diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb')
-rw-r--r-- | Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb | 435 |
1 files changed, 435 insertions, 0 deletions
diff --git a/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb b/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb new file mode 100644 index 0000000..fc1cdbd --- /dev/null +++ b/Theory_Of_Machines_by_B_K_Sarkar/10-Brakes_and_Dynamometers.ipynb @@ -0,0 +1,435 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Brakes and Dynamometers" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.10: Maximum_braking_torque.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 10 PAGE NO 275\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"n=12;// Number of blocks\n", +"q=16;//Angle subtended in degrees\n", +"d=0.9;//Effective diameter in m\n", +"m=2000;//Mass in kg\n", +"k=0.5;//Radius of gyration in m\n", +"b1=0.7;//Distance in m\n", +"b2=0.03;//Distance in m\n", +"a=0.1;//Distance in m\n", +"P=180;//Force in N\n", +"N=360;//Speed in r.p.m\n", +"U=0.25;//Coefficient of friction\n", +"\n", +"Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tensions ratio\n", +"T2=(P*b1)/(a-(b2*Tr));//Tension in N\n", +"T1=(Tr*T2);//Tension in N\n", +"TB=(T1-T2)*(d/2);//Torque in N.m\n", +"aa=(TB/(m*k^2));//Angular acceleration in rad/s^2\n", +"t=((2*3.14*N)/60)/aa;//Time in seconds\n", +"\n", +"printf('(i) Maximum braking torque is %3.4f Nm \n(ii) Angular retardation of the drum is %3.4f rad/s^2 \n(iii) Time taken by the system to come to rest is %3.1f s',TB,aa,t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Torque_transmitted_by_the_block_brake.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 1 PAGE NO 268\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d=0.32;//Diameter of the drum in m\n", +"qq=90;//Angle of contact in degree\n", +"P=820;//Force applied in N\n", +"U=0.35;//Coefficient of friction\n", +"\n", +"\n", +"U1=((4*U*sind(qq/2))/((qq*(3.14/180))+sind(qq)));//Equivalent coefficient of friction\n", +"F=((P*0.66)/((0.3/U1)-0.06));//Force value in N taking moments\n", +"TB=(F*(d/2));//Torque transmitted in N.m\n", +"\n", +"printf('Torque transmitted by the block brake is %3.4f N.m',TB)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: DISTANCE_TRAVELLED_BY_CYCLE.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 2 PAGE NO 269\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"m=120;//Mass of rider in kg\n", +"v=16.2;//Speed of rider in km/hr\n", +"d=0.9;//Diameter of the wheel in m\n", +"P=120;//Pressure applied on the brake in N\n", +"U=0.06;//Coefficient of friction\n", +"\n", +"F=(U*P);//Frictional force in N\n", +"KE=((m*(v*(5/18))^2)/2);//Kinematic Energy in N.m\n", +"S=(KE/F);//Distance travelled by the bicycle before it comes to rest in m\n", +"N=(S/(d*3.14));//Required number of revolutions\n", +"\n", +"printf('The bicycle travels a distance of %3.2f m and makes %3.2f turns before it comes to rest',S,N)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Maximum_torque_absorbed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 3 PAGE NO 270\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"S=3500;//Force on each arm in N\n", +"d=0.36;//Diamter of the wheel in m\n", +"U=0.4;//Coefficient of friction \n", +"qq=100;//Contact angle in degree\n", +"\n", +"qqr=(qq*(3.14/180));//Contact angle in radians\n", +"UU=((4*U*sind(qq/2))/(qqr+(sind(qq))));//Equivalent coefficient of friction\n", +"F1=(S*0.45)/((0.2/UU)+((d/2)-0.04));//Force on fulcrum in N\n", +"F2=(S*0.45)/((0.2/UU)-((d/2)-0.04));//Force on fulcrum in N\n", +"TB=(F1+F2)*(d/2);//Maximum torque absorbed in N.m\n", +"\n", +"printf('Maximum torque absorbed is %3.2f N.m',TB)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: The_maximum_braking_torque_on_the_drum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 4 PAGE NO 271\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"a=0.5;//Length of lever in m\n", +"d=0.5;//Diameter of brake drum in m\n", +"q=(5/8)*(2*3.14);//Angle made in radians\n", +"b=0.1;//Distance between pin and fulcrum in m\n", +"P=2000;//Effort applied in N\n", +"U=0.25;//Coefficient of friction\n", +"\n", +"T=exp(U*q);//Ratios of tension\n", +"T2=((P*a)/b);//Tension in N\n", +"T1=(T*T2);//Tension in N\n", +"TB=((T1-T2)*(d/2))/1000;//Maximum braking torque in kNm\n", +"\n", +"printf('The maximum braking torque on the drum is %3.3f kNm',TB)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Tensions_in_the_side.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 5 PAGE NO 271\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"q=220;//Angle of contact in degree\n", +"T=340;//Torque in Nm\n", +"d=0.32;//Diameter of drum in m\n", +"U=0.3;//Coefficient of friction\n", +"\n", +"Td=(T/(d/2));//Difference in tensions in N\n", +"Tr=exp(U*(q*(3.14/180)));//Ratio of tensions\n", +"T2=(Td/(Tr-1));//Tension in N\n", +"T1=(Tr*T2);//Tension in N\n", +"P=((T2*(d/2))-(T1*0.04))/0.5;//Force applied in N\n", +"b=(T1/T2)*4;//Value of b in cm when the brake is self-locking\n", +"\n", +"printf('The value of b is %3.2f cm when the brake is self-locking \n Tensions in the sides are %3.3f N and %3.3f N',b,T1,T2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.6: Torque_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 6 PAGE NO 272\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"d=0.5;//Drum diamter in m\n", +"U=0.3;//Coefficient of friction\n", +"q=250;//Angle of contact in degree\n", +"P=750;//Force in N\n", +"a=0.1;//Band width in m\n", +"b=0.8;//Distance in m\n", +"ft=(70*10^6);//Tensile stress in Pa\n", +"f=(60*10^6);//Stress in Pa\n", +"b1=0.1;//Distance in m\n", +"\n", +"T=exp(U*(q*(3.14/180)));//Tensions ratio\n", +"T2=(P*b*10)/(T+1);//Tension in N\n", +"T1=(T*T2);//Tension in N\n", +"TB=(T1-T2)*(d/2);//Torque in N.m\n", +"t=(max(T1,T2)/(ft*a))*1000;//Thickness in mm\n", +"M=(P*b);//bending moment at fulcrum in Nm\n", +"X=(M/((1/6)*f));//Value of th^2\n", +"//t varies from 10mm to 15 mm. Taking t=15mm,\n", +"h=sqrt(X/(0.015))*1000;//Section of the lever in m\n", +"\n", +"printf('Torque required is %3.2f N.m \nThickness necessary to limit the tensile stress to 70 MPa is %3.3f mm \n Section of the lever taking stress to 60 MPa is %3.1f mm',TB,t,h)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.7: Power_TO_BD_ratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 7 PAGE NO 273\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"P1=30;//Power in kW\n", +"N=1250;//Speed in r.p.m\n", +"P=60;//Applied force in N\n", +"d=0.8;//Drum diameter in m\n", +"q=310;//Contact angle in degree\n", +"a=0.03;//Length of a in m\n", +"b=0.12;//Length of b in m\n", +"U=0.2;//Coefficient of friction\n", +"B=10;//Band width in cm\n", +"D=80;//Diameter in cm\n", +"\n", +"T=(P1*60000)/(2*3.14*N);//Torque in N.m\n", +"Td=(T/(d/2));//Tension difference in N\n", +"Tr=exp(U*(q*(3.14/180)));//Tensions ratio\n", +"T2=(Td/(Tr-1));//Tension in N\n", +"T1=(Tr*T2);//Tension in N\n", +"x=((T2*b)-(T1*a))/P;//Distance in m;\n", +"X=(P1/(B*D));//Ratio\n", +"\n", +"printf('Value of x is %3.4f m \n Value of (Power/bD) ratio is %3.4f',x,X)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.8: Time_required_to_bring_the_shaft_to_the_rest_from_its_running_condition.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 8 PAGE NO 274\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"m=80;//Mass of flywheel in kg\n", +"k=0.5;//Radius of gyration in m\n", +"N=250;//Speed in r.p.m\n", +"d=0.32;//Diamter of the drum in m\n", +"b=0.05;//Distance of pin in m\n", +"q=260;//Angle of contact in degree\n", +"U=0.23;//Coefficient of friction\n", +"P=20;//Force in N\n", +"a=0.35;//Distance at which force is applied in m\n", +"\n", +"Tr=exp(U*q*(3.14/180));//Tensions ratio\n", +"T2=(P*a)/b;//Tension in N\n", +"T1=(Tr*T2);//Tension in N\n", +"TB=(T1-T2)*(d/2);//Torque in N.m\n", +"KE=((1/2)*(m*k^2)*((2*3.14*N)/60)^2);//Kinematic energy of the rotating drum in Nm\n", +"N1=(KE/(TB*2*3.14));//Speed in rpm\n", +"aa=((2*3.14*N)/60)^2/(4*3.14*N1);//Angular acceleration in rad/s^2\n", +"t=((2*3.14*N)/60)/aa;//Time in seconds\n", +"\n", +"printf('Time required to bring the shaft to the rest from its running condition is %3.1f seconds',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.9: Minimum_force_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"//CHAPTER 10 ILLUSRTATION 9 PAGE NO 275\n", +"//TITLE:Brakes and Dynamometers\n", +"clc\n", +"clear\n", +"//===========================================================================================\n", +"//INPUT DATA\n", +"n=12;//Number of blocks\n", +"q=15;//Angle subtended in degree\n", +"P=185;//Power in kW\n", +"N=300;//Speed in r.p.m\n", +"U=0.25;//Coefficient of friction\n", +"d=1.25;//Diamter in m\n", +"b1=0.04;//Distance in m\n", +"b2=0.14;//Distance in m\n", +"a=1;//Diatance in m\n", +"m=2400;//Mass of rotor in kg\n", +"k=0.5;//Radius of gyration in m\n", +"\n", +"Td=(P*60000)/(2*3.14*N*(d/2));//Tension difference in N\n", +"T=Td*(d/2);//Torque in Nm\n", +"Tr=((1+(U*tand(q/2)))/(1-(U*tand(q/2))))^n;//Tension ratio\n", +"To=(Td/(Tr-1));//Tension in N\n", +"Tn=(Tr*To);//Tension in N\n", +"P=((To*b2)-(Tn*b1))/a;//Force in N\n", +"aa=(T/(m*k^2));//Angular acceleration in rad/s^2\n", +"t=((2*3.14*N)/60)/aa;//Time in seconds\n", +"\n", +"printf('Minimum force required is %3.0f N \nTime taken to bring to rest is %3.1f seconds',P,t)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |