressure ratio\n", +"x=(y-1)/y;//Ratio\n", +"T3=T1*(rp^x);//Temperature at point 3 in K\n", +"T5=T4-(T3-T1);//Temperature at point 5 in K\n", +"T6=T4/(rp^x);//Temperature at point 6 in K\n", +"C6=sqrt(2000*Cp*(T5-T6));//Velocity of air leaving the nozzle in m/s\n", +"\n", +"//OUTPUT\n", +"mprintf('Velocity of air leaving the nozzle is %3.1f m/s',C6)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.22: Turbine_exit_pressure_and_Velocity_of_exhaust_gases_and_Propulsive_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 22, Page 81\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C1=280;//Velocity of aircraft in m/s\n", +"P1=48;//Pressure at point 1 kPa\n", +"T1=260;//Temperature at point 1 in K\n", +"rp=13;//Pressure ratio\n", +"T4=1300;//Temperature at point 4 in K\n", +"Cp=1005;//Specific heat at constant pressure in J/kg\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"T2=T1+((C1^2)/(2*Cp));//Temperature at point 2 in K\n", +"P2=P1*((T2/T1)^(1/x));//Pressure at point 2 in kPa\n", +"P3=rp*P2;//Pressure at point 3 in kPa\n", +"P4=P3;//Pressure at point 4 in kPa\n", +"T3=T2*(rp^x);//Temperature at point 3 in K\n", +"T5=T4-T3+T2;//Temperature at point 5 in K\n", +"P5=P4*((T5/T4)^(1/x));//Pressure at point 5 in kPa\n", +"P6=P1;//Pressure at point 6 in kPa\n", +"T6=T5*((P6/P5)^x);//Temperature at point 6 in K\n", +"C6=sqrt(2*Cp*(T5-T6));//Velocity of air at nozzle exit in m/s\n", +"W=(C6-C1)*C1;//Propulsive power in J/kg\n", +"Q=Cp*(T4-T3);//Total heat transfer rate in J/kg\n", +"nP=(W/Q)*100;//Propulsive efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Pressure at the turbine exit is %3.1f kPa \n Velocity of exhaust gases are %3.1f m/s \n Propulsive efficiency is %3.1f percent',P5,C6,nP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Relative_efficiency_of_engine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 2, Page 57\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"d=80;//Bore in mm\n", +"L=85;//Stroke in mm\n", +"Vc=0.06;//Clearance volume in litre\n", +"n=0.22;//Actual thermal efficiency\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"Vs=(3.147/4)*(d^2)*L;//Stroke volume in mm^3\n", +"Vt=Vs+(Vc*(10^6));//Total volume in mm^3\n", +"rv=Vt/(Vc*(10^6));//Compression ratio\n", +"ni=(1-(1/(rv^(y-1))));//Ideal thermal efficiency\n", +"nr=(n/ni)*100;//Relative efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Relative efficiency of the engine is %3.1f percent',nr)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Air_standard_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 3, Page 57\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"d=0.137;//Bore in m\n", +"L=0.13;//Stroke in m\n", +"Vc=280*(10^-6);//Clearance volume in m^3\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3\n", +"rv=(Vc/Vs)*100;//Compression ratio\n", +"rvf=(Vs+Vc)/Vc;//final compression ratio\n", +"n=(1-(1/rvf^(y-1)))*100;//Cycle efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Clearance volume is %3.1f percent of swept volume \n Otto cycle efficiency is %3.2f percent',rv,n)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: EX2_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 4, Page 58\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=9.5;//Compression ratio\n", +"P1=100;//Air pressure in kPa\n", +"T1=290;//Air temperature in K\n", +"V1=600*(10^-6);//Volume of air in m^3\n", +"T4=800;//Final temperature in K\n", +"R=287;//Universal gas constan in J/kg.K\n", +"Cv=0.718;//Specific heat at constant volume in kJ/kg.K\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"T3=T4*(rv^(y-1));//Temperature at the end of constant volume heat addition in K\n", +"P2=P1*(rv^y);//Pressure at point 2 in kPa\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"P3=P2*(T3/T2);//Pressure at point 3 in kPa\n", +"m=(P1*1000*V1)/(R*T1);//Specific mass in kg/s\n", +"Q=m*Cv*(T3-T2);//Heat transferred in kJ\n", +"n=(1-(1/rv^(y-1)))*100;//Thermal efficiency\n", +"Wnet=(n*Q)/100;//Net workdone in kJ\n", +"MEP=Wnet/(V1*(1-(1/rv)));//Mean effective pressure in kPa\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum pressure of the cycle is %3.2f kPa \n Maximum temperature of the cycle is %3.1f K \n Amount of heat transferred is %3.2f kJ \n Thermal efficiency is %3.1f percent \n Mean effective pressure is %3.1f kPa',P3,T3,Q,n,MEP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: EX2_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 5, Page 60\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=8;//Compression ratio\n", +"P1=95;//Pressure at point 1 in kPa\n", +"T1=300;//Temperature at point 1 in K\n", +"q23=750;//Heat transferred during constant volume heat addition process in kJ/kg\n", +"y=1.4;//Ratio of specific heats\n", +"Cv=0.718;//Specific heat at constant volume in kJ/kg-K\n", +"R=287;//Universal gas constant in J/kg-K\n", +"\n", +"//CALCULATIONS\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"P2=P1*(rv^y);//Pressure at point 2 in kPa\n", +"T3=(q23/Cv)+T2;//Temperature at point 3 in K\n", +"P3=P2*(T3/T2);//Pressure at point 3 in kPa\n", +"nth=(1-(1/(rv^(y-1))))*100;//Thermal efficiency\n", +"Wnet=(nth*q23)/100;//Net work output in kJ/kg\n", +"v1=(R*T1)/(P1*1000);//Speific volume at point 1 in (m^3)/kg\n", +"MEP=Wnet/(v1*(1-(1/rv)));//Mean effective pressure in kPa\n", +"\n", +"//OUTPUT\n", +"mprintf('Pressure at the end of heat addition process is %3.1f kPa \n Temperature at the end of heat addition process is %3.1f K \n Net work output is %3.2f kJ/kg \n Thermal efficiency is %3.2f percent \n Mean effective pressure is %3.0f kPa',P3,T3,Wnet,nth,MEP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Air_standard_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 6, Page 61\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=14;//Compression ratio\n", +"c=0.06;//Cut-off percentage\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"rc=1.78;//Cut-off ratio\n", +"nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Thermal efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Air standard efficiency is %3.1f percent',nth)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Cutoff_ratio_and_Heat_supplied_and_Cycle_efficiency_and_MEP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 7, Page 62\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"rv=16;//Compression ratio\n", +"P1=0.1;//Pressure at point 1 in MPa\n", +"T1=288;//Temperature at point 1 in K\n", +"T3=1753;//Temperature at point 3 in K\n", +"y=1.4;//Ratio of specific heats\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"R=0.287;//Universal gas constant in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"T2=T1*(rv^(y-1));//Temperature at point 2 in K\n", +"rc=T3/T2;//Cut-off ratio\n", +"q1=Cp*(T3-T2);//Heat supplied in kJ/kg\n", +"nth=(1-(((rc^y)-1)/((rv^(y-1))*y*(rc-1))))*100;//Cycle efficiency\n", +"wnet=(q1*nth)/100;//Net work done in kJ/kg\n", +"v1=(R*T1)/(P1*1000);//Speific volume at point 1 in (m^3)/kg\n", +"v2=v1/rv;//Speific volume at point 2 in (m^3)/kg\n", +"MEP=wnet/(v1-v2);//Mean effective pressure in kPa\n", +"\n", +"//OUTPUT\n", +"mprintf('Cut-off ratio is %3.2f \n Heat supplied is %3.1f kJ/kg \n Cycle efficiency is %3.1f percent \n Mean effective pressure is %3.2f kPa',rc,q1,nth,MEP)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Air_standard_efficiency_and_percentage_loss_in_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 8, Page 64\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"d=0.15;//Bore in m\n", +"L=0.25;//Stroke in m\n", +"Vc=400*(10^-6);//Clearance volume in m^3\n", +"V2=Vc;//Clearance volume in m^3\n", +"c1=0.05;//Cut-off percentage 1\n", +"c2=0.08;//Cut-off percentage 2\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"Vs=(3.147/4)*(d^2)*L;//Stroke volume in m^3\n", +"V31=V2+(c1*Vs);//Volume at the point of cut-off in m^3\n", +"rc1=V31/V2;//Cut-off ratio 1\n", +"rv=(Vc+Vs)/Vc;//Compression ratio\n", +"nth1=(1-(((rc1^y)-1)/((rv^(y-1))*y*(rc1-1))))*100;//Air standard efficiency 1\n", +"V32=V2+(c2*Vs);//Volume at the point of cut-off in m^3\n", +"rc2=V32/V2;//Cut-off ratio 2\n", +"nth2=(1-(((rc2^y)-1)/((rv^(y-1))*y*(rc2-1))))*100;//Air standard efficiency 2\n", +"pl=nth1-nth2;//Percentage loss in efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Air standard efficiency at 5 percent cut-off is %3.2f percent \n Air standard efficiency at 8 percent cut-off is %3.2f percent \n Percentage loss in efficiency is %3.2f percent',nth1,nth2,pl)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: Maximum_temperature_and_Thermal_efficiency_of_cycle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-2, Illustration 9, Page 65\n", +"//Title: Gas Power Cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"e=7.5;//Expansion ratio\n", +"c=15;//Compression ratio\n", +"P1=98;//Pressure at point 1 in kN/(m^2)\n", +"P4=258;//Pressure at point 4 in kN/(m^2)\n", +"T1=317;//Temperature at point 1 in K\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"T4=T1*(P4/P1);//Temperature at point 4 in K\n", +"T3=T4*(e^(y-1));//Temperature at point 3 in K\n", +"t3=T3-273;//Temperature at point 3 in oC\n", +"T2=T1*(c^(y-1));//Temperature at point 2 in K\n", +"n=(1-((T4-T1)/(y*(T3-T2))))*100;//Thermal efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum temperature attained during the cycle is %3.1f oC \n Thermal efficiency of the cycle is %3.1f percent',t3,n)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Thermal_Engineering_by_A_V_Arasu/3-Internal_Combustion_Engines.ipynb b/Thermal_Engineering_by_A_V_Arasu/3-Internal_Combustion_Engines.ipynb new file mode 100644 index 0000000..d717ad2 --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/3-Internal_Combustion_Engines.ipynb @@ -0,0 +1,399 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Internal Combustion Engines" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Air_standard_efficiency_and_Indicated_Power_and_Indicated_thermal_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 1, Page 139\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"d=200;//diameter of cylinder in mm\n", +"L=300;//stroke of cylinder in mm\n", +"Vc=1.73;//Clearance volume in litres\n", +"imep=650;//indicated mean effective pressure in kN/(m^2)\n", +"g=6.2;//gas consumption in (m^3)/h\n", +"CV=38.5;//Calorific value in MJ/(m^3)\n", +"y=1.4;//Ratio of specific heats\n", +"N=150;//No. of firing cycles per minute\n", +"\n", +"//CALCULATIONS\n", +"Vs=((3.1415/4)*(d^2)*L)*(10^-6);//Stroke volume in litres\n", +"Vt=Vs+Vc;//Total volume in litres\n", +"rv=(Vt/Vc);//Compression ratio\n", +"n=(1-(1/rv^(y-1)))*100;//Air standard efficiency\n", +"IP=imep*(Vs*10^-3)*(N/60);//Indicated power in kW\n", +"F=(g*CV*1000)/3600;//Fuel energy input in kW\n", +"nT=(IP/F)*100;//Indicated thermal efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Air Standard Efficiency is %3.1f percent \n Indicated Power is %3.1f kW \n Indicated thermal efficiency is %3.0f percent',n,IP,nT)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Relative_efficiency_of_engine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 2, Page 140\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Vs=0.0008;//Swept volume in m^3\n", +"Vc=0.00015;//Clearance volume in m^3\n", +"CV=38;//Calorific value in MJ/(m^3)\n", +"v=0.45;//volume in m^3\n", +"IP=81.5;//Indicated power in kW\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"rv=(Vs+Vc)/Vc;//Compression ratio\n", +"n=(1-(1/rv^(y-1)));//Air standard efficiency\n", +"Ps=(v*CV*1000)/60;//Power supplied in kW\n", +"nact=IP/Ps;//Actual efficiency\n", +"nr=(nact/n)*100;//Relative efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Relative Efficiency is %3.2f percent',nr)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: EX3_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 3, Page 141\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"n=6;//No. of cylinders\n", +"d=0.61;//Diameter in m\n", +"L=1.25;//Stroke in m\n", +"N=2;//No.of revolutions per second\n", +"m=340;//mass of fuel oil in kg\n", +"CV=44200;//Calorific value in kJ/kg\n", +"T=108;//Torque in kN-m\n", +"imep=775;//Indicated mean efective pressure in kN/(m^2)\n", +"\n", +"//CALCULATIONS\n", +"IP=(imep*L*3.1415*(d^2)*N)/(8);//Indicated power in kW\n", +"TotalIP=(n*IP);//Total indicated power in kW\n", +"BP=(2*3.1415*N*T);//Brake power in kW\n", +"PI=(m*CV)/3600;//Power input in kW\n", +"nB=(BP/PI)*100;//Brake thermal efficiency\n", +"bmep=(BP*8)/(n*L*3.1415*(d^2)*2);//Brake mean effective pressure in kN/(m^2)\n", +"nM=(BP/TotalIP)*100;//Mechanical efficiency\n", +"bsfc=m/BP;//Brake specific fuel consumption in kg/kWh\n", +"\n", +"//OUTPUT\n", +"mprintf('Total Indicated Power is %3.1f kW \n Brake Power is %3.1f kW \n Brake thermal efficiency is %3.1f percent \n Brake mean effective pressure is %3.1f kN/(m^2) \n Mechanical efficiency is %3.1f percent \n Brake specific fuel consumption is %3.3f kg/kW.h',TotalIP,BP,nB,bmep,nM,bsfc)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: EX3_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 4, Page 142\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Hm=21;//Mean height of indicator diagram in mm\n", +"isn=27;//indicator spring number in kN/(m^2)/mm\n", +"Vs=14;//Swept volume in litres\n", +"N=6.6;//Speed of engine in rev/s\n", +"Pe=77;//Effective brake load in kg\n", +"Re=0.7;//Effective vrake radius in m\n", +"mf=0.002;//fuel consumed in kg/s\n", +"CV=44000;//Calorific value of fuel in kJ/kg\n", +"mc=0.15;//cooling water circulation in kg/s\n", +"Ti=311;//cooling water inlet temperature in K\n", +"To=344;//cooling water outlet temperature in K\n", +"C=4.18;//specific heat capacity of water in kJ/kg-K\n", +"Ee=33.6;//Energy to exhaust gases in kJ/s\n", +"g=9.81;//Acceleration due to geravity in m/(s^2)\n", +"\n", +"//CALCULATIONS\n", +"imep=isn*Hm;//Indicated mean efective pressure in kN/(m^2)\n", +"IP=(imep*Vs*N)/(2000);//Indicated Power in kW\n", +"BP=(2*3.1415*N*g*Pe*Re)/1000;//Brake Power in kW\n", +"nM=(BP/IP)*100;//Mechanical efficiency\n", +"Ef=mf*CV;//Eneergy from fuel in kJ/s\n", +"Ec=mc*C*(To-Ti);//Energy to cooling water in kJ/s\n", +"Es=Ef-(BP+Ec+Ee);//Energy to surroundings in kJ/s\n", +"p=(BP*100)/Ef;//Energy to BP in %\n", +"q=(Ec*100)/Ef;//Energy to coolant in %\n", +"r=(Ee*100)/Ef;//Energy to exhaust in %\n", +"w=(Es*100)/Ef;//Energy to surroundings in %\n", +"\n", +"//OUTPUT\n", +"mprintf('Indicated Power is %3.1f kW \n Brake Power is %3.0f kW \n Mechanical Efficiency is %3.0f percent \n \nENERGY BALANCE kJ/s Percentage \nEnergy from fuel %3.0f 100\nEnergy to BP %3.0f %3.0f\nEnergy to coolant %3.01f %3.1f\nEnergy to exhaust %3.1f %3.1f\nEnergy to surroundings, etc %3.1f %3.1f',IP,BP,nM,Ef,BP,p,Ec,q,Ee,r,Es,w)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: EX3_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 5, Page 143\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"t=30;//duration of trial in minutes\n", +"N=1750;//speed in rpm\n", +"T=330;//brake torque in Nm\n", +"m=9.35;//mass of fuel in kg\n", +"CV=42300;//Calorific value in kJ/kg\n", +"mj=483;//jacket cooling water circulation in kg\n", +"Ti=290;//inlet temperature in K\n", +"T0=350;//outlet temperature in K\n", +"ma=182;//air consumption in kg\n", +"Te=759;//exhaust temperature in K\n", +"Ta=256;//atmospheric temperature in K\n", +"nM=0.83;//Mechanical efficiency\n", +"ms=1.25;//mean specific heat capacity of exhaust gas in kJ/kg-K\n", +"Cw=4.18;//specific heat capacity of water in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"BP=(2*3.1415*T*N)/(60*1000);//Brake power in kW\n", +"sfc=(m*2)/BP;//specific fuel consumption in kg/kWh\n", +"IP=BP/nM;//Indicated power in kW\n", +"nIT=((IP*3600)/(m*CV*2))*100;//Indicated thermal efficiency\n", +"Ef=(m*CV)/t;//Eneergy from fuel in kJ/min\n", +"EBP=BP*60;//Energy to BP in kJ/min\n", +"Ec=(mj*Cw*(T0-Ti))/t;//Energy to cooling water in kJ/min\n", +"Ee=((ma+m)*ms*(Te-Ti))/30;//Energy to exhaust in kJ/min\n", +"Es=Ef-(EBP+Ec+Ee);//Energy to surroundings in kJ/min\n", +"\n", +"//OUTPUT\n", +"mprintf('Brake power is %3.1f kW \n Specific fuel consumption is %3.3f kg/kWh \n Indicated thermal efficiency is %3.1f percent \n Energy from fuel is %3.0f kJ/min \n Energy to BP is %3.0f kJ/min \n Energy to cooling water is %3.0f kJ/min \n Energy to exhaust is %3.0f kJ/min \n Energy to surroundings is %3.0f kJ/min',BP,sfc,nIT,Ef,EBP,Ec,Ee,Es)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: Indicated_power_and_Mechanical_efficiency_of_engine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 6, Page 144\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"BP0=12;//Brake Power output in kW\n", +"BP1=40.5;//Brake Power in trial 1 in kW\n", +"BP2=40.2;//Brake Power in trial 2 in kW\n", +"BP3=40.1;//Brake Power in trial 3 in kW\n", +"BP4=40.6;//Brake Power in trial 4 in kW\n", +"BP5=40.7;//Brake Power in trial 5 in kW\n", +"BP6=40.0;//Brake Power in trial 6 in kW\n", +"\n", +"//CALCULATIONS\n", +"BPALL=BP0+BP6;//Total Brake Power in kW\n", +"IP1=BPALL-BP1;//Indicated Power in trial 1 in kW\n", +"IP2=BPALL-BP2;//Indicated Power in trial 2 in kW\n", +"IP3=BPALL-BP3;//Indicated Power in trial 3 in kW\n", +"IP4=BPALL-BP4;//Indicated Power in trial 4 in kW\n", +"IP5=BPALL-BP5;//Indicated Power in trial 5 in kW\n", +"IP6=BPALL-BP6;//Indicated Power in trial 6 in kW\n", +"IPALL=IP1+IP2+IP3+IP4+IP5+IP6;//Total Indicated Power in kW\n", +"nM=(BPALL/IPALL)*100;//Mechanical efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Indicated Power of the engine is %3.1f kW \n Mechanical efficiency of the engine is %3.1f percent',IPALL,nM)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.7: Engine_dimensions_and_Brake_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-3, Illustration 7, Page 145\n", +"//Title: Internal Combustion Engines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"n=2;//No. of cylinders\n", +"N=4000;//speed of engine in rpm\n", +"nV=0.77;//Volumetric efficiency\n", +"nM=0.75;//Mechanical efficiency\n", +"m=10;//fuel consumed in lit/h\n", +"g=0.73;//spcific gravity of fuel\n", +"Raf=18;//air-fuel ratio\n", +"Np=600;//piston speed in m/min\n", +"imep=5;//Indicated mean efective pressure in bar\n", +"R=281;//Universal gas constant in J/kg-K\n", +"T=288;//Standard temperature in K\n", +"P=1.013;//Standard pressure in bar\n", +"\n", +"//CALCULATIONS\n", +"L=Np/(2*N);//Piston stroke in m\n", +"mf=m*g;//mass of fuel in kg/h\n", +"ma=mf*Raf;//mass of air required in kg/h\n", +"Va=(ma*R*T)/(P*60*(10^5));//volume of air required in (m^3)/min\n", +"D=sqrt((2*Va)/(nV*L*N*3.1415));//Diameter in m\n", +"IP=(2*imep*100*L*3.1415*(D^2)*N)/(4*60);//Indicated Power in kW\n", +"BP=nV*IP;//Brake Power in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Piston Stroke is %3.3f m \n Bore diameter is %3.4f m \n Brake power is %3.1f kW',L,D,BP)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Thermal_Engineering_by_A_V_Arasu/4-Steam_nozzles_and_Steam_turbines.ipynb b/Thermal_Engineering_by_A_V_Arasu/4-Steam_nozzles_and_Steam_turbines.ipynb new file mode 100644 index 0000000..b0f0d0a --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/4-Steam_nozzles_and_Steam_turbines.ipynb @@ -0,0 +1,1483 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Steam nozzles and Steam turbines" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Throat_velocity_and_Mass_flow_rate_of_steam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 10, Page 173\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=10.5;//Pressure at point 1 in bar\n", +"x1=0.95;//Dryness fraction\n", +"n=1.135;//Adiabatic gas constant\n", +"P2=0.85;//Pressure at point 2 in bar\n", +"vg=0.185;//Specific volume in m^3/kg\n", +"\n", +"\n", +"//CALCULATIONS\n", +"c=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^c)*P1;//Throat pressure in MN/(m^2)\n", +"v1=x1*vg;//Specific volume at point 1 in m^3/kg\n", +"Ct=sqrt((2*n*P1*v1*(10^5)/(n+1)));//Velocity at throat in m/s\n", +"vt=((P1/Pt)*(v1^n))^(1/1.135);//Specific volume at throat in m^3/kg\n", +"m=Ct/vt;//Mass flow rate per unit throat area in kg/(m^2)\n", +"\n", +"//OUTPUT\n", +"mprintf('Throat velocity is %3.2f m/s \n Mass flow rate of steam is %3.2f kg/(m^2)',Ct,m)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Degree_of_undercooling_and_supersaturation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 11, Page 174\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=10;//Pressure at point 1 in bar\n", +"T1=452.9;//Temperature at point 1 in K\n", +"P2=4;//Pressure at point 2 in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"Ps=0.803;//Saturation pressure at T2 in bar\n", +"Ts=143.6;//Saturation temperature at P2 in oC\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"T2=((P2/P1)^x)*T1;//Temperature at point 2 in K\n", +"Ds=P2/Ps;//Degree of supersaturation\n", +"Du=Ts-(T2-273);//Degree of undercooling\n", +"\n", +"//OUTPUT\n", +"mprintf('Degree of supersaturation is %3.2f \n Degree of undercooling %3.0f oC',Ds,Du)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.12: Quantity_of_steam_used_and_Exit_velocity_of_steam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 12, Page 174\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=9;//Pressure at point 1 in bar\n", +"P2=1;//Pressure at point 2 in bar\n", +"Dt=0.0025;//Throat diameter in m\n", +"nN=0.9;//Nozzle efficiency\n", +"n=1.135;//Adiabatic gas consstant\n", +"h1=2770;//Enthalpy at point 1 in kJ/kg\n", +"ht=2670;//Throat enthlapy in kJ/kg\n", +"h3=2400;//Enthlapy at point 2 in kJ/kg\n", +"x2=0.96;//Dryness fraction 2\n", +"vg2=0.361;//Specific volume in m^3/kg\n", +"\n", +"//CALCULATIONS\n", +"x=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^x)*P1;//Throat pressure in bar\n", +"Ct=sqrt(2000*(h1-ht)*nN);//Throat velocity in m/s\n", +"At=(3.147*2*(Dt^2))/4;//Throat area in m^2\n", +"vt=x2*vg2;//Specific volume at throat in m^3/kg\n", +"m=(At*Ct)/vt;//Mass flow rate of steam in kg/s\n", +"hact=nN*(h1-h3);//Actual enthalpy drop in kJ/kg\n", +"C2=sqrt(2000*hact);//Exit velocity of steam in m/s\n", +"\n", +"//OUTPUT\n", +"mprintf('Quantity of steam used per second is %3.3f kg/s \n Exit velocity of steam is %3.2f m/s',m,C2)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: EX4_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 13, Page 202\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C1=1000;//Steam velocity in m/s\n", +"a1=20;//Nozzle angle in degrees\n", +"U=400;//Mean blade speed in m/s\n", +"m=0.75;//Mass flow rate of steam in kg/s\n", +"b1=33;//Blade angle at inlet from the velocity triangle in degrees\n", +"b2=b1;//Blade angle at exit from the velocity triangle in degrees\n", +"Cx=1120;//Change in whirl velocity from the velocity triangle in m/s\n", +"Ca=0;//Change in axial velocity from the velocity triangle in m/s\n", +"\n", +"//CALCULATIONS\n", +"Fx=m*Cx;//Tangential force on blades in N\n", +"Fy=m*Ca;//Axial thrust in N\n", +"W=(m*Cx*U)/1000;//Diagram power in kW\n", +"ndia=((2*U*Cx)/(C1^2))*100;//Diagram efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Blade angles are %3.0f degrees,%3.0f degrees \n Tangential force on blades is %3.0f N \n Axial thrust is %3.0f \n Diagram power is %3.0f kW \n Diagram efficiency %3.1f percent',b1,b2,Fx,Fy,W,ndia)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: Power_developed_and_Blade_efficiency_and_Steam_consumption.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 14, Page 203\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"D=2.5;//Mean diameter of blade ring in m\n", +"N=3000;//Speed in rpm\n", +"a1=20;//Nozzle angle in degrees\n", +"r=0.4;//Ratio blade velocity to steam velocity\n", +"Wr=0.8;//Blade friction factor\n", +"m=10;//Steam flow in kg/s\n", +"x=3;//Sum in blade angles in degrees\n", +"b1=32.5;//Blade angle at inlet from the velocity triangle in degrees\n", +"W1=626.7;//Relative velocity at inlet from the velocity triangle in m/s\n", +"Cx=967;//Change in whirl velocity from the velocity triangle in m/s\n", +"\n", +"//CALCULATIONS\n", +"U=(3.147*D*N)/60;//Blade velocity in m/s\n", +"C1=U/r;//Steam velocity in m/s\n", +"b2=b1-x;//Blade angle at exit in degrees\n", +"W2=Wr*W1;//Relative velocity at outlet from the velocity triangle in m/s\n", +"W=(m*Cx*U)/1000;//Power developed in kW\n", +"ndia=((2*U*Cx)/(C1^2))*100;//Blade efficiency\n", +"sc=(m*3600)/W;//Steam consumption in kg/kWh\n", +"\n", +"//OUTPUT\n", +"mprintf('Power developed is %3.0f kW \n Blade efficiency is %3.1f percent \n Steam consumed is %3.2f kg/kWh',W,ndia,sc)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.15: Blading_efficiency_and_Blade_velocity_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 15, Page 204\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"m=3;//Mass flow rate of steam in kg/s\n", +"C1=425;//Steam velocity in m/s\n", +"r=0.4;//Ratio of blade speed to jet speed\n", +"W=170;//Stage output in kW\n", +"IL=15;//Internal losses in kW\n", +"a1=16;//Nozzle angle in degrees\n", +"b2=17;//Blade angle at exit in degrees\n", +"W1=265;//Relative velocity at inlet from the velocity triangle in m/s\n", +"W2=130;//Relative velocity at outlet from the velocity triangle in m/s\n", +"\n", +"//CALCULATIONS\n", +"U=C1*r;//Blade speed in m/s\n", +"P=(W+IL)*1000;//Total power developed in W\n", +"Cx=P/(m*W);//Change in whirl velocity in m/s\n", +"ndia=((2*U*Cx)/(C1^2))*100;//Blading efficiency\n", +"Wr=W2/W1;//Blade velocity co-efficient\n", +"\n", +"//OUTPUT\n", +"mprintf('Blading efficiency is %3.1f percent \n Blade velocity co-efficient is %3.2f',ndia,Wr)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.16: Blade_angles_and_Turbine_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 16, Page 205\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C1=375;//Steam velocity in m/s\n", +"a1=20;//Nozzle angle\n", +"U=165;//Blade speed in m/s\n", +"m=1;//Mass flow rate of steam in kg/s\n", +"Wr=0.85;//Blade friction factor\n", +"Ca1=130;//Axial velocity at inlet from the velocity triangle in m/s\n", +"Ca2=Ca1;//Axial velocity at outlet in m/s\n", +"W1=230;//Relative velocity at inlet from the velocity triangle in m/s\n", +"Cx=320;//Change in whirl velocity from the velocity triangle in m/s\n", +"\n", +"//CALCULATIONS\n", +"b2=41;//Blade angle at exit from the velocity triangle in degrees\n", +"b1=34;//Blade angle at exit from the velocity triangle in degrees\n", +"W=(m*Cx*U)/1000;//Power developed by turbine in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Blade angles assumed are %3.0f degrees,%3.0f degrees \n Power developed by turbine is %3.1f kW',b1,b2,W)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.17: Nozzle_angle_and_Blade_angle_at_entry_and_exit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 17, Page 206\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"m=2;//Mass flow rate of steam in kg/s\n", +"W=130;//Turbine power in kW\n", +"U=175;//Blade velocity in m/s\n", +"C1=400;//Steam velocity in m/s\n", +"Wr=0.9;//Blade friction factor\n", +"W1=240;//Realtive velocity at inlet from the velocity triangle in m/s\n", +"\n", +"//CALCULATIONS\n", +"Cx1=(W*1000)/(m*U);//Whirl velocity at inlet in m/s\n", +"W2=Wr*W1;//Realtive velocity at outlet from the velocity triangle in m/s\n", +"a1=19;//Nozzle angle from the velocity triangle in degrees\n", +"b1=33;//Blade angle at inlet from the velocity triangle in degrees\n", +"b2=36;//Blade angle at outlet from the velocity triangle in degrees\n", +"\n", +"//OUTPUT\n", +"mprintf('Nozzle angle is %3.0f degrees \n Blade angles are %3.0f degrees,%3.0f degrees',a1,b1,b2)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.18: Diagram_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 18, Page 207\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"U=150;//Blade speed in m/s\n", +"m=3;//Mass flow rate of steam in kg/s\n", +"P=10.5;//Pressure in bar\n", +"r=0.21;//Ratio blade velocity to steam velocity\n", +"a1=16;//Nozzle angle in first stage in degrees\n", +"b2=20;//Blade angle at exit in first stage in degrees\n", +"a3=24;//Nozzle angle in second stage in degrees\n", +"b4=32;//Blade angle at exit in second stage in degrees\n", +"Wr=0.79;//Blade friction factor for first stage\n", +"Wr2=0.88;//Blade friction factor for second stage\n", +"Cr=0.83;//Blade velocity coefficient\n", +"W1=570;//Relative velocity at inlet from the velocity triangle for first stage in m/s\n", +"C2=375;//Velocity in m/s\n", +"W3=185;//Relative velocity at inlet from the velocity triangle for second stage in m/s\n", +"\n", +"//CALCULATIONS\n", +"C1=U/r;//Steam speed at exit in m/s\n", +"W2=Wr*W1;//Relative velocity at outlet for first stage in m/s\n", +"C3=Cr*C2;//Steam velocity at inlet for second stage in m/s\n", +"W4=Wr2*W3;//Relative velocity at exit for second stage in m/s\n", +"DW1=W1+W2;//Change in relative velocity for first stage in m/s\n", +"DW2=275;//Change in relative velocity from the velocity triangle for second stage in m/s\n", +"ndia=((2*U*(DW1+DW2))/(C1^2))*100;//Diagram efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Diagram efficiency is %3.1f percent',ndia)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.19: Blade_speed_and_Blade_tip_angles_and_Diagram_efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 19, Page 208\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"b1=30;//Blade angle at inlet in first stage in degrees\n", +"b2=30;//Blade angle at exit in first stage in degrees\n", +"b3=30;//Blade angle at inlet in second stage in degrees\n", +"b4=30;//Blade angle at exit in second stage in degrees\n", +"t1=240;//Temperature at entry in oC\n", +"P1=11.5;//Pressure at entry in bar\n", +"P2=5;//Pressure in wheel chamber in bar\n", +"vl=10;//Loss in velocity in percent\n", +"h=155;//Enthalpy at P2 in kJ/kg\n", +"W4=17.3;//Relative velocity at exit from the velocity triangle for second stage in m/s\n", +"a4=90;//Nozzle angle in second stage in degrees\n", +"C3=33;//Steam velocity at inlet from the velocity triangle for second stage in m/s\n", +"W2=49;//Relative velocity at outlet from the velocity triangle for first stage in m/s\n", +"x=15;//Length of AB assumed for drawing velocity triangle in mm\n", +"y=67;//Length of BC from the velocity triangle in mm\n", +"\n", +"//CALCULATIONS\n", +"C1=sqrt(2000*h);//Velocity of steam in m/s\n", +"W3=W4/0.9;//Relative velocity at inlet for second stage in m/s\n", +"C2=C3/0.9;//Velocity in m/s\n", +"W1=W2/0.9;//Relative velocity at inlet for first stage in m/s\n", +"C1n=C1/y;//Velocity of steam in m/s\n", +"U=x*C1n;//Blade speed in m/s\n", +"a3=17;//Nozzle angle in second stage from the velocity triangle in degrees\n", +"a2=43;//Nozzle angle from the velocity triangle in degrees\n", +"DW1=731.5;//Change in relative velocity from the velocity triangle for first stage in m/s\n", +"DW2=257.5;//Change in relative velocity from the velocity triangle for second stage in m/s\n", +"ndia=((2*U*(DW1+DW2))/(C1^2))*100;//Diagram efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Blade speed is %3.1f m/s \n Blade tip angles of the fixed blade are %3.0f degrees and %3.0f degrees \n Diagram efficiency is %3.1f percent',U,a3,a2,ndia)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Throat_area_and_Exit_area_and_Mach_number_at_exit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 1, Page 161\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=3.5;//Pressure at entry in MN/(m^2)\n", +"T1=773;//Temperature at entry in K\n", +"P2=0.7;//Pressure at exit in MN/(m^2)\n", +"ma=1.3;//mass flow rate of air in kg/s\n", +"y=1.4;//Ratio of specific heats\n", +"R=0.287;//Universal gas constant in KJ/Kg-K\n", +"\n", +"//CALCULATIONS\n", +"c=y/(y-1);//Ratio\n", +"Pt=((2/(y+1))^c)*P1;//Throat pressure in MN/(m^2)\n", +"v1=(R*T1)/(P1*1000);//Specific volume at entry in (m^3)/kg\n", +"Ct=((2*c*P1*v1*(1-((Pt/P1)^(1/c))))^0.5)*1000;//Velocity at throat in m/s\n", +"vt=v1*((P1/Pt)^(1/y));//Specific volume at throat in (m^3)/kg\n", +"At=((ma*vt)/Ct)*(10^6);//Area of throat in (mm^2)\n", +"C2=((2*c*P1*v1*(1-((P2/P1)^(1/c))))^0.5)*1000;//Velocity at exit in m/s\n", +"v2=v1*((P1/P2)^(1/y));//Specific volume at exit in (m^3)/kg\n", +"A2=((ma*v2)/C2)*(10^6);//Area of exit in (mm^2)\n", +"M=C2/Ct;//Mach number at exit\n", +"\n", +"//OUTPUT\n", +"mprintf('Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n Mach number at exit is %3.2f',At,A2,M)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.20: Blade_speed_and_Turbine_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 20, Page 210\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"C1=600;//Steam velocity in m/s\n", +"b1=30;//Blade angle at inlet in first stage in degrees\n", +"b2=30;//Blade angle at exit in first stage in degrees\n", +"b3=30;//Blade angle at inlet in second stage in degrees\n", +"b4=30;//Blade angle at exit in second stage in degrees\n", +"a4=90;//Nozzle angle in second stage in degrees\n", +"m=3;//Mass of steam in kg/s\n", +"x=15;//Length for drawing velocity triangle in mm\n", +"y=56;//Length of BC from the velocity triangle in mm\n", +"\n", +"//CALCUALTIONS\n", +"C1n=C1/y;//Velocity of steam in m/s\n", +"U=x*C1n;//Blade speed in m/s\n", +"l=103;//Length from velocity triangle in mm\n", +"P=(m*l*C1n*U)/1000;//Power developed in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Blade speed is %3.1f m/s \n Power developed by the turbine is %3.2f kW',U,P)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.21: Mean_diameter_of_drum_and_Volume_of_steam.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 21, Page 211\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"N=400;//Speed in rpm\n", +"m=8.33;//Mass of steam in kg/s\n", +"P=1.6;//Pressure of steam in bar\n", +"x=0.9;//Dryness fraction\n", +"W=10;//Stage power in kW\n", +"r=0.75;//Ratio of axial flow velocity to blade velocity\n", +"a1=20;//Nozzle angle at inlet in degrees\n", +"a2=35;//Nozzle angle at exit in degrees\n", +"b1=a2;//Blade tip angle at exit in degrees\n", +"b2=a1;//Blade tip angle at inlet in degrees\n", +"a=25;//Length of AB from velocity triangle in mm\n", +"vg=1.091;//Specific volume of steam from steam tables in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"Cx=73.5;//Change in whirl velocity from the velocity triangle by measurement in mm\n", +"y=Cx/a;//Ratio of change in whirl velocity to blade speed\n", +"U=sqrt((W*1000)/(m*y));//Blade speed in m/s\n", +"D=((U*60)/(3.147*N))*1000;//Mean diameter of drum in mm\n", +"v=m*x*vg;//Volume flow rate of steam in (m^3)/s\n", +"\n", +"//OUTPUT\n", +"mprintf('Mean diameter of drum is %3.0f mm \n Volume of steam flowing per second is %3.2f m^3/s',D,v)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.22: Drum_diameter_and_Blade_height.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 22, Page 212\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"N=300;//Speed in rpm\n", +"m=4.28;//Mass of steam in kg/s\n", +"P=1.9;//Pressure of steam in bar\n", +"x=0.93;//Dryness fraction\n", +"W=3.5;//Stage power in kW\n", +"r=0.72;//Ratio of axial flow velocity to blade velocity\n", +"a1=20;//Nozzle angle at inlet in degrees\n", +"b2=a1;//Blade tip angle at inlet in degrees\n", +"l=0.08;//Tip leakage steam\n", +"vg=0.929;//Specific volume of steam from steam tables in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"mact=m-(m*l);//Actual mass of steam in kg/s\n", +"a=(3.147*N)/60;//Ratio of blade velocity to mean dia\n", +"b=r*a;//Ratio of axial velocity to mean dia\n", +"c=46;//Ratio of change in whirl velocity to mean dia\n", +"D=sqrt((W*1000)/(mact*c*a));//Mean dia in m\n", +"Ca=b*D;//Axial velocity in m/s\n", +"h=((mact*x*vg)/(3.147*D*Ca))*1000;//Blade height in mm\n", +"D1=D-(h/1000);//Drum dia in m\n", +"\n", +"//OUTPUT\n", +"mprintf('Drum diameter is %3.3f m \n Blade height is %3.0f mm',D1,h)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.23: EX4_23.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 23, Page 214\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P0=800;//Steam pressure in kPa\n", +"P2=100;//Pressure at point 2 in kPa\n", +"T0=973;//Steam temperature in K\n", +"a1=73;//Nozzle angle in degrees\n", +"ns=0.9;//Steam efficiency\n", +"m=35;//Mass flow rate in kg/s\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"b1=atand(tand(a1)/2);//Blade angle at inlet in degrees\n", +"b2=b1;//Blade angle at exit in degrees\n", +"p=2/tand(a1);//Flow coefficient\n", +"s=p*(tand(b1)+tand(b2));//Blade loading coefficient\n", +"Dh=ns*Cp*T0*(1-((P2/P0)^((y-1)/y)));//Difference in enthalpies in kJ/kg\n", +"W=(m*Dh)/1000;//Power developed in MW\n", +"\n", +"//OUTPUT\n", +"mprintf('Rotor blade angles are %3.2f degrees and %3.2f degrees \n Flow coefficient is %3.3f \n Blade loading coefficient is %3.0f \n Power developed is %3.1f MW',b1,b2,p,s,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.24: Rotor_blade_angles_and_Power_developed_and_Final_state_of_steam_and_Blade_height.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 24, Page 215\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P0=100;//Steam pressure in bar\n", +"T0=773;//Steam temperature in K\n", +"a1=70;//Nozzle angle in degrees\n", +"ns=0.78;//Steam efficiency\n", +"m=100;//Mass flow rate of steam in kg/s\n", +"D=1;//Turbine diameter in m\n", +"N=3000;//Turbine speed in rpm\n", +"h0=3370;//Steam enthalpy from Moiller chart in kJ/kg\n", +"v2=0.041;//Specific volume at P2 from steam tables in (m^3)/kg\n", +"v4=0.05;//Specific volume at P4 from steam tables in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"U=(3.147*D*N)/60;//Blade speed in m/s\n", +"C1=(2*U)/sind(a1);//Steam speed in m/s\n", +"b1=atand(tand(a1)/2);//Blade angle at inlet for first stage in degrees\n", +"b2=b1;//Blade angle at exit for first stage in degrees\n", +"b3=b1;//Blade angle at inlet for second stage in degrees\n", +"b4=b2;//Blade angle at exit for second stage in degrees\n", +"Wt=(4*m*(U^2))/(10^6);//Total workdone in MW\n", +"Dh=(2*(U^2))/1000;//Difference in enthalpies in kJ/kg\n", +"Dhs=Dh/ns;//Difference in enthalpies in kJ/kg\n", +"h2=h0-Dh;//Enthalpy at point 2 in kJ/kg\n", +"h2s=h0-Dhs;//Enthalpy at point 2s in kJ/kg\n", +"Dh2=(2*(U^2))/1000;//Difference in enthalpies in kJ/kg\n", +"Dh2s=Dh2/ns;//Difference in enthalpies in kJ/kg\n", +"h4=h2-Dh2;//Enthalpy at point 4 in kJ/kg\n", +"h4s=h2-Dh2s;//Enthalpy at point 4s in kJ/kg\n", +"Ca=C1*cosd(a1);//Axial velocity in m/s\n", +"hI=(m*v2)/(3.147*D*Ca);//Blade height at first stage in m/s\n", +"hII=(m*v4)/(3.147*D*Ca);//Blade height at second stage in m/s\n", +"\n", +"//OUTPUT\n", +"mprintf('Rotor blade angles for first stage are %3.2f degrees and %3.2f degrees \n Rotor blade angles for second stage are %3.2f degrees and %3.2f degrees \n Power developed is %3.2f MW \n Final state of steam at first stage is %3.2f kJ/kg \n Final state of steam at second stage is %3.2f kJ/kg \n Blade height at first stage is %3.4f m \n Blade height at second stage is %3.4f m',b1,b2,b3,b4,Wt,h2s,h4s,hI,hII)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.25: Rotor_blade_angles_and_Power_developed_and_Final_state_of_steam_and_Blade_height.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 25, Page 218\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P0=100;//Steam pressure in bar\n", +"T0=773;//Steam temperature in K\n", +"a1=70;//Nozzle angle in degrees\n", +"ns=0.78;//Steam efficiency\n", +"m=100;//Mass flow rate of steam in kg/s\n", +"D=1;//Turbine diameter in m\n", +"N=3000;//Turbine speed in rpm\n", +"h0=3370;//Steam enthalpy from Moiller chart in kJ/kg\n", +"P4=27;//Pressure at point 4 in bar\n", +"T4=638;//Temperature at point 4 in K\n", +"v4=0.105;//Specific volume at P4 from mollier chart in (m^3)/kg\n", +"ns=0.65;//Stages efficiency\n", +"\n", +"//CALCULATIONS\n", +"U=(3.147*D*N)/60;//Blade speed in m/s\n", +"C1=(4*U)/sind(a1);//Steam speed in m/s\n", +"Ca=C1*cosd(a1);//Axial velocity in m/s\n", +"b1=atand((3*U)/Ca);//Blade angle at inlet for first stage in degrees\n", +"b2=b1;//Blade angle at exit for first stage in degrees\n", +"b4=atand(U/Ca);//Blade angle at exit for second stage in degrees\n", +"b3=b4;//Blade angle at inlet for second stage in degrees\n", +"WI=m*6*(U^2);//Power developed in first stage in MW\n", +"WII=m*2*(U^2);//Power developed in second stage in MW\n", +"W=(WI+WII)/(10^6);//Total power developed in MW\n", +"Dh=(W*1000)/100;//Difference in enthalpies in kJ/kg\n", +"Dhs=(W*1000)/(ns*100);//Difference in enthalpies in kJ/kg\n", +"h4=h0-Dh;//Enthalpy at point 4 in kJ/kg\n", +"h4s=h0-Dhs;//Enthalpy at point 4s in kJ/kg\n", +"h=(m*v4)/(3.147*D*Ca);//Rotor blade height in m\n", +"\n", +"//OUTPUT\n", +"mprintf('Rotor blade angles for first stage are %3.2f degrees and %3.2f degrees \n Rotor blade angles for second stage are %3.2f degrees and %3.2f degrees \n Power developed is %3.2f MW \n Final state of steam at first stage is %3.1f kJ/kg \n Final state of steam at second stage is %3.2f kJ/kg \n Rotor blade height is %3.4f m',b1,b2,b3,b4,W,h4,h4s,h)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.26: Rotor_blade_angles.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 26, Page 221\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"a1=30;//Nozzle angle in degrees\n", +"Ca=180;//Axial velocity in m/s\n", +"U=280;//Rotor blade speed in m/s\n", +"R=0.5;//Degree of reaction\n", +"\n", +"//CALCULATIONS\n", +"a1n=90-a1;//Nozzle angle measured from axial direction in degrees\n", +"Cx1=Ca*tand(a1n);//Whirl velocity in m/s\n", +"b1=atand((Cx1-U)/Ca);//Blade angle at inlet in degrees\n", +"b2=a1n;//Blade angle at exit in degrees\n", +"\n", +"//OUTPUT\n", +"mprintf('Blade angle at inlet is %3.0f degrees \n Blade angle at exit is %3.0f degrees',b1,b2)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.27: Rotor_blade_angles_and_Power_developed_and_Isentropic_enthalpy_drop.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 27, Page 222\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P0=800;//Steam pressure in kPa\n", +"T0=900;//Steam temperature in K\n", +"a1=70;//Nozzle angle in degrees\n", +"ns=0.85;//Steam efficiency\n", +"m=75;//Mass flow rate of steam in kg/s\n", +"R=0.5;//Degree of reaction\n", +"U=160;//Blade speed in m/s\n", +"\n", +"//CALCULATIONS\n", +"C1=U/sind(a1);//Steam speed in m/s\n", +"Ca=C1*cosd(a1);//Axial velocity in m/s\n", +"b1=0;//Blade angle at inlet from velocity triangle in degrees\n", +"b2=a1;//Blade angle at exit in degrees\n", +"a2=b1;//Nozzle angle in degrees\n", +"W=(m*(U^2))/(10^6);//Power developed in MW\n", +"Dhs=(W*1000)/(ns*m);//Isentropic enthalpy drop in kJ/kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Rotor blade angles are %3.0f degrees and %3.0f degrees \n Power developed is %3.2f MW \n Isentropic enthalpy drop is %3.2f kJ/kg',b1,b2,W,Dhs)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Increase_in_pressure_and_temperature_and_internal_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 2, Page 163\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=273;//Temperature at section 1 in K\n", +"P1=140;//Pressure at section 1 in KN/(m^2)\n", +"v1=900;//Velocity at section 1 in m/s\n", +"v2=300;//Velocity at section 2 in m/s\n", +"Cp=1.006;//Specific heat at constant pressure in kJ/kg-K\n", +"Cv=0.717;//Specific heat at constant volume in kJ/kg-K\n", +"y=1.4;//Ratio of specific heats\n", +"\n", +"//CALCULATIONS\n", +"c=y/(y-1);//Ratio\n", +"R=Cp-Cv;//Universal gas constant in KJ/Kg-K\n", +"T2=T1-(((v2)^2-(v1)^2)/(2000*c*R));//Temperature at section 2 in K\n", +"DT=T2-T1;//Increase in temperature in K\n", +"P2=P1*((T2/T1)^c);//Pressure at section 2 in KN/(m^2)\n", +"DP=(P2-P1)/1000;//Increase in pressure in MN/(m^2)\n", +"IE=Cv*(T2-T1);//Increase in internal energy in kJ/kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Increase in temperature is %3.0f K \n Increase in pressure is %3.2f MN/(m^2) \n Increase in internal energy is %3.0f kJ/kg',DT,DP,IE)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Throat_area_and_exit_area_and_Degree_of_undercooling_at_exit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 3, Page 163\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=2;//Pressure at entry in MN/(m^2)\n", +"T1=598;//Temperature at entry in K\n", +"P2=0.36;//Pressure at exit in MN/(m^2)\n", +"m=7.5;//mass flow rate of steam in kg/s\n", +"n=1.3;//Adiabatic gas constant\n", +"v1=0.132;//Volume at entry in (m^3)/kg from steam table\n", +"Ts=412.9;//Saturation temperature in K\n", +"\n", +"//CALCULATIONS\n", +"c=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^c)*P1;//Throat pressure in MN/(m^2)\n", +"Ct=((2*c*P1*v1*(1-((Pt/P1)^(1/c))))^0.5)*1000;//Velocity at throat in m/s\n", +"vt=v1*((P1/Pt)^(1/n));//Specific volume at throat in (m^3)/kg\n", +"At=((m*vt)/Ct)*(10^6);//Area of throat in (mm^2)\n", +"C2=((2*c*P1*v1*(1-((P2/P1)^(1/c))))^0.5)*1000;//Velocity at exit in m/s\n", +"v2=v1*((P1/P2)^(1/n));//Specific volume at exit in (m^3)/kg\n", +"A2=((m*v2)/C2)*(10^6);//Area of exit in (mm^2)\n", +"T2=T1*((P2/P1)^(1/c));//Temperature at exit in K\n", +"D=Ts-T2;//Degree of undercooling at exit in K\n", +"\n", +"//OUTPUT\n", +"mprintf('Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n Degree of undercooling at exit is %3.1f K',At,A2,D)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Throat_and_exit_velocities_and_Throat_and_exit_areas.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 4, Page 165\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=2.2;//Pressure at entry in MN/(m^2)\n", +"T1=533;//Temperature at entry in K\n", +"P2=0.4;//Pressure at exit in MN/(m^2)\n", +"m=11;//mass flow rate of steam in kg/s\n", +"n=0.85;//Efficiency of expansion\n", +"h1=2940;//Enthalpy at entrance in kJ/kg from Moiller chart\n", +"ht=2790;//Enthalpy at throat in kJ/kg from Moiller chart\n", +"h2s=2590;//Enthalpy below exit level in kJ/kg from Moiller chart\n", +"vt=0.16;//Throat volume in (m^3)/kg\n", +"v2=0.44;//Volume at exit in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"Ct=(2000*(h1-ht))^0.5;//Throat velocity in m/s\n", +"h2=ht-(0.85*(ht-h2s));//Enthalpy at exit in kJ/kg\n", +"C2=(2000*(h1-h2))^0.5;//Exit velocity in m/s\n", +"At=((m*vt)/Ct)*(10^6);//Area of throat in (mm^2)\n", +"A2=((m*v2)/C2)*(10^6);//Area of exit in (mm^2)\n", +"\n", +"//OUTPUT\n", +"mprintf('Throat velocity is %3.0f m/s \n Exit velocity is %3.0f m/s \n Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n',Ct,C2,At,A2)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: EX4_5.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 5, Page 166\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=35;//Pressure at entry in bar\n", +"T1=573;//Temperature at entry in K\n", +"P2=8;//Pressure at exit in bar\n", +"Ts=443.4;//Saturation temperature in K\n", +"Ps=3.1;//Saturation pressure in bar\n", +"m=5.2;//mass flow rate of steam in kg/s\n", +"n=1.3;//Adiabatic gas constant\n", +"v1=0.06842;//Specific volume at entry in (m^3)/kg from steam table\n", +"v3=0.2292;//Specific volume at exit in (m^3)/kg from steam table\n", +"h1=2979;//Enthalpy in kJ/kg from Moiller chart\n", +"h3=2673.3;//Enthalpy in kJ/kg from Moiller chart\n", +"\n", +"//CALCULATIONS\n", +"c=n/(n-1);//Ratio\n", +"C2=((2*c*P1*(10^5)*v1*(1-((P2/P1)^(1/c))))^0.5);//Velocity at exit in m/s\n", +"v2=v1*((P1/P2)^(1/n));//Specific volume at exit in (m^3)/kg\n", +"A2=((m*v2)/C2)*(10^4);//Area of exit in (cm^2)\n", +"a=((A2/18)^0.5)*10;//Length in mm\n", +"b=3*a;//Breadth in mm\n", +"T2=T1*((P2/P1)^(1/c));//Temperature at exit in K\n", +"D=Ts-T2;//Degree of undercooling in K\n", +"Ds=P2/Ps;//Degree of supersaturation\n", +"hI=h1-h3;//Isentropic enthalpy drop in kJ/kg\n", +"ha=(C2^2)/2000;//Actual enthalpy drop in kJ/kg\n", +"QL=hI-ha;//Loss in available heat in kJ/kg\n", +"DS=QL/Ts;//Increase in entropy in kJ/kg-K\n", +"C3=(2000*(h1-h3))^0.5;//Exit velocity from nozzle\n", +"mf=((A2*C3*(10^-4))/v3);//Mass flow rate in kg/s\n", +"Rm=m/mf;//Ratio of mass rate\n", +"\n", +"//OUTPUT\n", +"mprintf('Cross section of nozzle is %3.1f mm * %3.1f mm \n Degree of undercooling is %3.1f K and Degree of supersaturation is %3.2f \n Loss in available heat drop due to irreversibility is %3.2f kJ/kg \n Increase in entropy is %3.5f kJ/kg-K \n Ratio of mass flow rate with metastable expansion to the thermal expansion is %3.3f',b,a,D,Ds,QL,DS,Rm)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Nozzle_efficiency_and_Exit_area_and_Throat_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 6, Page 169\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"m=14;//Mass flow rate of steam in kg/s\n", +"P1=3;//Pressure of Steam in MN/(m^2)\n", +"T1=300;//Steam temperature in oC\n", +"h1=2990;//Enthalpy at point 1 in kJ/kg\n", +"h2s=2630;//Enthalpy at point 2s in kJ/kg\n", +"ht=2850;//Enthalpy at point t in kJ/kg\n", +"n=1.3;//Adiabatic gas constant\n", +"C2=800;//Exit velocity in m/s\n", +"v2=0.4;//Specific volume at exit in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"x=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^x)*P1;//Temperature at point t in MN/(m^2)\n", +"h2=h1-((C2^2)/2000);//Exit enthalpy in kJ/kg\n", +"nN=((h1-h2)/(h1-h2s))*100;//Nozzle efficiency\n", +"A2=((m*v2)/C2)*(10^6);//Exit area in (mm^2)\n", +"Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s\n", +"\n", +"//OUTPUT\n", +"mprintf('Nozzle efficiency is %3.1f percent \n Exit area is %3.0f (mm^2) \n Throat velocity is %3.0f m/s',nN,A2,Ct)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Areas_at_throat_and_exit_and_Steam_quality_at_exit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 7, Page 170\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=10;//Pressure at point 1 in bar\n", +"P2=0.5;//Pressure at point 2 in bar\n", +"h1=3050;//Enthalpy at point 1 in kJ/kg\n", +"h2s=2480;//Enthalpy at point 2s in kJ/kg\n", +"ht=2910;//Enthalpy at throat in kJ/kg\n", +"n=1.3;//Adiabatic gas constant\n", +"r=0.1;//Total available heat drop\n", +"v1=0.258;//Specific volume at point 1 in (m^3)/kg\n", +"h2f=340.6;//Enthalpy for exit pressure from steam tables in kJ/kg\n", +"hfg=2305.4;//Enthalpy for exit pressure from steam tables in kJ/kg\n", +"m=0.5;//Mass flow rate in kg/s\n", +"\n", +"//CALCULATIONS\n", +"x=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^x)*P1;//Temperature at throat in bar\n", +"h2=h2s+(r*(h1-h2s));//Enthalpy at point 2 in kJ/kg\n", +"vt=((P1/Pt)^(1/n))*v1;//Specific volume at throat in (m^3)/kg\n", +"v2=((P1/P2)^(1/n))*v1;//Specific volume at point 2 in (m^3)/kg\n", +"Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s\n", +"At=((m*vt)/Ct)*(10^6);//Throat area in (mm^2)\n", +"C2=sqrt(2000*(h1-h2));//Exit velocity in m/s\n", +"A2=((m*v2)/C2)*(10^6);//Exit area in (mm^2)\n", +"x2=((h2-h2f)/hfg)*100;//Steam quality at exit\n", +"\n", +"//OUTPUT\n", +"mprintf('Throat area is %3.0f (mm^2) \n Exit area is %3.0f (mm^2) \n Steam quality at exit is %3.0f percent',At,A2,x2)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: Maximum_discharge_and_Area_of_nozzle_at_exit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 8, Page 171\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=3.5;//Dry saturated steam in bar\n", +"P2=1.1;//Exit pressure in bar\n", +"At=4.4;//Throat area in cm^2\n", +"h1=2731.6;//Enthalpy at P1 in kJ/kg\n", +"v1=0.52397;//Specific volume at P1 in m^3/kg\n", +"n=1.135;//Adiabatic gas constant\n", +"ht=2640;//Enthalpy at Pt in kJ/kg\n", +"vt=0.85;//Specific volume at throat in m^3/kg\n", +"h2=2520;//Enthalpy at P2 in kJ/kg\n", +"v2=1.45;//Specific volume at P2 in m^3/kg\n", +"\n", +"//CALCULATIONS\n", +"x=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^x)*P1;//Throat pressure in bar\n", +"Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s\n", +"mmax=((At*Ct*(10^-4))/vt)*60;//Maximum discharge in kg/min\n", +"C2=sqrt(2000*(h1-h2));//Exit velocity in m/s\n", +"A2=((mmax*v2)/(C2*60))*(10^6);//Exit area in mm^2\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum discharge is %3.3f kg/min \n Exit area is %3.2f mm^2',mmax,A2)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Type_of_nozzle_and_Minimum_area_of_nozzle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-4, Illustration 9, Page 172\n", +"//Title: Steam Nozzles and Steam Turbines\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=10;//Pressure at point 1 in bar\n", +"T1=200;//Temperature at point 1 in oC\n", +"P2=5;//Pressure at point 2 in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"h1=2830;//Enthalpy at P1 in kJ/kg\n", +"ht=2710;//Enthalpy at point Pt in kJ/kg\n", +"vt=0.35;//Specific volume at Pt in m^3/kg\n", +"m=3;//Nozzle flow in kg/s\n", +"\n", +"//CALCULATIONS\n", +"x=n/(n-1);//Ratio\n", +"Pt=((2/(n+1))^x)*P1;//Throat pressure in bar\n", +"Ct=sqrt(2000*(h1-ht));//Throat velocity in m/s\n", +"At=(m*vt)/Ct;//Throat area in m^2\n", +"\n", +"//OUTPUT\n", +"mprintf('Since throat pressure is greater than exit pressure,nozzle used is convergent-divergent nozzle \n Minimum area of nozzle required is %3.5f m^2',At)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Thermal_Engineering_by_A_V_Arasu/5-Air_Compressors.ipynb b/Thermal_Engineering_by_A_V_Arasu/5-Air_Compressors.ipynb new file mode 100644 index 0000000..41394fa --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/5-Air_Compressors.ipynb @@ -0,0 +1,1128 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Air Compressors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.10: EX5_10.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 10, Page 259\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=0.98;//Pressure at point 1 in bar\n", +"P4=P1;//Pressure at point 4 in bar\n", +"P2=7;//Pressure at point 2 in bar\n", +"P3=P2;//Pressure at point 3 in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"Ta=300;//Air temperature in K\n", +"Pa=1.013;//Air pressure in bar\n", +"T1=313;//Temperature at point 1 in K\n", +"c=0.04;//Ratio of clearance volume to swept volume\n", +"Va=15;//Volume of air delivered in m^3\n", +"R=0.287;//Universal gas constant in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"r=(P2/P1)^(1/n);//Ratio of volumes\n", +"a=r*c;//Ratio of volume at point 4 to swept volume\n", +"DV=1+c-a;//Difference in volumes\n", +"V=(P1*DV*Ta)/(T1*Pa);//Volume of air delivered per cycle\n", +"nv=V*100;//Volumetric efficiency\n", +"DV1=(Pa*Va*T1)/(Ta*P1);//Difference in volumes\n", +"T2=T1*((P2/P1)^x);//Temperature at point 2 in K\n", +"ma=(Pa*100*Va)/(R*Ta);//Mass of air delivered in kg/min\n", +"IP=(ma*R*(T2-T1))/(x*60);//Indicated power in kW\n", +"Piso=(ma*R*T1*log(P2/P1))/60;//Isothermal indicated power in kW\n", +"niso=(Piso/IP)*100;//Isothermal efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Volumetric efficiency is %3.1f percent \n Indicated power is %3.2f kW \n Isothermal efficiency is %3.0f percent',nv,IP,niso)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: Power_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 11, Page 261\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"V1=7*(10^-3);//Volume of air in (m^3)/s\n", +"P1=1.013;//Pressure of air in bar\n", +"T1=288;//Air temperature in K\n", +"P2=14;//Pressure at point 2 in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"nm=0.82;//Mechanical efficiency\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"W=(P1*100*V1*(((P2/P1)^x)-1))/x;//Work done by compressor in kW\n", +"P=W/nm;//Power requred to drive compressor in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Power requred to drive compressor is %3.2f kW',P)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.12: EX5_12.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 12, Page 261\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"L=0.15;//Stroke in mm\n", +"D=0.15;//Bore in mm\n", +"N=8;//Speed in rps\n", +"P1=100;//Pressure at point 1 in kN/(m^2)\n", +"P2=550;//Pressure at point 2 in kN/(m^2)\n", +"n=1.32;//Adiabatic gas constant\n", +"C=0.06;//Ratio of clearance volume to swept volume\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"nv=(1+C-(C*((P2/P1)^(1/n))))*100;//Volumetric efficiency\n", +"DV=(3.147*(D^2)*L)/4;//Difference in volumes at points 1 and 3\n", +"DV1=(nv*DV)/100;//Difference in volumes at points 1 and 4\n", +"V2=DV1*((P1/P2)^(1/n))*N;//Volume of air delivered per second\n", +"W=(P1*DV1*(((P2/P1)^x)-1))*N/x;//Power of compressor in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Theoretical volume efficiency is %3.1f percent \n Volume of air delivered is %3.5f (m^3)/s \n Power of compressor is %3.3f kW',nv,V2,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13: EX5_13.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 13, Page 262\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"V=16;//Volume of air compresssed in m^3\n", +"P1=1;//Pressure at point 1 in bar\n", +"P3=10.5;//Pressure at point 3 in bar\n", +"T1=294;//Temperature at point 1 in K\n", +"Tc=25;//Temperature of cooling water in oC\n", +"n=1.35;//Adiabatics gas constant\n", +"R=0.287;//Universal gas constant in kJ/kg-K\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"Cw=4.187;//Specific heat of water in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"P2=sqrt(P1*P3);//Pressure at point 2 in bar\n", +"W1=(2*P1*100*V*(((P2/P1)^x)-1))/(x*60);//Indicated power of compressor from P1 to P2 in kW\n", +"W2=(P1*100*V*(((P3/P1)^x)-1))/(x*60);//Indicated power of compressor from P1 to P3 in kW\n", +"T4=T1*((P2/P1)^x);//Maximum temperature for two stage compression in K\n", +"T2=T1*((P3/P1)^x);//Maximum temperature for single stage compression in K\n", +"m=(P1*100*V)/(R*T1);//Mass of air compressed in kg/min\n", +"Q=m*Cp*(T4-T1);//Heat rejected by air in kJ/min\n", +"mc=Q/(Cw*Tc);//Mass of cooling water in kg/min\n", +"\n", +"//OUTPUT\n", +"mprintf('Minimum indicated power required for 2 stage compression is %3.1f kW \n Power required for single stage compression is 18 percent more than that for two stage compression with perfect intercooling \n Maximum temperature for two stage compression is %3.1f K \n Maximum temperature for single stage compression is %3.1f K \n Heat rejected by air is %3.1f kJ/min \n Mass of cooling water required is %3.1f kg/min',W1,T4,T2,Q,mc)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.14: Intermediate_pressure_and_Total_volume_of_each_cylinder_and_Cycle_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 14, Page 264\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"V=0.2;//Air flow rate in (m^3)/s\n", +"P1=0.1;//Intake pressure in MN/(m^2)\n", +"P3=0.7;//Final pressure in MN/(m^2)\n", +"T1=289;//Intake temperature in K\n", +"n=1.25;//Adiabatic gas constant\n", +"N=10;//Compressor speed in rps\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"P2=sqrt(P1*P3);//Intermediate pressure in MN/(m^2)\n", +"V1=(V/N)*1000;//Total volume of LP cylinder in litres\n", +"V2=((P1*V1)/P2);//Total volume of HP cylinder in litres\n", +"W=((2*P1*V*(((P2/P1)^x)-1))/x)*1000;//Cycle power in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Intermediate pressure is %3.3f MN/(m^2) \n Total volume of LP cylinder is %3.0f litres \n Total volume of HP cylinder is %3.1f litres \n Cycle power is %3.0f kW',P2,V1,V2,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.15: Power_of_compressor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 15, Page 265\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in bar\n", +"T1=290;//Temperature at point 1 in K\n", +"P3=60;//Pressure at point 3 in bar\n", +"P2=8;//Pressure at point 2 in bar\n", +"T2=310;//Temperature at point 2 in K\n", +"L=0.2;//Stroke in m\n", +"D=0.15;//Bore in m\n", +"n=1.35;//Adiabatic gas constant\n", +"N=200;//Speed in rpm\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"V1=(3.147*(D^2)*L)/4;//Volume at point 1 in m^3\n", +"V2=(P1*V1*T2)/(T1*P2);//Volume of air entering LP cylinder in m^3\n", +"W=((P1*(10^5)*V1*(((P2/P1)^x)-1))/x)+((P2*(10^5)*V2*(((P3/P2)^x)-1))/x);//Workdone by compressor per cycle in J\n", +"P=(W*N)/(60*1000);//Power of compressor in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Power of compressor is %3.2f kW',P)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.16: Heat_rejected_and_Diameter_of_HP_cylinder_and_Power_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 16, Page 265\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"N=220;//Speed of compressor in rpm\n", +"P1=1;//Pressure entering LP cylinder in bar\n", +"T1=300;//Temperature at point 1 in K\n", +"Dlp=0.36;//Bore of LP cylinder in m\n", +"Llp=0.4;//Stroke of LP cylinder in m\n", +"Lhp=0.4;//Stoke of HP cylinder in m\n", +"C=0.04;//Ratio of clearance volumes of both cylinders\n", +"P2=4;//Pressure leaving LP cylinder in bar\n", +"P5=3.8;//Pressure entering HP cylinder in bar\n", +"T3=300;//Temperature entering HP cylinder in K\n", +"P6=15.2;//Dicharge pressure in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"Cp=1.0035;//Specific heat at constant pressure in kJ/kg-K\n", +"R=0.287;//Universal gas constant in kJ/kg-K\n", +"T5=T1;//Temperature at point 5 in K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"Vslp=(3.147*(Dlp^2)*Llp*N*2)/4;//Swept volume of LP cylinder in m^3/min\n", +"nv=1+C-(C*((P2/P1)^(1/n)));//Volumetric efficiency\n", +"V1=nv*Vslp;//Volume of air drawn at point 1 in (m^3)/min\n", +"m=(P1*100*V1)/(R*T1);//Mass of air in kg/min\n", +"T2=T1*((P2/P1)^x);//Temperature at point 2 in K\n", +"QR=m*Cp*(T2-T5);//Heat rejected in kJ/min\n", +"V5=(m*R*T5)/(P5*100);//Volume of air drawn in HP cylinder M^3/min\n", +"Plp=P2/P1;//Pressure ratio of LP cylinder\n", +"Php=P6/P5;//Pressure ratio of HP cylinder\n", +"Vshp=V5/nv;//Swept volume of HP cylinder in m^3/min\n", +"Dhp=sqrt((Vshp*4)/(3.147*Lhp*N*2));//Bore of HP cylinder in m\n", +"P=(m*R*(T2-T1))/(x*60);//Power required for HP cylinder in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Heat rejected in intercooler is %3.1f kJ/min \n Diameter of HP cylinder is %3.4f m \n Power required for HP cylinder is %3.0f kW',QR,Dhp,P)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.17: Ratio_of_cylinder_diameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 17, Page 267\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in bar\n", +"P3=30;//Pressure at point 3 in bar\n", +"T1=300;//Temperature at point 1 in K\n", +"n=1.3;//Adiabatics gas constant\n", +"\n", +"//CALCULATIONS\n", +"P2=sqrt(P1*P3);//Intermediate pressure in bar\n", +"rD=sqrt(P2/P1);//Ratio of cylinder diameters\n", +"\n", +"//OUTPUT\n", +"mprintf('Ratio of cylinder diameters is %3.2f',rD)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.18: EX5_18.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 18, Page 268\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1.013;//Pressure at point 1 in bar\n", +"T1=288;//Temperaturea at point 1 in K\n", +"v1=8.4;//free air delivered by compressor in m^3\n", +"P4=70;//Pressure at point 4 in bar\n", +"n=1.2;//Adiabatic gas constant\n", +"Cp=1.0035;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"P2=P1*((P4/P1)^(1/3));//LP cylinder delivery pressure in bar\n", +"P3=P2*((P4/P1)^(1/3));//IP cylinder delivery pressure in bar\n", +"r=P2/P1;//Ratio of cylinder volumes\n", +"r1=P3/P2;//Ratio of cylinder volumes\n", +"r2=r*r1;//Ratio of cylinder volumes\n", +"V3=1;//Volume at point 3 in m^3\n", +"T4=T1*((P2/P1)^x);//Three stage outlet temperature in K\n", +"QR=Cp*(T4-T1);//Heat rejected in intercooler in kJ/kg of air\n", +"W=((3*P1*100*v1*(((P4/P1)^(x/3))-1))/(x*60));//Total indiacted power in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('LP cylinder delivery pressure is %3.3f bar \n IP cylinder delivery pressure is %3.2f bar \n Ratio of cylinder volumes is %3.2f:%3.1f:%3.0f \n Temperature at end of each stage is %3.2f K \n Heat rejected in each intercooler is %3.1f kJ/kg of air \n Total indicated power is %3.2f kW',P2,P3,r2,r1,V3,T4,QR,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.19: EX5_19.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 19, Page 269\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"D=0.45;//Bore in m\n", +"L=0.3;//Stroke in m\n", +"C=0.05;//Ratio of clearance volume to swept volume\n", +"P1=1;//Pressure at point 1 inn bar\n", +"T1=291;//Temperature at point 1 in K\n", +"P4=15;//Pressure at point 4 in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"R=0.29;//Universal gas constant in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"k=(P4/P1)^(1/3);//Pressure ratio\n", +"P2=k*P1;//Pressure at point 2 in bar\n", +"P3=k*P2;//Pressure at point 1 in bar\n", +"Vslp=(3.147*(D^2)*L)/4;//Swept volume of LP cylinder\n", +"V7=C*Vslp;//Volume at point 7 in m^3\n", +"V1=Vslp+V7;//Volume at point 1 in m^3\n", +"V8=V7*(k^(1/n));//Volume at point 8 in m^3\n", +"EVs=(V1-V8)*1000;//Effective swept volume in litres\n", +"T4=T1*(k^x);//Temperature at point 4 in K\n", +"t4=T4-273;//Delivery temperature in oC\n", +"DV=((P1*T4*(V1-V8))/(P4*T1))*1000;//Delivery volume per stroke in litres\n", +"W=(3*R*T1*((k^x)-1))/x;//Workdone per kg of air in kJ\n", +"\n", +"//OUTPUT\n", +"mprintf('Intermediate pressures are %3.3f bar and %3.3f bar \n Effective swept volume of LP cylinder is %3.2f litres \n Temperature of air delivered per stroke is %3.1f oC \n Volume of air delivered per stroke is %3.2f litres \n Work done per kg of air is %3.1f kJ',P2,P3,EVs,t4,DV,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Indicated_power_and_Mass_of_air_and_Temperature_delivered_by_compressor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 1, Page 250\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"D=0.2;//Cylinder diameter in m\n", +"L=0.3;//Cylinder Stroke in m\n", +"P1=1;//Pressure at entry in bar\n", +"T1=300;//Temperature at entry in K\n", +"P2=8;//Pressure at exit in bar\n", +"n=1.25;//Adiabatic gas constant\n", +"N=100;//Speed in rpm\n", +"R=287;//Universal gas constant in J/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"V1=(3.147*L*(D^2))/4;//Volume of cylinder in m^3/cycle\n", +"W=(P1*(10^5)*V1*(((P2/P1)^x)-1))/x;//Work done in J/cycle\n", +"Pc=(W*100)/(60*1000);//Indicated power of compressor in kW\n", +"m=(P1*(10^5)*V1)/(R*T1);//Mass of air delivered in kg/cycle\n", +"md=m*N;//Mass delivered per minute in kg\n", +"T2=T1*((P2/P1)^x);//Temperature of air delivered in K\n", +"\n", +"//OUTPUT\n", +"mprintf('Indicated power of compressor is %3.2f kW \n Mass of air delivered by compressor per minute is %3.2f kg \n Temperature of air delivered is %3.1fK',Pc,md,T2)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.20: Number_of_stages_and_Exact_stage_pressure_ratio_and_Intermediate_pressures.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 20, Page 271\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in bar\n", +"Pns=100;//Maximum pressure in bar\n", +"p=4;//Pressure ratio\n", +"\n", +"//CALCULATIONS\n", +"Ns=log(Pns)/log(p);//Number of stages\n", +"y=ceil(Ns);//Rounding off to next higher integer\n", +"ps=(Pns/P1)^(1/y);//Exact stage pressure ratio\n", +"P2=ps*P1;//Pressure at point 2 in bar\n", +"P3=ps*P2;//Pressure at point 3 in bar\n", +"P4=ps*P3;//Pressure at point 4 in bar\n", +"\n", +"//OUTPUT\n", +"mprintf('Number of stages are %3.0f \n Exact stage pressure ratio is %3.3f \n Intermediate pressures are %3.3f bar,%3.2f bar,%3.2f bar',y,ps,P2,P3,P4)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Size_of_cylinder.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 2, Page 251\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"IP=37;//Indicated power in kW\n", +"P1=0.98;//Pressure at entry in bar\n", +"T1=288;//Temperature at entry in K\n", +"P2=5.8;//Pressure at exit in bar\n", +"n=1.2;//Adiabatic gas constant\n", +"N=100;//Speed in rpm\n", +"Ps=151.5;//Piston speed in m/min\n", +"a=2;//For double acting compressor\n", +"\n", +"//CALCULATIONS\n", +"L=Ps/(2*N);//Stroke length in m\n", +"x=(n-1)/n;//Ratio\n", +"r=(3.147*L)/4;//Ratio of volume to bore\n", +"D=sqrt((IP*1000*60*x)/(N*a*r*P1*(10^5)*(((P2/P1)^x)-1)));//Cylinder diameter in m\n", +"\n", +"//OUTPUT\n", +"mprintf('Stroke length of cylinder is %3.4f m \n Cylinder diameter is %3.4f m',L,D)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Cylinder_dimensions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 3, Page 251\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"IP=11;//Indicated power in kW\n", +"P1=1;//Pressure at entry in bar\n", +"P2=7;//Pressure at exit in bar\n", +"n=1.2;//Adiabatic gas constant\n", +"Ps=150;//Piston speed in m/s\n", +"a=2;//For double acting compressor\n", +"r=1.5;//Storke to bore ratio\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"y=3.147/(4*(r^2));//Ratio of volume to the cube of stroke\n", +"z=(P1*(10^2)*y*(((P2/P1)^x)-1))/x;//Ratio of workdone to the cube of stroke\n", +"L=(sqrt(IP/(z*Ps)))*1000;//Stroke in mm\n", +"D=(L/r);//Bore in mm\n", +"\n", +"//OUTPUT\n", +"mprintf('Stroke length of cylinder is %3.0f mm \n Bore diameter of cylinder is %3.0f mm',L,D)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: EX5_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 4, Page 252\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"x=0.05;//Ratio of clearance volume to swept volume\n", +"P1=1;//Pressure at point 1 in bar\n", +"T1=310;//Temperature at point 1 in K\n", +"n=1.2;//Adiabatic gas constant\n", +"P2=7;//Pressure at point 2 in bar\n", +"Pa=1.01325;//Atmospheric pressure in bar\n", +"Ta=288;//Atmospheric temperature in K\n", +"\n", +"//CALCULATIONS\n", +"V1=1+x;//Ratio of volume of air sucked to stroke volume\n", +"V4=((P2/P1)^(1/n))/20;//Ratio of volume delivered to stroke volume\n", +"DV=V1-V4;//Difference in volumes\n", +"nv1=DV*100;//Volumetric efficiency\n", +"V=(P1*DV*Ta)/(T1*Pa);//Ratio of volumes referred to atmospheric conditions\n", +"nv2=V*100;//Volumetric efficiency referred to atmospheric conditions\n", +"W=(n*0.287*T1*((P2/P1)^((n-1)/n)-1))/(n-1);//Work required in kJ/kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Volumetric efficiency is %3.1f percent \n Volumetric efficiency referred to atmospheric conditions is %3.1f percent \n Work required is %3.1f kJ/kg',nv1,nv2,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Theoretical_volume_of_air_take.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 5, Page 253\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"D=0.2;//Bore in m\n", +"L=0.3;//Stroke in m\n", +"lc=0.015;//Linear clearance in m\n", +"P1=1;//Pressure at point 1 in bar\n", +"P2=7;//Pressure at point 2 in bar\n", +"n=1.25;//Adiabatic gas constant\n", +"\n", +"//CALCULATIONS\n", +"V3=(3.147*(D^2)*lc)/4;//Clearance volume in m^3\n", +"Vs=(3.147*(D^2)*L)/4;//Stoke volume in m^3\n", +"C=V3/Vs;//Clearance ratio\n", +"nv=(1+C-(C*((P2/P1)^(1/n))))*100;//Volumetric efficiency\n", +"DV=(nv*Vs)/100;//Volume of air taken in (m^3)/stroke\n", +"\n", +"//OUTPUT\n", +"mprintf('Theoretical volume of air taken in per stroke is %3.6f (m^3)/stroke',DV)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Mean_effective_pressure_and_Power_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 6, Page 254\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"D=0.2;//Bore in m\n", +"L=0.3;//Stroke in m\n", +"r=0.05;//Ratio of clearance volume to stroke volume\n", +"P1=1;//Pressure at point 1 in bar\n", +"T1=293;//Temperature at point 1 in K\n", +"P2=5.5;//Pressure at point 2 in bar\n", +"n=1.3;//Adiabatic gas constant\n", +"N=500;//Speed of compressor in rpm\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"Vs=(3.147*L*(D^2))/4;//Stroke volume in m^3\n", +"Vc=r*Vs;//Clearance volume in m^3\n", +"V1=Vc+Vs;//Volume at point 1 in m^3\n", +"V4=Vc*((P2/P1)^(1/n));//Volume at point 4 in m^3\n", +"EVs=V1-V4;//Effective swept volume in m^3\n", +"W=(P1*(10^5)*EVs*(((P2/P1)^x)-1))/x;//Work done in J/cycle\n", +"MEP=(W/Vs)/(10^5);//Mean effective pressure in bar\n", +"P=(W*N)/(60*1000);//Power required in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Mean effective pressure is %3.2f bar \n Power required is %3.2f kW',MEP,P)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: EX5_7.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 7, Page 255\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"D=0.2;//Bore in m\n", +"L=0.3;//Stroke in m\n", +"r=0.05;//Ratio of clearance volume to stroke volume\n", +"P1=97;//Pressure at entry in kN/(m^2)\n", +"P4=P1;//Pressure at point 4 in kN/(m^2)\n", +"T1=293;//Temperature at point 1 in K\n", +"P2=550;//Compression Pressure in kN/(m^2)\n", +"P3=P2;//Pressure at point 3 in kN/(m^2)\n", +"n=1.3;//Adiabatic gas constant\n", +"N=500;//Speed of compressor in rpm\n", +"Pa=101.325;//Air pressure in kN/(m^2)\n", +"Ta=288;//Air temperature in K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"DV=(3.147*L*(D^2))/4;//Difference in volumes in m^3\n", +"V3=r*DV;//Clearance volume in m^3\n", +"V1=V3+DV;//Volume at point 1 in m^3\n", +"V4=V3*((P3/P4)^(1/n));//Volume at point 4 in m^3\n", +"Vs=V1-V4;//Effective swept volume in m^3\n", +"EVs=Vs*N;//Effective swept volume per min\n", +"Va=(P1*EVs*Ta)/(Pa*T1);//Free air delivered in (m^3)/min\n", +"nV=((V1-V4)/(V1-V3))*100;//Volumetric effciency\n", +"T2=T1*((P2/P1)^x);//Air delivery temperature in K\n", +"t2=T2-273;//Air delivery temperature in oC\n", +"W=(n*P1*(V1-V4)*(((P2/P1)^x)-1))*N/((n-1)*60);//Cycle power in kW\n", +"Wiso=P1*V1*(log(P2/P1));//Isothermal workdone\n", +"P=(n*P1*V1*(((P2/P1)^x)-1))/(n-1);//Cycle power neglecting clearance\n", +"niso=(Wiso/P)*100;//Isothermal efficiency\n", +"\n", +"//OUTPUT\n", +"mprintf('Free air delivered is %3.3f (m^3)/min \n Volumetric efficiency is %3.0f percent \n Air delivery temperature is %3.1f oC \n Cycle power is %3.0f kW \n Isothermal efficiency is %3.1f percent',Va,nV,t2,W,niso)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: Mean_effective_pressure_and_Brake_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 8, Page 257\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Ve=30;//Volume of air entering compressor per hour in m^3\n", +"P1=1;//Presure of air entering compressor in bar\n", +"N=450;//Speed in rpm\n", +"P2=6.5;//Pressure at point 2 in bar\n", +"nm=0.8;//Mechanical efficiency\n", +"nv=0.75;//Volumetric efficiency\n", +"niso=0.76;//Isothermal efficiency\n", +"\n", +"//CALCULATIONS\n", +"Vs=Ve/(nv*3600);//Swept volume per sec in (m^3)/s\n", +"V=(Vs*60)/N;//Swept volume per cycle in m^3\n", +"V1=(Ve*60)/(3600*N);//Volume at point 1 in m^3\n", +"Wiso=P1*100*V1*log(P2/P1);//Isothermal workdone per cycle\n", +"Wact=Wiso/niso;//Actual workdone per cycle on air\n", +"MEP=(Wact/V)/100;//Mean effective pressure in bar\n", +"IP=(Wact*N)/60;//Indicated power in kW\n", +"BP=IP/nm;//Brake power in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Mean effective pressure is %3.3f bar \n Brake power is %3.2f kW',MEP,BP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Cylinder_dimensions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-5, Illustration 9, Page 258\n", +"//Title: Air Compressors\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Va=15;//Volume of air in (m^3)/min\n", +"Pa=1.01325;//Pressure of air in bar\n", +"Ta=302;//Air temperature in K\n", +"P1=0.985;//Pressure at point 1 in bar\n", +"T1=313;//Temperature at point 1 in K\n", +"r=0.04;//Ratio of clearance volume to swept volume\n", +"y=1.3;//Ratio of stroke to bore diameter\n", +"N=300;//Speed in rpm\n", +"n=1.3;//Adiabatic gas constant\n", +"P2=7.5;//Pressure at point 2 in bar\n", +"\n", +"//CALCULATIONS\n", +"x=((P2/P1)^(1/n))-1;//Ratio of volume at point 4 to clearance volume\n", +"a=x*r;//Ratio of volume at point 4 to swept volume\n", +"nv=1-a;//Volumetric efficiency\n", +"V1=(Pa*Va*T1)/(Ta*P1);//Volume at point 1 in (m^3)/min\n", +"Vs=V1/(nv*N*2);//Swept volume in m^3\n", +"D=((Vs*4)/(3.147*y))^(1/3);//Bore in m\n", +"L=y*D;//Stroke in m\n", +"\n", +"//OUTPUT\n", +"mprintf('Cylinder bore in %3.3f m \n Cylinder stroke %3.3f m',D,L)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Thermal_Engineering_by_A_V_Arasu/6-Refrigeration_Cycles.ipynb b/Thermal_Engineering_by_A_V_Arasu/6-Refrigeration_Cycles.ipynb new file mode 100644 index 0000000..ee55b95 --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/6-Refrigeration_Cycles.ipynb @@ -0,0 +1,892 