summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb')
-rw-r--r--Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb435
1 files changed, 435 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb
new file mode 100644
index 0000000..fc1cdbd
--- /dev/null
+++ b/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb
@@ -0,0 +1,435 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 10: Brakes and Dynamometers"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.10: Maximum_braking_torque.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"n=12;// Number of blocks\n",
+"q=16;//Angle subtended in degrees\n",
+"d=0.9;//Effective diameter in m\n",
+"m=2000;//Mass in kg\n",
+"k=0.5;//Radius of gyration in m\n",
+"b1=0.7;//Distance in m\n",
+"b2=0.03;//Distance in m\n",
+"a=0.1;//Distance in m\n",
+"P=180;//Force in N\n",
+"N=360;//Speed in r.p.m\n",
+"U=0.25;//Coefficient of friction\n",
+"\n",
+"Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tensions ratio\n",
+"T2=(P*b1)/(a-(b2*Tr));//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"TB=(T1-T2)*(d/2);//Torque in N.m\n",
+"aa=(TB/(m*k^2));//Angular acceleration in rad/s^2\n",
+"t=((2*3.14*N)/60)/aa;//Time in seconds\n",
+"\n",
+"printf('(i) Maximum braking torque is %3.4f Nm \n(ii) Angular retardation of the drum is %3.4f rad/s^2 \n(iii) Time taken by the system to come to rest is %3.1f s',TB,aa,t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.1: Torque_transmitted_by_the_block_brake.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=0.32;//Diameter of the drum in m\n",
+"qq=90;//Angle of contact in degree\n",
+"P=820;//Force applied in N\n",
+"U=0.35;//Coefficient of friction\n",
+"\n",
+"\n",
+"U1=((4*U*sind(qq/2))/((qq*(3.14/180))+sind(qq)));//Equivalent coefficient of friction\n",
+"F=((P*0.66)/((0.3/U1)-0.06));//Force value in N taking moments\n",
+"TB=(F*(d/2));//Torque transmitted in N.m\n",
+"\n",
+"printf('Torque transmitted by the block brake is %3.4f N.m',TB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.2: DISTANCE_TRAVELLED_BY_CYCLE.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"m=120;//Mass of rider in kg\n",
+"v=16.2;//Speed of rider in km/hr\n",
+"d=0.9;//Diameter of the wheel in m\n",
+"P=120;//Pressure applied on the brake in N\n",
+"U=0.06;//Coefficient of friction\n",
+"\n",
+"F=(U*P);//Frictional force in N\n",
+"KE=((m*(v*(5/18))^2)/2);//Kinematic Energy in N.m\n",
+"S=(KE/F);//Distance travelled by the bicycle before it comes to rest in m\n",
+"N=(S/(d*3.14));//Required number of revolutions\n",
+"\n",
+"printf('The bicycle travels a distance of %3.2f m and makes %3.2f turns before it comes to rest',S,N)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.3: Maximum_torque_absorbed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"S=3500;//Force on each arm in N\n",
+"d=0.36;//Diamter of the wheel in m\n",
+"U=0.4;//Coefficient of friction \n",
+"qq=100;//Contact angle in degree\n",
+"\n",
+"qqr=(qq*(3.14/180));//Contact angle in radians\n",
+"UU=((4*U*sind(qq/2))/(qqr+(sind(qq))));//Equivalent coefficient of friction\n",
+"F1=(S*0.45)/((0.2/UU)+((d/2)-0.04));//Force on fulcrum in N\n",
+"F2=(S*0.45)/((0.2/UU)-((d/2)-0.04));//Force on fulcrum in N\n",
+"TB=(F1+F2)*(d/2);//Maximum torque absorbed in N.m\n",
+"\n",
+"printf('Maximum torque absorbed is %3.2f N.m',TB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.4: The_maximum_braking_torque_on_the_drum.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"a=0.5;//Length of lever in m\n",
+"d=0.5;//Diameter of brake drum in m\n",
+"q=(5/8)*(2*3.14);//Angle made in radians\n",
+"b=0.1;//Distance between pin and fulcrum in m\n",
+"P=2000;//Effort applied in N\n",
+"U=0.25;//Coefficient of friction\n",
+"\n",
+"T=exp(U*q);//Ratios of tension\n",
+"T2=((P*a)/b);//Tension in N\n",
+"T1=(T*T2);//Tension in N\n",
+"TB=((T1-T2)*(d/2))/1000;//Maximum braking torque in kNm\n",
+"\n",
+"printf('The maximum braking torque on the drum is %3.3f kNm',TB)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.5: Tensions_in_the_side.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"q=220;//Angle of contact in degree\n",
+"T=340;//Torque in Nm\n",
+"d=0.32;//Diameter of drum in m\n",
+"U=0.3;//Coefficient of friction\n",
+"\n",
+"Td=(T/(d/2));//Difference in tensions in N\n",
+"Tr=exp(U*(q*(3.14/180)));//Ratio of tensions\n",
+"T2=(Td/(Tr-1));//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"P=((T2*(d/2))-(T1*0.04))/0.5;//Force applied in N\n",
+"b=(T1/T2)*4;//Value of b in cm when the brake is self-locking\n",
+"\n",
+"printf('The value of b is %3.2f cm when the brake is self-locking \n Tensions in the sides are %3.3f N and %3.3f N',b,T1,T2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.6: Torque_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"d=0.5;//Drum diamter in m\n",
+"U=0.3;//Coefficient of friction\n",
+"q=250;//Angle of contact in degree\n",
+"P=750;//Force in N\n",
+"a=0.1;//Band width in m\n",
+"b=0.8;//Distance in m\n",
+"ft=(70*10^6);//Tensile stress in Pa\n",
+"f=(60*10^6);//Stress in Pa\n",
+"b1=0.1;//Distance in m\n",
+"\n",
+"T=exp(U*(q*(3.14/180)));//Tensions ratio\n",
+"T2=(P*b*10)/(T+1);//Tension in N\n",
+"T1=(T*T2);//Tension in N\n",
+"TB=(T1-T2)*(d/2);//Torque in N.m\n",
+"t=(max(T1,T2)/(ft*a))*1000;//Thickness in mm\n",
+"M=(P*b);//bending moment at fulcrum in Nm\n",
+"X=(M/((1/6)*f));//Value of th^2\n",
+"//t varies from 10mm to 15 mm. Taking t=15mm,\n",
+"h=sqrt(X/(0.015))*1000;//Section of the lever in m\n",
+"\n",
+"printf('Torque required is %3.2f N.m \nThickness necessary to limit the tensile stress to 70 MPa is %3.3f mm \n Section of the lever taking stress to 60 MPa is %3.1f mm',TB,t,h)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.7: Power_TO_BD_ratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"P1=30;//Power in kW\n",
+"N=1250;//Speed in r.p.m\n",
+"P=60;//Applied force in N\n",
+"d=0.8;//Drum diameter in m\n",
+"q=310;//Contact angle in degree\n",
+"a=0.03;//Length of a in m\n",
+"b=0.12;//Length of b in m\n",
+"U=0.2;//Coefficient of friction\n",
+"B=10;//Band width in cm\n",
+"D=80;//Diameter in cm\n",
+"\n",
+"T=(P1*60000)/(2*3.14*N);//Torque in N.m\n",
+"Td=(T/(d/2));//Tension difference in N\n",
+"Tr=exp(U*(q*(3.14/180)));//Tensions ratio\n",
+"T2=(Td/(Tr-1));//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"x=((T2*b)-(T1*a))/P;//Distance in m;\n",
+"X=(P1/(B*D));//Ratio\n",
+"\n",
+"printf('Value of x is %3.4f m \n Value of (Power/bD) ratio is %3.4f',x,X)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.8: Time_required_to_bring_the_shaft_to_the_rest_from_its_running_condition.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"m=80;//Mass of flywheel in kg\n",
+"k=0.5;//Radius of gyration in m\n",
+"N=250;//Speed in r.p.m\n",
+"d=0.32;//Diamter of the drum in m\n",
+"b=0.05;//Distance of pin in m\n",
+"q=260;//Angle of contact in degree\n",
+"U=0.23;//Coefficient of friction\n",
+"P=20;//Force in N\n",
+"a=0.35;//Distance at which force is applied in m\n",
+"\n",
+"Tr=exp(U*q*(3.14/180));//Tensions ratio\n",
+"T2=(P*a)/b;//Tension in N\n",
+"T1=(Tr*T2);//Tension in N\n",
+"TB=(T1-T2)*(d/2);//Torque in N.m\n",
+"KE=((1/2)*(m*k^2)*((2*3.14*N)/60)^2);//Kinematic energy of the rotating drum in Nm\n",
+"N1=(KE/(TB*2*3.14));//Speed in rpm\n",
+"aa=((2*3.14*N)/60)^2/(4*3.14*N1);//Angular acceleration in rad/s^2\n",
+"t=((2*3.14*N)/60)/aa;//Time in seconds\n",
+"\n",
+"printf('Time required to bring the shaft to the rest from its running condition is %3.1f seconds',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 10.9: Minimum_force_required.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"//CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n",
+"//TITLE:Brakes and Dynamometers\n",
+"clc\n",
+"clear\n",
+"//===========================================================================================\n",
+"//INPUT DATA\n",
+"n=12;//Number of blocks\n",
+"q=15;//Angle subtended in degree\n",
+"P=185;//Power in kW\n",
+"N=300;//Speed in r.p.m\n",
+"U=0.25;//Coefficient of friction\n",
+"d=1.25;//Diamter in m\n",
+"b1=0.04;//Distance in m\n",
+"b2=0.14;//Distance in m\n",
+"a=1;//Diatance in m\n",
+"m=2400;//Mass of rotor in kg\n",
+"k=0.5;//Radius of gyration in m\n",
+"\n",
+"Td=(P*60000)/(2*3.14*N*(d/2));//Tension difference in N\n",
+"T=Td*(d/2);//Torque in Nm\n",
+"Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tension ratio\n",
+"To=(Td/(Tr-1));//Tension in N\n",
+"Tn=(Tr*To);//Tension in N\n",
+"P=((To*b2)-(Tn*b1))/a;//Force in N\n",
+"aa=(T/(m*k^2));//Angular acceleration in rad/s^2\n",
+"t=((2*3.14*N)/60)/aa;//Time in seconds\n",
+"\n",
+"printf('Minimum force required is %3.0f N \nTime taken to bring to rest is %3.1f seconds',P,t)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}