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Refrigeration Cycles" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: Ideal_COP_of_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 10, Page 309\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Tg=470;//Heating temperature in K\n", +"T0=290;//Cooling temperature in K\n", +"TL=270;//Refrigeration temperature in K\n", +"\n", +"//CALCULATIONS\n", +"COP=((Tg-T0)/Tg)*(TL/(T0-TL));//Ideal COP of absorption refrigeration system\n", +"\n", +"//OUTPUT\n", +"mprintf('Ideal COP of absorption refrigeration system is %3.2f',COP)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: Maximum_and_minimum_temperature_in_cycle_and_COP_and_Rate_of_refrigeration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 11, Page 317\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=-18;//Temperature at point 1 in oC\n", +"T3=27;//Temperature at point 3 in oC\n", +"rp=4;//Pressure ratio\n", +"m=0.045;//mass flow rate in kg/s\n", +"y=1.4;//Ratio of specific heats\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"T2=(rp^x)*(273+T1);//Temperature at point 2 in K\n", +"Tmax=T2-273;//Maximum temperature in oC\n", +"T4=((1/rp)^x)*(273+T3);//Temperature at point 4 in K\n", +"Tmin=T4-273;//Minimum temperature in oC\n", +"qL=Cp*(T1-Tmin);//Heat rejected\n", +"Wcin=Cp*(Tmax-T1);//Compressor work\n", +"Wtout=Cp*(T3-Tmin);//Turbine work\n", +"Wnet=Wcin-Wtout;//Net work done\n", +"COP=qL/Wnet;//Co-efficient of performance\n", +"Qref=m*qL;//Rate of refrigeration in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum temperature in the cycle is %3.0foC \n Minimum temperature in the cycle is %3.0foC \n COP is %3.2f \n Rate of refrigeration is %3.2f kW',Tmax,Tmin,COP,Qref)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.12: Work_developed_and_Refrigerating_effect_and_COP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 12, Page 318\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1;//Pressure at point 1 in bar\n", +"T1=268;//Temperature at point 1 in K\n", +"P2=5;//Pressure at point 2 in bar\n", +"T3=288;//Temperature at point 3 in K\n", +"n=1.3;//Adiabatic gas constant\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x=(n-1)/n;//Ratio\n", +"T2=((P2/P1)^x)*T1;//Temperature at point 2 in K\n", +"T4=((P1/P2)^x)*T3;//Temperature at point 4 in K\n", +"W=Cp*(T3-T4);//Work developed per kg of air in kJ/kg\n", +"Re=Cp*(T1-T4);//Refrigerating effect per kg of air in kJ/kg\n", +"Wnet=Cp*((T2-T1)-(T3-T4));//Net work output in kJ/kg\n", +"COP=Re/Wnet;//Co-efficient of performance\n", +"\n", +"//OUTPUT\n", +"mprintf('Work developed per kg of air is %3.3f kJ/kg \n Refrigerating effect per kg of air is %3.3f kJ/kg \n COP of the cycle is %3.2f',W,Re,COP)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: COP_of_refrigerator_and_Driving_power_required_and_Air_mass_flow_rate.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 13, Page 319\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=277;//Temperature at point 1 in K\n", +"T3=328;//Temperature at point 3 in K\n", +"P1=0.1;//Pressure at point 1 in MPa\n", +"P2=0.3;//Pressure at point 2 in MPa\n", +"nc=0.72;//Isentropic efficiency of compressor\n", +"nt=0.78;//Isentropic efficiency of turbine\n", +"y=1.4;//Adiabatic gas constant\n", +"Cp=1.005;//Specific heat at constant pressure in kJ/kg-K\n", +"m=3;//Cooling load in tonnes\n", +"\n", +"//CALCULATIONS\n", +"x=(y-1)/y;//Ratio\n", +"T2s=T1*((P2/P1)^x);//Temperature at point 2s in K\n", +"T2=((T2s-T1)/nc)+T1;//Temerature at point 2 in K\n", +"T4s=T3*((P1/P2)^x);//Temperature at point 4s in K\n", +"T4=T3-((T3-T4s)*nt);//Temperature at point 4 in K\n", +"Re=Cp*(T1-T4);//Refrigerating effect in kJ/kg\n", +"Wnet=Cp*((T2-T1)-(T3-T4));//Net work output in kJ/kg\n", +"COP=Re/Wnet;//Co-efficient of performance\n", +"P=(m*3.52)/COP;//Driving power required in kW\n", +"ma=(m*3.52)/Re;//Mass flow rate of air in kg/s\n", +"\n", +"//OUTPUT\n", +"mprintf('COP of refrigerator is %3.2f \n Driving power required is %3.0f kW \n Mass flow rate of air is %3.3f kg/s',COP,P,ma)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.14: Theoretical_COP_and_Net_cooling_produced.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 14, Page 321\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=2.5;//Pressure at point 1 in bar\n", +"P3=9;//Pressure at point 3 in bar\n", +"COPr=0.65;//Ratio of actual COP to the theoretical COP\n", +"m=5;//Refrigerant flow in kg/min\n", +"T1=309;//Temperature at point 1 in K\n", +"T2s=300;//Temperature at point 2s in K\n", +"h1=570.3;//Enthalpy at P1 from the given tables in kJ/kg\n", +"h4=456.4;//Enthalpy at P3 from the given tables in kJ/kg\n", +"h2g=585.3;//Enthalpy at P3 from the given tables in kJ/kg\n", +"s2=4.76;//Entropy at P1 from the given tables in kJ/kg-K\n", +"s2g=4.74;//Entropy at P3 from the given tables in kJ/kg-K\n", +"Cp=0.67;//Specific heat at P3 in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"T2=(2.718^((s2-s2g)/Cp))*T2s;//Temperature at point 2 in K\n", +"h2=h2g+(Cp*(T2-T2s));//Enthalpy at point 2 in kJ/kg\n", +"COPR=(h1-h4)/(h2-h1);//Refrigerant COP\n", +"COPact=COPr*COPR;//Actual COP\n", +"qL=COPact*(h2-h1);//Heat rejected in kJ/kg\n", +"QL=((m*qL*60)/3600)/3.516;//Cooling produced per kg of refrigerant in tonnes of refrigeration\n", +"\n", +"//OUTPUT\n", +"mprintf('Theoretical COP is %3.2f \n Net cooling produced per hour is %3.2f TR',COPR,QL)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.15: Theoretical_COP_of_machine.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 15, Page 322\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T2=298;//Temperature at point 2 in K\n", +"T1=268;//Temperature at point 1 in K\n", +"hf1=-7.54;//Liquid Enthalpy at T1 in kJ/kg\n", +"x1=0.6;//Quality factor 1\n", +"hfg1=245.3;//Latent heat at T1 in kJ/kg\n", +"sf1=0.251;//Liquid Entropy at T1 in kJ/kg-K\n", +"s1=0.507;//Entropy at point 1 in kJ/kg-K\n", +"hfg2=121.4;//Latent heat at T2 in kJ/kg\n", +"hf2=81.3;//Liquid Enthalpy at T2 in kJ/kg\n", +"h4=hf2;//Enthalpy at point 4 in kJ/kg\n", +"\n", +"//CALCULATIONS\n", +"h1=hf1+(x1*hfg1);//Enthalpy at point 1 in kJ/kg\n", +"x2=((s1-sf1)*T2)/hfg2;//Quality factor 2\n", +"h2=hf2+(x2*hfg2);//Enthalpy at point 2 in kJ/kg\n", +"COP=(h1-h4)/(h2-h1);//COP of the machine\n", +"\n", +"//OUTPUT\n", +"mprintf('COP of the machine is %3.2f',COP)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.16: Theoretical_COP_of_refrigerator_and_Capacity_of_refrigerator.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 16, Page 323\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=25;//Pressure at point 1 in bar\n", +"P2=60;//Pressure at point 2 in bar\n", +"h2=208.1;//Vapour enthalpy at P2 in kJ/kg\n", +"h3=61.9;//Liquid enthalpy at P2 in kJ/kg\n", +"h4=h3;//Liquid enthalpy at P2 in kJ/kg\n", +"s2=0.703;//Vapour entropy at P2 in kJ/kg-K\n", +"sf1=-0.075;//Liquid entropy at P1 in kJ/kg-K\n", +"sfg1=0.971;//Entropy in kJ/kg-K\n", +"hf1=-18.4;//Liquid Enthalpy at P1 in kJ/kg\n", +"hfg1=252.9;//Latent heat at P1 in kJ/kg\n", +"m=5;//Refrigerant flow in kg/min\n", +"\n", +"//CALCULATIONS\n", +"x1=(s2-sf1)/sfg1;//Quality factor 1\n", +"h1=hf1+(x1*hfg1);//Enthalpy at point 1 in kJ/kg\n", +"COP=(h1-h4)/(h2-h1);//Co-efficient of performance\n", +"QL=(m*(h1-h4))/60;//Capacity of the refrigerator in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('COP of refrigerator is %3.2f \n Capacity of refrigerator is %3.2f kW',COP,QL)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.17: COP_and_Theoretical_power_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 17, Page 324\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=271;//Temperature at point 1 in K\n", +"T=265;//Temperature at point 1' in K\n", +"Ta=303;//Temperature at point 2' in K\n", +"Cpv=0.733;//Specific heat of vapour in kJ/kg\n", +"Cpl=1.235;//Specific heat of liquid in kJ/kg\n", +"h=184.07;//Liquid enthalpy at T in kJ/kg\n", +"s=0.7;//Entropy at point 1' in kJ/kg-K\n", +"sa=0.685;//Vapour entropy at Ta in kJ/kg-K\n", +"ha=199.62;//Enthalpy at point 2' in kJ/kg\n", +"hfb=64.59;//Liquid enthalpy at Ta in kJ/kg\n", +"DT3=5;//Temperature difference in oC\n", +"Q=2532;//Refrigeration capacity in kJ/min\n", +"\n", +"//CALCULATIONS\n", +"s2=s+(Cpv*((log(T1/T))/(log(2.718))));//Entropy at point 1 in kJ/kg-K\n", +"h1=h+(Cpv*(T1-T));//Enthalpy at point 1 in kJ/kg-K\n", +"T2=(2.718^((s2-sa)/Cpv))*Ta;//Temperature at point 2 in K\n", +"h2=ha+(Cpv*(T2-Ta));//Enthalpy at point 2 in kJ/kg\n", +"h4=hfb-(Cpl*DT3);//Enthalpy at point 4 in kJ/kg\n", +"COP=(h1-h4)/(h2-h1);//Co-efficient of performance\n", +"m=Q/(h1-h4);//Mass flow rate of refrigerant in kJ/min\n", +"P=(m*(h2-h1))/(60*12);//Power required in kW/TR\n", +"\n", +"//OUTPUT\n", +"mprintf('COP is %3.2f \n Theoretical power required per tonne of refrigeration is %3.3f kW/TR',COP,P)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Claim_is_correct_or_not.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 1, Page 308\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"COP=8.5;//Co-efficient of performance\n", +"T1=300;//Room temperature in K\n", +"T2=267;//Refrigeration temperature in K\n", +"\n", +"//CALCULATIONS\n", +"COPmax=T2/(T1-T2);//Maximum COP possible\n", +"\n", +"//OUTPUT\n", +"mprintf('Maximum COP possible is %3.2f \n Since the COP claimed by the inventor is more than the maximum possible COP his claim is not correct',COPmax)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Weight_of_ice_formed_and_Minimum_power_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 2, Page 309\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"TL=268;//Low temperature in K\n", +"TH=293;//High temperature in K\n", +"t=24;//time in hrs\n", +"C=2100;//Capacity of refrigerator in kJ/s\n", +"Tw=10;//Water temperature in oC\n", +"L=335;//Latent heat of ice in kJ/kg\n", +"\n", +"//CALCULATIONS\n", +"COP=TL/(TH-TL);//Co-efficient of performance\n", +"Pmin=C/COP;//Minimum power required in kW\n", +"Qr=(4.187*(Tw-0))+L;//Heat removed from water in kJ/kg\n", +"m=C/Qr;//mass of ice formed in kg/s\n", +"W=(m*t*3600)/1000;//Weight of ice formed in tons\n", +"\n", +"//OUTPUT\n", +"mprintf('Minimum power required is %3.2f kW \n Weight of ice formed in 24 hours is %3.2f tons',Pmin,W)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Mass_of_ice_formed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 3, Page 309\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"TL=-10;//Temperature of brine in oC\n", +"TH=20;//Temperature of water in oC\n", +"L=335;//Latent heat of ice in kJ/kg\n", +"\n", +"//CALCULATIONS\n", +"Qr=(4.187*(TH-0))+L;//Heat removed from water in kJ/kg\n", +"COP=(TL+273)/(TH-TL);//Co-efficient of performance\n", +"mi=(COP*3600)/Qr;//mass of ice formed per kWh in kg\n", +"\n", +"//OUTPUT\n", +"mprintf('Mass of ice formed per kWh is %3.1f kg',mi)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: EX6_4.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 4, Page 310\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"P1=1.2;//Pressure at point 1 in bar\n", +"P2=7;//Pressure at point 2 in bar\n", +"m=0.05;//mass flow rate of refrigerant in kg/s\n", +"h1=340.1;//Enthalpy at point 1 from refrigerant-12 tables in kJ/kg\n", +"s1=1.57135;//Entropy at point 1 from refrigerant-12 tables in kJ/kg-K\n", +"s2=1.57135;//Entropy at point 2 from refrigerant-12 tables in kJ/kg-K\n", +"h2=372;//Enthalpy at point 2 from refrigerant-12 tables in kJ/kg\n", +"h3=226.575;//Enthalpy at point 3 from refrigerant-12 tables in kJ/kg\n", +"h4=226.575;//Enthalpy at point 4 from refrigerant-12 tables in kJ/kg\n", +"\n", +"//CALCULATIONS\n", +"Q2=m*(h1-h4);//Rate of heat removed from the refrigerated space in kW\n", +"W=m*(h2-h1);//Power input to the compressor in kW\n", +"Q1=m*(h2-h3);//Rate of heat rejection to the environment in kW\n", +"COP=Q2/W;//Co-efficient of performance\n", +"\n", +"//OUTPUT\n", +"mprintf('Rate of heat removed from the refrigerated space is %3.2f kW \n Power input to the compressor is %3.3f kW \n Rate of heat rejection to the environment is %3.2f kW \n Co-efficient of performance is %3.2f',Q2,W,Q1,COP)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: COP_of_system.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 5, Page 311\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T2=40;//Temperature at point 2 in oC\n", +"T1=-10;//Temperature at point 1 in oC\n", +"h2=367.155;//Enthalpy at point 2 from refrigerant-12 tables in kJ/kg\n", +"s2=1.54057;//Entropy at point 2 from refrigerant-12 tables in kJ/kg-K\n", +"s1=1.54057;//Entropy at point 1 from refrigerant-12 tables in kJ/kg-K\n", +"sg=1.56004;//Entropy from refrigerant-12 tables in kJ/kg-K\n", +"sf=0.96601;//Entropy from refrigerant-12 tables in kJ/kg-K\n", +"hf=190.822;//Enthalpy from refrigerant-12 tables in kJ/kg-K\n", +"hfg=156.319;//Enthalpy from refrigerant-12 tables in kJ/kg-K\n", +"h3=238.533;//Enthalpy at point 3 from refrigerant-12 tables in kJ/kg-K\n", +"h4=h3;//Enthalpy at point 4 from refrigerant-12 tables in kJ/kg-K\n", +"\n", +"//CALCULATIONS\n", +"x1=(s1-sf)/(sg-sf);//Quality factor\n", +"h1=hf+(x1*hfg);//Enthalpy at point 1 from refrigerant-12 tables in kJ/kg\n", +"COP=(h1-h4)/(h2-h1);//Co-efficient of performance\n", +"\n", +"//OUTPUT\n", +"mprintf('COP of the system is %3.2f',COP)\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: EX6_6.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 6, Page 311\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Tc=35;//Temperature of condenser in oC\n", +"Te=-15;//Temperature of evaporator in oC\n", +"m=10;//Mass of ice per day in tons\n", +"Tw=30;//Temperature of water in oC\n", +"Ti=-5;//Temperature of ice in oC\n", +"nv=0.65;//Volumetric efficiency\n", +"N=1200;//Speed in rpm\n", +"x=1.2;//Stroke to bore ratio\n", +"na=0.85;//Adiabatic efficiency\n", +"nm=0.95;//Mechanical efficiency\n", +"S=4.187;//Specific heat of water in kJ/kg\n", +"L=335;//Latent heat of ice in kJ/kg\n", +"h1=1667.24;//Enthalpy at Te from Ammonia chart in kJ/kg\n", +"h2=1925;//Enthalpy at Te from Ammonia chart in kJ/kg\n", +"h4=586.41;//Enthalpy at Tc from Ammonia chart in kJ/kg\n", +"v1=0.508;//Specific humidity at Te from Ammonia chart in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"Qr=(((m*1000)/24)*((S*(Tw-0))+L+(1.94*(0-Ti))))/3600;//Refrigerating capacity in kW\n", +"mr=Qr/(h1-h4);//Refrigerant mass flow rate in kg/s\n", +"T2=112;//Discharge temperature in oC\n", +"D=((mr*v1*4*60)/(nv*3.14*x*N))^(1/3);//Cylinder diameter in m\n", +"L=x*D;//Stroke length in m\n", +"W=(mr*(h2-h1))/(na*nm);//Compressor motor power in kW\n", +"COPth=(h1-h4)/(h2-h1);//Theoretical COP\n", +"COPact=Qr/W;//Actual COP\n", +"\n", +"//OUTPUT\n", +"mprintf('Refrigerating capacity of plant is %3.2f kW \n Refrigerant mass flow rate is %3.4f kg/s \n Discharge temperature is %3.0f oC \n Cylinder diameter is %3.3f m \n Stroke length is %3.3f m \n Compressor motor power is %3.2f kW \n Theoretical COP is %3.2f \n Actual COP is %3.2f',Qr,mr,T2,D,L,W,COPth,COPact)\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: Circulation_rate_of_ammonia_and_Power_required_and_COP.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 7, Page 313\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T1=-5;//Temperature at point 1 in oC\n", +"T2=30;//Temperature at point 2 in oC\n", +"m=13500;//mass of ice per day in kg\n", +"Tw=20;//Temperature of water in oC\n", +"COP=0.6;//Co-efficient of performance\n", +"h2=1709.33;//Enthalpy at point 2 in kJ/kg\n", +"s2=6.16259;//Entropy at point 2 in kJ/kg-K\n", +"s1=6.16259;//Entropy at point 1 in kJ/kg-K\n", +"sf=1.8182;//Entropy in kJ/kg-K\n", +"sg=6.58542;//Entropy in kJ/kg-K\n", +"hf=400.98;//Enthalpy in kJ/kg\n", +"hfg=1278.35;//Enthalpy in kJ/kg\n", +"h4=562.75;//Enthalpy at point 4 in kJ/kg\n", +"S=4.187;//Specific heat of water in kJ/kg\n", +"L=336;//Latent heat of ice in kJ/kg\n", +"\n", +"//CALCULATIONS\n", +"x1=(s1-sf)/(sg-sf);//Quality factor\n", +"h1=hf+(x1*hfg);//Enthalpy at point 1 from refrigerant-12 tables in kJ/kg\n", +"COPi=(h1-h4)/(h2-h1);//Ideal COP\n", +"COPact=COP*COPi;//Actual COP\n", +"Qr=((m*S*(Tw-0))+(m*L))/(24*3600);//Total amount of heat removed in kJ/s\n", +"mr=Qr/(h1-h4);//Circulation rate of ammonia in kg/s\n", +"W=mr*(h2-h1);//Power required in kW\n", +"\n", +"//OUTPUT\n", +"mprintf('Circulation rate of ammonia is %3.3f kg/s \n Power required is %3.3f kW \n COP is %3.3f',mr,W,COPact)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: EX6_8.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 8, Page 314\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"Tc=20;//Temperature of condenser in oC\n", +"Te=-25;//Temperature of evaporator in oC\n", +"m=15;//Mass of ice per day in tons\n", +"Ts=5;//Subcooled temperature in oC\n", +"Tsh=10;//Superheated temperature in oC\n", +"n=6;//No. of cylinders\n", +"N=950;//Speed of compressor in rpm\n", +"x=1;//Stroke to bore ratio\n", +"h1=402;//Enthalpy at point 1 from R-22 tables in kJ/kg\n", +"h2=442;//Enthalpy at point 2 from R-22 tables in kJ/kg\n", +"h3=216;//Enthalpy at point 3 from R-22 tables in kJ/kg\n", +"h4=216;//Enthalpy at point 4 from R-22 tables in kJ/kg\n", +"v1=2.258;//Specific volume at point 1 in (m^3)/min\n", +"\n", +"//CALCULATIONS\n", +"Re=h1-h4;//Refrigerating effect in kJ/kg\n", +"mr=(m*14000)/(Re*60);//Mass flow of refrigerant in kg/min\n", +"Pth=(mr*(h2-h1))/60;//Theoretical power in kW\n", +"COP=(h1-h4)/(h2-h1);//Co-efficient of performance\n", +"Dth=v1/n;//Theoretical displacement per cylinder\n", +"D=(((Dth*4)/(3.147*N))^(1/3))*1000;//Theoretical bore of compressor in mm\n", +"L=D;//Theoretical stroke of compressor in mm\n", +"\n", +"//OUTPUT\n", +"mprintf('Refrigerating effect is %3.0f kJ/kg \n Mass flow of refrigerant per minute is %3.2f kg/min \n Theoretical input power is %3.2f kW \n COP is %3.2f \n Theoretical bore of compressor is %3.2f mm \n Theoretical stroke of compressor is %3.2f mm',Re,mr,Pth,COP,D,L)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: COP_when_there_is_no_subcooling_and_when_there_is_subcooling.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-6, Illustration 9, Page 316\n", +"//Title: Refrigeration cycles\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"T2=40;//Temperature at point 2 in oC\n", +"T1=-5;//Temperature at point 1 in oC\n", +"h2=367.155;//Enthalpy at point 2 from F-12 tables in kJ/kg\n", +"sg=1.55717;//Entropy from F-12 tables in kJ/kg-K\n", +"s1=1.54057;//Entropy at point 1 from F-12 tables in kJ/kg-K\n", +"sf=0.98311;//Entropy from F-12 tables in kJ/kg-K\n", +"hf=195.394;//Enthalpy from F-12 tables in kJ/kg\n", +"hfg=153.934;//Enthalpy from F-12 tables in kJ/kg\n", +"h4=238.533;//Enthalpy at point 4 from F-12 tables in kJ/kg\n", +"h4s=218;//Enthalpy at point 4 with subcooling from F-12 tables in kJ/kg\n", +"\n", +"//CALCULATIONS\n", +"x1=(s1-sf)/(sg-sf);//Quality factor\n", +"h1=hf+(x1*hfg);//Enthalpy at point 1 from refrigerant-12 tables in kJ/kg\n", +"COPns=(h1-h4)/(h2-h1);//Co-efficient of performance with no subcooling\n", +"COPs=(h1-h4s)/(h2-h1);//Co-efficient of performance with subcooling\n", +"\n", +"//OUTPUT\n", +"mprintf('COP with no subcooling is %3.3f \n COP with subcooling is %3.3f',COPns,COPs)\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"\n", +"//==============================END OF PROGRAM=================================" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Thermal_Engineering_by_A_V_Arasu/7-Air_Conditioning.ipynb b/Thermal_Engineering_by_A_V_Arasu/7-Air_Conditioning.ipynb new file mode 100644 index 0000000..3f26f0b --- /dev/null +++ b/Thermal_Engineering_by_A_V_Arasu/7-Air_Conditioning.ipynb @@ -0,0 +1,187 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Air Conditioning" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Heating_capacity_of_coil_and_Surface_temperature_and_Capacity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7, Illustration 1, Page 345\n", +"//Title: Air Conditioning\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"DBTo=10;//Out door Dry bulb temperature in oC\n", +"WBTo=8;//Out door Wet bulb temperature in oC\n", +"DBTi=20;//In door Dry bulb temperature in oC\n", +"RH=0.6;//Re-Heat factor\n", +"a=0.3;//amount of air circulated in (m^3)/min/person\n", +"S=50;//Seating capacity of office\n", +"BPF=0.32;//ByPass factor\n", +"ha=25;//Enthalpy at point a from Psychrometric chart shown in Page 346 in kJ/kg\n", +"hb=42.5;//Enthalpy at point b from Psychrometric chart shown in Page 346 in kJ/kg\n", +"hc=42.5;//Enthalpy at point c from Psychrometric chart shown in Page 346 in kJ/kg\n", +"Wa=0.006;//Specific humidity at point a from Psychrometric chart shown in Page 346 in kg/kg dry air\n", +"Wc=0.009;//Specific humidity at point c from Psychrometric chart shown in Page 346 in kg/kg dry air\n", +"Tb=27;//Temperature at point b in oC\n", +"na=0.81;//Specific Volume from Psychrometric chart shown in page 346 in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"ma=(a*S)/(na*60);//mass of air circulated per second in kg/s\n", +"Hc=ma*(hb-ha);//Heating capacity of coil in kW\n", +"Ts=(Tb-(BPF*DBTo))/(1-BPF);//Heating coil surface temperature in oC\n", +"C=(ma*3600)*(Wc-Wa);//Capacity of humidifier in kg/hr\n", +"\n", +"//OUTPUT\n", +"mprintf('Heating capacity of coil is %3.2f kW \n Surface temperature of coil is %3.0f oC \n Capacity of humidifier is %3.2f kg/hr',Hc,Ts,C)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Capacity_of_coils_and_Amount_of_water_vapour_removed_and_by_pass_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7, Illustration 2, Page 346\n", +"//Title: Air Conditioning\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"S=60;//No. of staff\n", +"DBTo=30;//Out door Dry bulb temperature in oC\n", +"RHo=0.7;//Re-Heat factor at out-door\n", +"a=0.4;//amount of air circulated in (m^3)/min/person\n", +"DBTi=20;//In door Dry bulb temperature in oC\n", +"RHi=0.6;//Re-Heat factor at indoor\n", +"Td=25;//Heating coil surface temperature in oC\n", +"ha=82.5;//Enthalpy at point a from Psychrometric chart shown in Page 347 in kJ/kg\n", +"hb=34.5;//Enthalpy at point b from Psychrometric chart shown in Page 347 in kJ/kg\n", +"hc=42.5;//Enthalpy at point c from Psychrometric chart shown in Page 347 in kJ/kg\n", +"Wa=0.020;//Specific humidity at point a from Psychrometric chart shown in Page 347 in kg/kg dry air\n", +"Wb=0.009;//Specific humidity at point b from Psychrometric chart shown in Page 347 in kg/kg dry air\n", +"Tb=12;//Temperature at point b in oC\n", +"na=0.89;//Specific Volume from Psychrometric chart shown in page 346 in (m^3)/kg\n", +"\n", +"//CALCULATIONS\n", +"ma=(a*S)/(na*60);//mass of air circulated per second in kg/s\n", +"Hc=(ma*(ha-hb))/3.5;//Heating capacity of cooling coil in tonnes\n", +"Hh=ma*(hc-hb);//Heating capacity of heating coil in kW\n", +"W=(ma*3600)*(Wa-Wb);//Amount of water vapour removed per hour in kg/hr\n", +"BPF=(Td-DBTi)/(Td-Tb);//By-Pass factor\n", +"\n", +"//OUTPUT\n", +"mprintf('Capacity of cooling coil is %3.2f tonnes \n Capacity of heating coil is %3.1f kW \n Amount of water vapour removed per hour is %3.2f kg/hr \n Bypass factor is %3.3f',Hc,Hh,W,BPF)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: EX7_3.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//Chapter-7, Illustration 3, Page 347\n", +"//Title: Air Conditioning\n", +"//=============================================================================\n", +"clc\n", +"clear\n", +"\n", +"//INPUT DATA\n", +"RSH=10;//Room sensible heat in kW\n", +"RLH=10;//Room latent heat in kW\n", +"td1=25;//Inside temperature in oC\n", +"RH1=0.5;//Inside Re-Heat factor\n", +"h1=50.4;//Enthalpy at point 1 in kJ/kg\n", +"td2=35;//Out door Dry bulb temperature in oC\n", +"tw2=28;//Out door Wet bulb temperature in oC\n", +"CR=4;//Cooling coil ratio\n", +"BPF=0.1;//Cooling coil bypass factor\n", +"tADP=10;//Apparatus dew point temperature in oC\n", +"RH3=0.55;//Re-Heat factor at point 3\n", +"h3=58.2;//Enthalpy at point 3 in kJ/kg\n", +"RH4=0.95;//Re-Heat factor at point 4\n", +"h4=32.2;//Enthalpy at point 4 in kJ/kg\n", +"RH5=0.81;//Re-Heat factor at point 5\n", +"h5=36.8;//Enthalpy at point 5 in kJ/kg\n", +"RH6=0.54;//Re-Heat factor at point 6\n", +"h6=43.1;//Enthalpy at point 5 in kJ/kg\n", +"td6=22;//Temperature at point 6 in oC\n", +"\n", +"//CALCULATIONS\n", +"td3=((td2-td1)/5)+td1;//Temperature at point 3 from Psychrometric chart shown in Page 348 in oC\n", +"td4=(BPF*(td3-tADP))+tADP;//Temperature at point 4 from Psychrometric chart shown in Page 348 in oC\n", +"td5=td4+((td1-td4)/5);//Temperature at point 5 from Psychrometric chart shown in Page 348 in oC\n", +"RSHF=RSH/(RSH+RLH);//Room Sensible Heat Factor\n", +"QR=h1-h6;//Total heat removed in kJ/kg\n", +"S=(RSH+RLH)/QR;//Supply air quantity in kg/s\n", +"R=(S*(h6-h5))/3.5;//Refrigeration load due to reheat in ton\n", +"D=(S*4)/5;//Dehumidified air quantity in kg/s\n", +"T=(D*(h3-h4))/3.5;//Total refrigerating capacity in ton\n", +"Q=(D/5)/1.2;//Quantity of fresh air supplied in (m^3)/s\n", +"\n", +"//OUTPUT\n", +"mprintf('Supply air condition to the room is %3.2f kg/s \n Refrigeration load due to reheat is %3.2f ton \n Total refrigerating capacity is %3.2f ton \n Quantity of fresh air supplied is %3.3f (m^3)/s',S,R,T,Q)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |