diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_of_Physics_by_P_V_Naik | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Principles_of_Physics_by_P_V_Naik')
15 files changed, 3410 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb b/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb new file mode 100644 index 0000000..a0d32c2 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb @@ -0,0 +1,438 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Motion" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Orbital_speed_and_centripetal_acceleration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d=180//Distance of satellite above the surface of earth in km\n", +"t=90//Time taken to complete one revolution of the earth in minutes\n", +"r=6400//Radius of the earth in kms\n", +"\n", +"//Calculations\n", +"R=(r+d)*1000//Total distance in m\n", +"T=t*60//Time in seconds\n", +"v=(2*3.14*R)/T//Orbital speed in m/s\n", +"a=(v^2/R)//Centripetal acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Orbital speed is %i m/s \n Centripetal acceleration is %3.1f m/s^2',v,a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.05//Mass of the stone in kg\n", +"r=0.4//Radius of the string in m\n", +"\n", +"//Calculations\n", +"vh=sqrt(9.8*r)//Minimum speed when the stone is at the top of the circle in m/s\n", +"vl=sqrt((2/m)*(((1/2)*m*vh^2)+(m*9.8*2*r)))//Minimum speed when the stone is at the bottom of the circle in m/s\n", +"\n", +"//Output\n", +"printf('Minimum speed when the stone is at the top of the circle is %3.2f m/s \n Minimum speed when the stone is at the bottom of the circle is %3.2f m/s',vh,vl)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Tension_and_acceleration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.2//Mass of the ball in kg\n", +"r=1.5//Radius of vertical circle in m\n", +"q=35//Angle made by the ball in degrees\n", +"v=6//Velocity of the ball in m/s\n", +"\n", +"//Calculations\n", +"T=(m*((v^2/r)+(9.8*cosd(q))))//Tension in the string in N\n", +"at=9.8*sind(q)//Tangential acceleration in m/s^2\n", +"ar=(v^2/r)//Radial acceleration in m/s^2\n", +"a=sqrt(at^2+ar^2)//Acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Tension in the string is %3.1f N \n Tangential acceleration is %3.2f m/s^2 \n Radial acceleration is %i m/s^2',T,at,ar)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"//A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop\n", +"\n", +"//Calculations\n", +"ar=(6*9.8)//Radial acceleration in m/s^2\n", +"at=(9.8*sind(90))//Tangential acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Radial acceleration is %3.1f m/s^2 \n Tangential acceleration is %3.1f m/s^2',ar,at)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Period_of_rotatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"l=0.95//Length of the strring in m\n", +"m=0.15//Mass of the bob in kg\n", +"r=0.25//Radius of the circle in m\n", +"\n", +"//Calculations\n", +"h=sqrt(l^2-r^2)//Height of the pendulum in m\n", +"t=2*3.14*sqrt(h/9.8)//Period of rotation in s\n", +"\n", +"//Output\n", +"printf('The period of rotation is %3.4f s',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Coefficient_of_limiting_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"N=40//Minimum speed of rotor in rpm\n", +"r=2.5//Radius of rotor in m\n", +"\n", +"//Calculations\n", +"t=60/N//Time period in s\n", +"u=(9.8*t^2)/(4*3.14^2*r)//Coefficient of limiting friction\n", +"\n", +"//Output\n", +"printf('The coefficient of limiting friction between the object and the wall of the rotor is %3.4f',u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"a=30//Angle of inclination in degrees\n", +"t=3//Time in s\n", +"\n", +"//Calculations\n", +"a=(9.8*sind(a))//Acceleration in m/s^2\n", +"v=(0+a*t)//Velocity in m/s\n", +"\n", +"//Output\n", +"printf('Speed of the block after %i s is %3.1f m/s',t,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Coefficient_of_static_and_kinetic_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=10//Mass of the block in kg\n", +"F1=40//Horizontal force to start moving in N\n", +"F2=32//Horizontal force to move with constant velocity in N\n", +"\n", +"//Calculations\n", +"u1=(F1/(m*9.8))//Coefficient of static friction\n", +"u2=(F2/(m*9.8))//Coefficient of kinetic friction\n", +"\n", +"//Output\n", +"printf('Coefficient of static friction is %3.3f \n Coefficient of kinetic friction is %3.3f',u1,u2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Tension_and_coefficient_of_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=[3,12]//Masses of the blocks in kg\n", +"q=50//Angle made by the string in degrees\n", +"a=3//Acceleration of 12kg block in m/s^2\n", +"\n", +"//Calculations\n", +"T=m(1)*(9.8+a)//Tension in the string in N\n", +"u=(m(2)*(9.8*sind(q)-a)-T)/(m(2)*9.8*cosd(q))//Coefficient of kinetic friction\n", +"\n", +"//Output\n", +"printf('Tension in the string is %3.1f N \n The coefficient of kinetic friction between %i kg block and the plane is %3.3f',T,m(2),u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_1: Tensions_in_the_cables.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=50//Weight in N\n", +"a=[40,50]//Angles made by two cables in degrees\n", +"\n", +"//Calculations\n", +"//Solving two equations obtained from fig. 1.10 on page no.10\n", +"//-T1cos40+T2cos50=0\n", +"//T1sin40+T2sin50=50\n", +"A=[-cosd(a(1)) cosd(a(2))\n", +" sind(a(1)) sind(a(2))]//Coefficient matrix\n", +"B=[0\n", +" w]//Constant matrix\n", +"X=inv(A)*B//Variable matrix\n", +"\n", +"//Output\n", +"printf('Tensions in all three cables are %3.2f N, %3.2f N, %i N',X(1),X(2),w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_5: Acceleration_of_the_block.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"m=100//Mass of block in kg\n", +"F=500//Force in N\n", +"q=30//Angle made with the horizontal in degrees\n", +"u=0.4//Coefficient of sliding friction\n", +"\n", +"//Calculations\n", +"R=m*9.8//Reaction force in N\n", +"f=(u*R)//Frictional force in N\n", +"a=(F*cosd(q)-f)/m//Acceleration of the block in m/s^2\n", +"\n", +"//Output\n", +"printf('The acceleration of the block is %3.2f m/s^2',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_6: Acceleration_and_Tension.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=[20,80]//Masses of blocks in kg\n", +"F=1000//Force with which 20kg block is pulled in N\n", +"\n", +"//Calculations\n", +"a=(F/(m(1)+m(2)))//Acceleration of the block in m/s^2\n", +"T=F-(m(1)*a)//Tension in the string in N\n", +"\n", +"//Output\n", +"printf('The acceleration produced is %i m/s^2 \n The tension in the string connecting the blocks is %i N',a,T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_8: Weight_of_the_perso.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=588//Weight of the person in N\n", +"a=3//Acceleration in m/s^2\n", +"\n", +"//Calculations\n", +"m=(w/9.8)//Mass of the person in kg\n", +"P=(w+(m*a))//Weight of the person when the elevator is accelerated upwards in N\n", +"\n", +"//Output\n", +"printf('Weight of the person when the elevator is accelerated upwards is %i N',P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/10-Diffraction.ipynb b/Principles_of_Physics_by_P_V_Naik/10-Diffraction.ipynb new file mode 100644 index 0000000..a277a01 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/10-Diffraction.ipynb @@ -0,0 +1,179 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 10: Diffraction" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.1: Width_of_central_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"D=1//Distance of screen from the slit in m\n", +"w=6000//Wavelength in Angstrom\n", +"w1=0.6//Slit width in mm\n", +"\n", +"//Calculations\n", +"x=((2*D*w*10^-10)/(w1*10^-3))*1000//Width of central band in mm\n", +"\n", +"//Output\n", +"printf('Width of central band is %i mm',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.2: Wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d1=6000//Diffraction grating have number of lines per cm\n", +"q=50//Diffracted second order spectral line observed in degrees\n", +"n=2//Second order\n", +"\n", +"//Calculations\n", +"w=(sind(q)/(d1*n))*10^8//Wavelength of radiation in Angstrom\n", +"\n", +"//Output\n", +"printf('Wavelength of radiation is %3.1f Angstrom',w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.3: Maximum_order_of_diffractio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d1=6000//Diffraction grating have number of lines per cm\n", +"w=6000//Wavelength in Angstrom\n", +"\n", +"//Calculations\n", +"n=(1/(d1*w*10^-8))//Maxmum order of diffraction\n", +"\n", +"//Output\n", +"printf('Maximum order of diffraction that can be observed is %i',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.4: Ratio_of_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"B=(3*3.14)/2//First secondary maxima at B\n", +"\n", +"//Calculations\n", +"I=(sin(B)/B)^2//Ratio of intensity of central maxima to first secondary maxima\n", +"\n", +"//Output\n", +"printf('Ratio of intensity of central maxima to first secondary maxima is %3.3f',I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 10.5: Distance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=6400//Wave length of light in Angstrom\n", +"w1=0.3//Slit width in mm\n", +"d=110//Distance of screen from the slit in cm\n", +"n=3//order\n", +"\n", +"//Calculations\n", +"x=((n*w*10^-10*(d/100))/(w1*10^-3))*1000//Distance between the centre of the central maximum and the third dark fringe in mm\n", +"\n", +"//Output\n", +"printf('Distance between the centre of the central maximum and the third dark fringe is %3.2f mm',x)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/11-Polarization.ipynb b/Principles_of_Physics_by_P_V_Naik/11-Polarization.ipynb new file mode 100644 index 0000000..031555d --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/11-Polarization.ipynb @@ -0,0 +1,90 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11: Polarization" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.1: Polarizing_angles.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r1=1.538//Refractive index of the crown glass for violet\n", +"r2=1.52//Refractive index of the crown glass for red\n", +"\n", +"//Calculations\n", +"ip1=atand(r1)//Polarizing angle in degrees\n", +"ip2=atand(r2)//Polarizing angle in degrees\n", +"\n", +"//Output\n", +"printf('Polarizing angles for violet and red are %3.2f degrees and %3.2f degrees',ip1,ip2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 11.2: Angle.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"I=0.09//Ratio of observed intensity to the initial intensity\n", +"\n", +"//Calculations\n", +"q=acosd(sqrt(I))//Angle between the plane of transmission of the analyser and that of the polarizer in degrees\n", +"\n", +"//Output\n", +"printf('Angle between the plane of transmission of the analyser and that of the polarizer is %3.2f degrees',q)\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/12-Direct_Current_Circuits.ipynb b/Principles_of_Physics_by_P_V_Naik/12-Direct_Current_Circuits.ipynb new file mode 100644 index 0000000..1627fac --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/12-Direct_Current_Circuits.ipynb @@ -0,0 +1,438 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Direct Current Circuits" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: Current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[6,6,12]//Resistances from circuit diagram 12.34 on page no.192 in ohms\n", +"V=[5,2]//Voltage in V from circuit diagram 12.20 on page no.192\n", +"\n", +"//Calculations\n", +"Re=((R(2)*R(3))/(R(2)+R(3)))+R(1)//Equivalent resistance in ohms for 5V supply\n", +"I=V(1)/Re//Equivalent current in A for 5V supply\n", +"Ve=((R(2)*R(3))/(R(2)+R(3)))*I//Voltage across 5V supply in V\n", +"I1=(Ve/R(3))//Current in A\n", +"Re2=(1/((1/(R(1)))+(1/(R(2)))))+R(3)//Equivalent resistance in ohms for 2V supply\n", +"I2=V(2)/Re2//Equivalent current in A for 2V supply\n", +"Ix=I1-I2//Current through 12 ohm resistance in A\n", +"Iy=1/Ix//For displaying output in fraction\n", +"\n", +"//Output\n", +"printf('The current through %i ohm resistor is 1/%i A',R(3),Iy)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: Equivalent_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[3,5,6,7]//Resistances from circuit diagram 12.36(a) on page no. 193 in ohms\n", +"V=12//Voltage in V from circuit diagram 12.36(a) on page no. 193\n", +"\n", +"//Calculations\n", +"Vth=(V*R(3))/(R(3)+R(4)+R(2))//Equivalent voltage in V\n", +"Rth=R(1)+(((R(2)+R(4))*R(3))/(R(2)+R(4)+R(3)))//Equivalent resistance in ohms\n", +"\n", +"//Output\n", +"printf('Thevenin equivalent resistance is %i ohms \n Thevenin equivalent voltage is %i V',Rth,Vth)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: Norton_equivalent.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Inut data\n", +"R=[2,3,4]//Resistances from circuit diagram 12.37(a) on page no.194 in ohms\n", +"V=5//Voltage in V from circuit diagram 12.37(a) on page no.194\n", +"\n", +"//Calculations\n", +"RN=((R(1)+R(2))*R(3))/(R(1)+R(2)+R(3))//Equivalent resistance in ohms\n", +"IN=V/(R(1)+R(2))//Equivalent current in A\n", +"\n", +"//Output\n", +"printf('Nortons equivalent resistance is %3.2f ohms \n Nortons equivalent current is %i A',RN,IN)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: Parameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"C=10*10^-6//Capicitance in F\n", +"R=10*10^3//Resistance in ohms\n", +"e=6//Emf of the battery in V\n", +"\n", +"//Calculations\n", +"t=C*R//Time constant in s\n", +"Qm=(C*e)/10^-6//Maximum charge in micro C\n", +"Im=(e/R)*1000//Maximum current in mA\n", +"\n", +"//Output\n", +"printf('Time constant of the circuit is %3.1f s \n Maximum charge on the capacitor is %i micro C \n Maximum current in the circuit is %3.1f mA \n Charge at time t is Q(t) = %i(1-exp(-t/%3.1f)) micro C \n Currrent at time t is I(t) = %3.1f exp(-t/%3.1f) mA',t,Qm,Im,Qm,t,Im,t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: Time_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"L=50//Inductance in mH\n", +"R=5//Resistance in ohms\n", +"V=6//Volatage of the battery in V\n", +"t=5//Time in ms\n", +"\n", +"//Calculations\n", +"t1=(L/R)//Time constant in ms\n", +"I=(V/R)*(1-exp(-t/t1))//Current in A\n", +"\n", +"//Output\n", +"printf('The time constant of the circuit is %i ms \n The current in the circuit is %3.2f A',t1,I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: Parameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"L=6//Inductance in mH\n", +"C=12//Capacitance in pF\n", +"V=6//Voltage of the battery in V\n", +"\n", +"//Calculations\n", +"f=(1/(2*3.14*sqrt(L*10^-3*C*10^-12)))/10^5//Frequency of oscillation in Hz*10^5\n", +"Qm=(C*10^-12*V)/10^-12//Maximum charge in C *10^-12\n", +"Im=(2*3.14*f*10^5*Qm*10^-12)/10^-6//Maximum current in micro A\n", +"\n", +"//Output\n", +"printf('Frequency of oscillation is %3.2f *10^5 Hz \n The maximum value of charge on capacitor is %i *10^-12 C \n The current in the circuit is %i micro A',f,Qm,Im)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_1: Current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"V=10//voltage in V from fig.12.7 on page no.175\n", +"R=10//Resistance in ohms from fig.12.7 on page no.175\n", +"\n", +"//Calculations\n", +"I=(V/R)//Current in A\n", +"\n", +"//Output\n", +"printf('Current in the circuit shown in fig.12.7 is %i A',I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_2: Current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[6,6,3]//Resistances in the circuit from circuit diagram 12.9 on page no. 175 in ohms\n", +"V=[24,16]//Voltages in the circuit from circuit diagram 12.9 on page no. 175 in V\n", +"\n", +"//Calculations\n", +"Re1=1/((1/R(2))+(1/R(3)))//Equivalent resistance for parallel combination in ohms\n", +"Re=R(1)+Re1//Equivalent resistance of the ciriuit in ohms\n", +"I1=(V(1)/Re)//Current across the resistors in A\n", +"pd=(I1*Re1)//Potential difference across A and B from circuit diagram 12.9 on page no. 175 in V\n", +"I2=(pd/R(3))//Current across 3 ohms resistance in A\n", +"I3=(V(2)/(R(1)+R(2)))//Current in A\n", +"I=I2+I3//Total current\n", +"\n", +"//Output\n", +"printf('The current shown in the circiut is %3.1f A',I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_3: Thevenins_equivalent_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[4,12,2,12]//Resistances from circuit diagram 12.12 on page no. 177 in ohms\n", +"V=12//Voltage in V from circuit diagram 12.12 on page no. 177\n", +"\n", +"//Calculations\n", +"Rth=((R(1)+R(3))*R(2))/(R(1)+R(3)+R(2))//Equivalent resistance in ohms\n", +"Vth=(V*R(2))/(R(1)+R(3)+R(2))//Equivalent voltage in V\n", +"I=(Vth/(Rth+R(4)))//Current in A\n", +"\n", +"//Output\n", +"printf('The current through the resistor is %3.1f A',I)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_4: Thevenins_equivalent_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[2,3,6]//Resistances from circuit diagram 12.15 on page no. 178 in ohms\n", +"I=2//Current in A from circuit diagram 12.15 on page no. 178\n", +"\n", +"//Calculations\n", +"Rth=(R(2)+R(3))//Equivalent resistance in ohms\n", +"Vth=(R(3)*I)//Equivalent voltage in V\n", +"\n", +"//Output\n", +"printf('Thevenin equivalent resistance is %i ohms \n Thevenin equivalent voltage is %i V',Rth,Vth)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_5: Thevenins_equivalent_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[12,8,3,6]//Resistances from circuit diagram 12.17 on page no.179 in ohms\n", +"V=12//Voltage in V from circuit diagram 12.17 on page no.179\n", +"\n", +"//Calculations\n", +"Rth=((R(3)*R(1))/(R(3)+R(1)))+((R(2)*R(4))/(R(2)+R(4)))//Equivalent resistance in ohms\n", +"Vth=2.74//Thevenin voltage taken from the circuit diagram 12.19(a) on page no.179 in V\n", +"\n", +"//Output\n", +"printf('Thevenin equivalent resistance is %3.2f ohms \n Thevenin equivalent voltage is %3.2f V',Rth,Vth)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_6: Nortons_equivalent_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=[4,12,2,12]//Resistances from circuit diagram 12.20 on page no.180 in ohms\n", +"V=12//Voltage in V from circuit diagram 12.20 on page no.180\n", +"\n", +"//Calculations\n", +"RN=((R(1)+R(3))*R(2))/(R(1)+R(3)+R(2))//Equivalent resistance in ohms\n", +"IN=(V/(RN+R(3)))//Equivalent current in A\n", +"\n", +"//Output\n", +"printf('Nortons equivalent resistance is %i ohms \n Nortons equivalent current is %i A',RN,IN)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.e_7: Nortons_equivalent_circuit.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Inut data\n", +"R=[4,5,6]//Resistances from circuit diagram 12.22 on page no.181 in ohms\n", +"I=2//Current in A from circuit diagram 12.22 on page no.181\n", +"\n", +"//Calculations\n", +"RN=(R(1)+R(2)+R(3))//Equivalent resistance in ohms\n", +"IN=(R(1)*I)/RN//Equivalent curren in A\n", +"\n", +"//Output\n", +"printf('Nortons equivalent resistance is %i ohms \n Nortons equivalent current is %3.3f A',RN,IN)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/13-Alternating_Current_Circuits.ipynb b/Principles_of_Physics_by_P_V_Naik/13-Alternating_Current_Circuits.ipynb new file mode 100644 index 0000000..e0811fe --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/13-Alternating_Current_Circuits.ipynb @@ -0,0 +1,294 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13: Alternating Current Circuits" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.1: rms_current_and_maximum_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"Vm=100//Maximum voltage in V\n", +"R=50//resitance in ohms\n", +"\n", +"//Calculations\n", +"Vrms=(Vm/sqrt(2))//rms voltage in V\n", +"Irms=(Vrms/R)//rms current in A\n", +"Im=(Vm/R)//Maximum current in A\n", +"\n", +"//Output\n", +"printf('rms current is %3.2f A and maximum current is %i A',Irms,Im)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.2: rms_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"c=50//Capacitor in micro F\n", +"Vm=220//Maximum voltage in V\n", +"f=50//Frequency in Hz\n", +"\n", +"//Calculations\n", +"Xc=(1/(2*3.14*c*10^-6*f))//Reactance in ohms\n", +"I=(Vm/Xc)//Maximum current in A \n", +"Irms=I/sqrt(2)//rms current in A\n", +"\n", +"//Output\n", +"printf('rms current is %3.2f A',Irms)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.3: rms_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"L=2//Inductance in H\n", +"Vrms=220//rms voltage in V\n", +"f=50//Frequency in Hz\n", +"\n", +"//Calculations\n", +"Xl=(2*3.14*f*L)//Reactance in ohms\n", +"Irms=(Vrms/Xl)//rms current in A\n", +"\n", +"//Output\n", +"printf('rms current is %3.3f A',Irms)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.4: Maximum_potential_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"Vm=220//Maximum voltage in V\n", +"f=50//frequency in Hz\n", +"R=2000//Resistance in ohms\n", +"C=5*10^-6//Capacitor in F\n", +"\n", +"//Calculations\n", +"Xc=(1/(2*3.14*f*C))//Reactance in ohms\n", +"Z=sqrt(R^2+Xc^2)//Impedence in ohm\n", +"Vc=(Vm*Xc)/Z//Maximum potential difference across the capacitor in V\n", +"\n", +"//Output\n", +"printf('Maximum potential difference across the capacitor is %3.2f V',Vc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.5: rms_potential_difference.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=5000//Resistance in ohms\n", +"L=2//Inductance in H\n", +"Vrms=200//rms Voltage in V\n", +"f=50//Frequency in Hz\n", +"\n", +"//Calculations\n", +"Xl=(2*3.14*f*L)//Inductive reactance in ohms\n", +"Z=sqrt(R^2+Xl^2)//Impedence in ohms\n", +"Vl=(Vrms*Xl)/Z//rms potential difference across the inductor in V\n", +"\n", +"//Output\n", +"printf('rms potential difference across the inductor is %3.2f V',Vl)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.6: Parameters.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=10//Resistance in ohms\n", +"L=5*10^-3//Inductance in H\n", +"C=10*10^-6//Capacitance in F\n", +"V=100//Voltage in V\n", +"f=50//Frequency in Hz\n", +"\n", +"//Calculations\n", +"Xc=(1/(2*3.14*f*C))//Capacitive reactance in ohms\n", +"Xl=(2*3.14*f*L)//Inductive reactance in ohms\n", +"Z=sqrt(R^2+(Xl-Xc)^2)//Impedence in ohms\n", +"I=(V/Z)//Current in A\n", +"q=atand((Xl-Xc)/R)//Phase angle in degrees\n", +"Vr=(I*R)//Voltage across resistor in V\n", +"Vc=(I*Xc)//Voltage across capacitor in V\n", +"Vl=(I*Xl)//Voltage across inductor in V\n", +"\n", +"//Output\n", +"printf('Total impedence is %3.1f ohms \n Current is %3.3f A \n Phase angle is %3.2f degrees \n Voltage across resistor is %3.2f V \n Voltage across capacitor is %3.2f V \n Voltage across inductor is %3.3f V',Z,I,q,Vr,Vc,Vl)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.7: Resonating_frequency_and_Q_factor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"R=5//Resistance in ohms\n", +"L=2*10^-3//Inductance in H\n", +"C=25*10^-6//Capacitance in F\n", +"V=50//Voltage in V\n", +"\n", +"//Calculations\n", +"w=1/sqrt(L*C)//Angular speed in rad/s\n", +"f=(w/(2*3.14))//Frequency in Hz\n", +"Q=(w*L)/R//Q factor\n", +"\n", +"//Output\n", +"printf('Resonating frequency is %3.2f Hz \n Q factor is %3.2f',f,Q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 13.8: Capacitance_and_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"L=(20*10^-3)//Inductance in H\n", +"Q=8//Q factor\n", +"f=1000//Frequency in Hz\n", +"\n", +"//Calculations\n", +"R=(2*3.14*f*L)/Q//Resistance in ohms\n", +"C=(1/((2*3.14*f)^2*L))/10^-6//Capacitance in microF\n", +"\n", +"//Output\n", +"printf('Capacitance and resistance of coil is %3.2f micro F and %3.1f ohms respectively',C,R)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/15-Motion_of_a_charged_particle.ipynb b/Principles_of_Physics_by_P_V_Naik/15-Motion_of_a_charged_particle.ipynb new file mode 100644 index 0000000..14f6d2d --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/15-Motion_of_a_charged_particle.ipynb @@ -0,0 +1,189 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15: Motion of a charged particle" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.1: Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"E=5000//Intensity of electric field in N/C\n", +"d=0.02//Distance in m\n", +"e=(1.6*10^-19)//Charge of the electron in C\n", +"m=(9.1*10^-31)//Mass of the electron in kg\n", +"\n", +"//Calculations\n", +"v=sqrt(2*e*E*d/m)/10^6//Speed of the electron in m/s *10^6\n", +"\n", +"//Output\n", +"printf('Speed of the electron is %3.2f *10^6 m/s',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.2: Vertical_displacement.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"v=(5*10^6)//Velocity of the electron in m/s\n", +"E=2000//Intensity of electric field in N/C\n", +"d=0.06//Distance in m\n", +"e=(1.6*10^-19)//Charge of the electron in C\n", +"m=(9.1*10^-31)//Mass of the electron in kg\n", +"\n", +"\n", +"//Calculations\n", +"y=((-e*E*d^2)/(2*m*v^2))*100//Vertical displacement of the electron when it just leaves the electric field in cm\n", +"\n", +"//Output\n", +"printf('Vertical displacement of the electron when it just leaves the electric field is %3.2f cm',y)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.3: Time_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"v=(4*10^5)//Velocity of the positively charged particle in m/s\n", +"E=300//Intensity of electric field in N/C\n", +"e=(1.6*10^-19)//Charge of the positively charged particle in C\n", +"m=(1.67*10^-27)//Mass of the positively charged particle in kg\n", +"q=35//Angle made by the particle in degrees\n", +"\n", +"//Calculations\n", +"t=((v*sind(q)*m)/(e*E))/10^-6//Time required by the particle to reach the maximum height in the electric field in micro s\n", +"\n", +"//Output\n", +"printf('Time required by the particle to reach the maximum height in the electric field is %3.2f micro s',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.4: Orbital_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=0.3//Radius of circular orbit in m\n", +"B=0.38//Magnetic field strength in T\n", +"e=(1.6*10^-19)//Charge of the proton in C\n", +"m=(1.672*10^-27)//Mass of the proton in kg\n", +"\n", +"//Calculations\n", +"v=((e*B*r)/m)/10^6//Orbital speed of the proton in m/s\n", +"\n", +"//Output\n", +"printf('Orbital speed of the proton is %3.0f *10^6 m/s',v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 15.5: Pitch_of_helix_and_radius_of_trajectory.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"e=(1.6*10^-19)//Charge of the proton in C\n", +"m=(1.67*10^-27)//Mass of the proton in kg\n", +"B=0.8//Magnetic field strength in T\n", +"v=[4*10^6,3*10^6]//Velocity of charged particle in vxi+vyj form in m/s\n", +"\n", +"//Calculations\n", +"p=(v(1)*2*3.14*m)/(e*B)//Pitch of the helix in m\n", +"R=(m*v(2))/(e*B)//Radius of the trajectory in m\n", +"\n", +"//Output\n", +"printf('The pitch of the helix is %3.3f m \n Radius of the trajectory is %3.5f m',p,R)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/16-Electrons_Ions_Isotopes_and_Nucleus.ipynb b/Principles_of_Physics_by_P_V_Naik/16-Electrons_Ions_Isotopes_and_Nucleus.ipynb new file mode 100644 index 0000000..84ed9c4 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/16-Electrons_Ions_Isotopes_and_Nucleus.ipynb @@ -0,0 +1,97 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16: Electrons Ions Isotopes and Nucleus" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.1: Seperatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"E=(200*100)//Electric field in V/m\n", +"B=0.2//Magnetic field in T\n", +"B1=0.3//Magnetic field in the main chamber in T\n", +"q=(1.6*10^-19)//Charge of the electron in coloumbs\n", +"m=[12,13]//Carbon isotopes C12 and C13\n", +"M=(1.67*10^-27)//AMU(Atomic Mass Unit) in kg\n", +"\n", +"//Calculations\n", +"v=(E/B)//Velocity in m/s\n", +"s=(2*v*(m(2)-m(1))*M*100)/(q*B1)//Seperation in cm\n", +"\n", +"//Output\n", +"printf('Seperation on photographic plate is %3.4f cm',s)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 16.2: BE_per_nucleon.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"a=20//Atomic number of Ca\n", +"m=40//mass number of Ca\n", +"M=39.962591//Mass of Ca nucleus in u\n", +"mp=1.007276//Mass of proton in AMU\n", +"mn=1.008665//Mass of neutron in AMU\n", +"\n", +"//Calculations\n", +"BE=(1/m)*((a*mp)+(a*mn)-M)*1000//BE per nucleon in MeV\n", +"\n", +"//Output\n", +"printf('BE per nucleon is %3.6f MeV',BE)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/17-Quantum_Theory.ipynb b/Principles_of_Physics_by_P_V_Naik/17-Quantum_Theory.ipynb new file mode 100644 index 0000000..0320f45 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/17-Quantum_Theory.ipynb @@ -0,0 +1,193 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 17: Quantum Theory" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.1: Maximum_kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=4000//Wavelength of the light in Angstrom units\n", +"wf=2.25//Work function of potassium in eV\n", +"m=(9.1*10^-31)//Mass of the electron in kg\n", +"v=(3*10^8)//Velocity of light in m/s\n", +"c=(1.6*10^-19)//Charge of the electron in coloumbs\n", +"h=6.626*10^-34//Plancks constant in Js\n", +"\n", +"//Calculations\n", +"E=(h*v)/(w*10^-10*c)//Energy of incident photon in eV\n", +"KE=(E-wf)//Kinetic energy in eV\n", +"\n", +"//Output\n", +"printf('Maximum kinetic energy of photoelectron is %3.3f eV',KE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.2: Stopping_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"wf=1.9//Workfunction of the material in eV\n", +"w=3000//Wavelength of the light in Angstrom units\n", +"v=(3*10^8)//Velocity of light in m/s\n", +"c=(1.6*10^-19)//Charge of the electron in coloumbs\n", +"h=6.626*10^-34//Plancks constant in Js\n", +"\n", +"//Calculations\n", +"V=(1/c)*(((h*v)/(w*10^-10))-(wf*c))//Stopping potential in V\n", +"\n", +"//Output\n", +"printf('Stopping potential is %3.2f V',V)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.3: Shortest_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"V=(70*10^3)//Accelerating potential in V\n", +"v=(3*10^8)//Velocity of light in m/s\n", +"c=(1.6*10^-19)//Charge of the electron in coloumbs\n", +"h=6.626*10^-34//Plancks constant in Js\n", +"\n", +"//Calculations\n", +"lmin=((h*v)/(c*V))/10^-9//Shortest wavelength of X-rays produced in mm\n", +"\n", +"//Output\n", +"printf('Shortest wavelength of X-rays produced is %3.4f mm',lmin)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.4: Wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w1=2//Wavelength in Angstrom \n", +"Z1=24//Target one\n", +"Z2=42//Target two\n", +"a=1//Constant value\n", +"\n", +"//Calculations\n", +"w2=w1*((Z1-a)/(Z2-a))^2//Wavelength in Angstrom\n", +"\n", +"//Output\n", +"printf('Wavelength is %3.2f Angstrom',w2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 17.5: Wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=3//Wavelength of the light in Angstrom\n", +"v=(3*10^8)//Velocity of light in m/s\n", +"h=6.626*10^-34//Plancks constant in Js\n", +"q=40//Scattering angle in degrees\n", +"m=(9.11*10^-31)//Mass of electron in kg\n", +"c=(1.6*10^-19)//Charge of the electron in coloumbs\n", +"\n", +"//Calculations\n", +"dl=(h/(m*v))*(1-cosd(q))/10^-10//Wavelength in Angstrom\n", +"l=(w+dl)//Wavelength of scattered X-rays\n", +"\n", +"//Output\n", +"printf('Wavelength of scattered X-rays is %3.6f Angstrom',l)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/2-Work_Energy_and_Power.ipynb b/Principles_of_Physics_by_P_V_Naik/2-Work_Energy_and_Power.ipynb new file mode 100644 index 0000000..8439f31 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/2-Work_Energy_and_Power.ipynb @@ -0,0 +1,284 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Work Energy and Power" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.1: Workdone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"F=[6,2]//Constant force in vector form 6i+2j in N\n", +"s=[3,5]//Displacement in vector form 3i+5j in N\n", +"\n", +"//Calculations\n", +"W=(F(1)*s(1))+(F(2)*s(2))//Workdone in J\n", +"q=acosd(W/(sqrt(F(1)^2+F(2)^2)*sqrt(s(1)^2+s(2)^2)))//Angle between Force and displacement in degrees\n", +"\n", +"//Output\n", +"printf('Workdone by the force is %3.0f J \n Angle between Force and displacement is %3.1f degrees',W,q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: Workdone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=10//Mass of block in kg\n", +"q=40//Angle made by the force with horizontal in degrees\n", +"s=5//Horizontal displacement of the block in m\n", +"u=0.3//Coefficient of kinematic friction \n", +"\n", +"//Calculations\n", +"F=(u*m*9.8)/(cosd(q)+(u*sind(q)))//Pulling force in N\n", +"W=(F*cosd(q))*s//Workdone by the pulling force in J\n", +"\n", +"//Output\n", +"printf('Workdone by the pulling force is %3.2f J',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Workdone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r1=[0,1]//Interval in m\n", +"r2=[1,2]//Interval in m\n", +"r3=[2,4]//Interval in m\n", +"r4=[0,5]//Interval in m\n", +"y=[6,12]//Y- coordinates from the graph 2.5 on page no. 27\n", +"\n", +"//Calculations\n", +"a1=(1/2)*(r1(2)-r1(1))*y(1)//Area under the curve in J\n", +"a2=(r2(2)-r2(1))*y(1)//Area under the curve in J\n", +"a3=((r3(2)-r3(1))*y(1))+((1/2)*((r3(2)-r3(1))/2)*(y(2)-y(1)))+(((r3(2)-r3(1))/2)*(y(2)-y(1)))//Area under the curve in J\n", +"a4=(a1+a2+a3+((1/2)*y(2)*(r4(2)-r3(2))))//Area under the curve in J\n", +"\n", +"//Output\n", +"X=[0,1,2,3,4,5]//X- coordinate is distance in m\n", +"Y=[0,6,6,12,12,0]//Y- coordinate is Force in N\n", +"plot(X,Y)//Graph shown in figure 2.5 on page no.27\n", +"xtitle('Distance versus Force','Distance in m','Force in N')\n", +"\n", +"printf('The work done in the intervals: \n (a)%i<=x<=%i m is %i J \n (b)%i<=x<=%i m is %i J \n (c)%i<=x<=%i m is %i J \n (d)%i<=x<=%i m is %i J \n',r1(1),r1(2),a1,r2(1),r2(2),a2,r3(1),r3(2),a3,r4(1),r4(2),a4)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: Kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.05//Mass of the body in kg\n", +"v=[3,5]//Velocity in vector form 3i+4j in m/s\n", +"\n", +"//Calculations\n", +"ke=(1/2)*m*(v(1)^2+v(2)^2)//Kinetic energy in J\n", +"\n", +"//Output\n", +"printf('Kinetic energy is %3.2f J',ke)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: Workdone.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"k=50//Spring force constant in N/m\n", +"x=-0.02//Length of compression in m\n", +"\n", +"//Calculations\n", +"W=(1/2)*k*(x)^2//Work done by the spring in J\n", +"\n", +"//Output\n", +"printf('Work done by the spring when the block comes from the compressed position to the equilibrium position is %3.2f J',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.6: Force_constant_of_the_spring.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"x=0.03//Length stretched by the spring in m\n", +"m=0.25//Mass of the body in kg\n", +"\n", +"//Calculations\n", +"k=(m*9.8)/x//Force constant of the spring in N/m\n", +"\n", +"//Output\n", +"printf('Force constant of the spring is %3.2f N/m',k)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: Speed_of_the_block.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=5//Mass of block in kg\n", +"F=20//Constant force in N\n", +"x=6//Distance moved by the block in m\n", +"\n", +"//Calculations\n", +"W=(F*x)//Workdone by the block in J\n", +"v=sqrt((2*W)/m)//Speed of the block in m/s\n", +"\n", +"//Output\n", +"printf('Speed of the block when it moves through a distance of %3.0f m is %3.2f m/s',x,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.8: Workdone_and_average_power.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=50//Mass of the object in kg\n", +"v=8//Speed in m/s\n", +"t=4//Time taken in s\n", +"\n", +"//Calculations\n", +"a=(v-0)/t//Acceleration in m/s^2\n", +"s=(v^2/(2*a))//Distance in m\n", +"W=(m*a*s)//Workdone in J\n", +"P=(W/t)//Power delivered in watt\n", +"\n", +"//Output\n", +"printf('Workdone on the object is %i J \n The average power delivered by the force in the first %i s is %i watt',W,t,P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/3-Potential_Energy.ipynb b/Principles_of_Physics_by_P_V_Naik/3-Potential_Energy.ipynb new file mode 100644 index 0000000..1533128 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/3-Potential_Energy.ipynb @@ -0,0 +1,190 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Potential Energy" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: Potential_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.04//Mass of stone in kg\n", +"vi=25//Initial velocity in m/s\n", +"vf=0//Final velocity in m/s\n", +"yi=0//Initial height in m\n", +"\n", +"//Calculations\n", +"Ui=(m*9.81*yi)//Initial potential energy in J\n", +"Ki=(1/2)*m*vi^2//Initial kinetic energy in J\n", +"Etotal=(Ui+Ki)//Total energy in J\n", +"h=(Etotal/(m*9.8))//Maximum height in m\n", +"//when the stone is at (2/3)h, total energy is again same\n", +"v=sqrt((Etotal-(m*9.8*(2/3)*h))/((1/2)*m))//Velocity at (2/3) of its maximum height in m/s\n", +"\n", +"//Output\n", +"printf('Maximum height it will reach is %3.1f m \n Potential energy at that height is %3.1f J \n velocity when it is at the two-third of its maximum height is %3.2f m/s',h,Etotal,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Potential_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.5//Mass of the sphere in kg\n", +"vi=100//Initial velocity in m/s\n", +"vf=20//Final velocity in m/s\n", +"\n", +"//Calculations\n", +"h=(vi^2-vf^2)/(2*9.8)//Height in m\n", +"PE=(m*9.8*h)//Potential energy in J\n", +"\n", +"//Calculations\n", +"printf('Potential energy of the sphere is %i J',PE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.3: Potential_Energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.5//Mass of the block in kg\n", +"x=0.05//Distance to which block is pulled in m\n", +"k=300//Force constant of the spring in N/m\n", +"\n", +"//Calculations\n", +"U=(1/2)*k*x^2//Potential energy of the block in J\n", +"v=x*sqrt(k/m)//Velocity of the block in m/s\n", +"\n", +"//Output\n", +"printf('Potential energy of the block when spring is in stretched position is %3.3f J \n Velocity of the block when it passes through the equilibrium position is %3.2f m/s',U,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"l=0.8//Length of a simple pendulum in m\n", +"q=30//Angle with the vertical through which the bob is released in degrees\n", +"q1=10//Required angle in degrees\n", +"\n", +"//Calculations\n", +"v=sqrt(2*9.8*l*(cosd(q1)-cosd(q)))//Speed in m/s\n", +"\n", +"//Output\n", +"printf('Speed when the bob is at the angle of %i degrees with the vertical is %3.2f m/s',q1,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: Rest_and_total_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=(9.1*10^-31)//Mass of the electron in kg\n", +"v=(3*10^8)//Velocity of light in m/s\n", +"c=(1.6*10^-19)//Charge of the electron in coloumbs\n", +"\n", +"//Calculations\n", +"Re=(m*v^2)/(c*10^6)//Rest energy in MeV\n", +"E=(Re/sqrt(1-0.9^2))//Total energy in MeV\n", +"\n", +"//Output\n", +"printf('Rest energy of the electron is %3.3f MeV \n Total energy is %3.4f MeV',Re,E)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/4-Rotational_motion_of_Rigid_Objects.ipynb b/Principles_of_Physics_by_P_V_Naik/4-Rotational_motion_of_Rigid_Objects.ipynb new file mode 100644 index 0000000..0a9ca4e --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/4-Rotational_motion_of_Rigid_Objects.ipynb @@ -0,0 +1,183 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Rotational motion of Rigid Objects" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.1: Moment_of_inertia_and_Kinetic_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=4//Angular velocity in rad/s\n", +"m=[1,2,3,4]//Masses in kg from the figure 4.17 on page no.54 \n", +"r=[2.5,1.5]//Centre position in m\n", +"\n", +"//Calculations\n", +"I=(m(1)+m(2)+m(3)+m(4))*(r(1)^2+r(2)^2)//Moment of inertia in kg.m^2\n", +"KE=(1/2)*I*w^2//Kinetic energy of the system in J\n", +"\n", +"//Output\n", +"printf('The moment of inertia is %i kg.m^2 \n Kinetic energy of the system is %i J',I,KE)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.2: Velocity_and_acceleration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//input data\n", +"q=30//Angle of inclination in degrees\n", +"h=1//Height in m\n", +"\n", +"//Calculations\n", +"v=sqrt((10/7)*9.8*h)//Velocity in m/s\n", +"a=(5/7)*9.8*sind(q)//Acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Velocity and acceleration of the centre of mass of the sphere is %3.2f m/s and %3.1f m/s^2',v,a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.3: Period_of_oscillatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=1.2//Mass of the rod in kg\n", +"l=0.8//Length of the rod in m\n", +"\n", +"//Calculations\n", +"T=2*3.14*sqrt((2*l)/(3*9.8))//Time period in s\n", +"\n", +"//Output\n", +"printf('Period of oscillation is %3.2f s',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.4: Period_of_oscillatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=0.2//Radius of uniform disc in m\n", +"d=0.15//Distance from the centre in m\n", +"\n", +"//Calculations\n", +"T=2*3.14*sqrt((17*r)/(12*9.8))//Period of oscillations in s\n", +"\n", +"//Output\n", +"printf('The period of oscillation is %3.2f s',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Angular_speed_of_rotation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=3//Mass of the rotor in kg\n", +"I=0.03//Moment of inertia in kg.m^2\n", +"d=0.25//Distance of pivot from the centre in m\n", +"p=30//Precession in rpm\n", +"\n", +"//Calculations\n", +"T=m*9.8*d//Torgue in N.m\n", +"w=(p*2*3.14)/60//Angular velocity in rad/s\n", +"w1=(T/(I*w))//Angular speed of rotation of the rotor in rpm\n", +"\n", +"//Output\n", +"printf('Angular speed of rotation of the rotor is %i rpm',w1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/5-Properties_of_Matter.ipynb b/Principles_of_Physics_by_P_V_Naik/5-Properties_of_Matter.ipynb new file mode 100644 index 0000000..d230bc1 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/5-Properties_of_Matter.ipynb @@ -0,0 +1,287 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Properties of Matter" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Period_of_pendulum.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=1//Mass of torsional pendulum in kg\n", +"R=0.06//Radius of torsional pendulum in m\n", +"l=1.2//Length of the wire in m\n", +"r=0.0008//Radius of wire in m\n", +"S=(9*10^9)//Modulus of rigidity of the material in N/m^2\n", +"\n", +"//Calculations\n", +"I=(1/2)*m*R^2//Moment of inertia in kg.m^2\n", +"C=(3.14*S*r^4)/(2*l)//Couple per unit twist in N.m\n", +"T=2*3.14*sqrt(I/C)//Period of pendulum in s\n", +"\n", +"//Output\n", +"printf('Period of pendulum is %3.1f s',T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Work_done.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"l=0.8//Length of the wire in m\n", +"d=(1.8*10^-3)//Diameter of the wire in m\n", +"a=1.5//Angle of twist in degrees\n", +"S=(1.8*10^11)//Modulus of rigidity of the material in N/m^2\n", +"\n", +"//Calculations\n", +"r=(a*3.14)/180//Angle of twist in radians\n", +"W=((3.14*S*(d/2)^4*r^2)/(4*l))/10^-5//Work required to twist the wire in J*10^-5\n", +"\n", +"//Output\n", +"printf('Work required to twist the wire is %3.2f*10^-5 J',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: PProperties_of_Material.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"l=2//Length of wire in m\n", +"d=(0.4*10^-3)//Diameter of the wire in m\n", +"x=(1.03*10^-3)//Extension in length in m\n", +"L=2//Load in kg\n", +"C=(4.52*10^-6)//Couple in N/m\n", +"a=0.03//Twist angle in radians\n", +"\n", +"//Calculations\n", +"Y=((L*9.8*l)/(x*3.14*(d/2)^2))/10^11//Young's modulus in N/m^2*10^11\n", +"S=((C*2*l)/(3.14*(d/2)^4*a))/10^11//Modulus of rigidity in N/m^2*10^11\n", +"s=(Y/(2*S))-1//Poisson's ratio\n", +"\n", +"//Output\n", +"printf('Youngs modulus is %3.2f*10^11 N/m^2\nModulus of rigidity is %3.2f*10^11 N/m^2\nPoissons ratio is %3.4f',Y,S,s)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: Excess_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=0.003//Radius of drop of glycerine in m\n", +"T=(63.1*10^-3)//Surface tension of glycerine in N/m\n", +"\n", +"//Calculations\n", +"P=((2*T)/r)//Excess pressure inside the drop of glycerine in N/m^2\n", +"\n", +"//Output\n", +"printf('Excess pressure inside the drop of glycerine is %3.2f N/m^2',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: Rate_of_change_of_pressure.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r1=0.001//Initial radius in m\n", +"r2=0.004//Final radius in m\n", +"t=2*10^-3//Time in s\n", +"s=(7*10^-2)//Surface tension of water in N/m\n", +"\n", +"//Calculations\n", +"P=((2*s)*((1/r2)-(1/r1)))/(t*10^4)//Rate of change of pressure in N/m^2.s*10^4\n", +"\n", +"//Output\n", +"printf('Rate of change of pressure is %3.2f*10^4 N/m^2.s',P)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.6: Work_done.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d=0.02//Diamter of soap bubble in m\n", +"s=(25*10^-3)//Surface tension in N/m\n", +"//Initial surface area of the bubble is zero and final area is 2*4*pie*r^2 where r is the radius of the bubble\n", +"\n", +"//Calculations\n", +"W=(s*2*4*3.14*(d/2)^2)/10^-5//Work done in blowing a soap bubble in J*10^-5\n", +"\n", +"//Output\n", +"printf('Work done in blowing a soap bubble is %3.2f*10^-5 J',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: Energy_required.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=0.01//Radius of liquid drop in m\n", +"n=500//Number of drops\n", +"s=(63*10^-3)//Surface tension in N/m\n", +"\n", +"//Calculations\n", +"r1=(((4*3.14*r^3)/3)/((n*4*3.14)/3))^(1/3)//Radius of one small drop in m\n", +"As=(n*4*3.14*r1^2)//Total surface of 500 drops in m^2\n", +"as=4*3.14*r^2//Original surface area of the drop in m^2\n", +"W=(s*(As-as))/10^-4//Work done in J*10^-4\n", +"\n", +"//Output\n", +"printf('Energy required to break up a drop of a liquid is %3.1f*10^-4 J',W)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.8: Speed_of_flow.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d=0.04//Inside diameter of garden hose in m\n", +"D=0.01//Diamter of nozzle opening in m\n", +"v1=0.6//speed of flow of water in the hose in m/s\n", +"\n", +"//calculations\n", +"a=3.14*(d/2)^2//Area of hose in m^2\n", +"A=3.14*(D/2)^2//Area of nozzle in m^2\n", +"v2=(v1*a)/A//Speed of flow through the nozzle in m/s\n", +"\n", +"//Output\n", +"printf('Speed of flow through the nozzle is %3.1f m/s',v2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/6-Real_gas_and_Transport_Processes_in_Gas.ipynb b/Principles_of_Physics_by_P_V_Naik/6-Real_gas_and_Transport_Processes_in_Gas.ipynb new file mode 100644 index 0000000..58379e9 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/6-Real_gas_and_Transport_Processes_in_Gas.ipynb @@ -0,0 +1,191 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Real gas and Transport Processes in Gas" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Critical_constants.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"a=(2.1*10^-2)//Vanderwaals constant a for neon gas in Nm^4/mol^2\n", +"b=(1.71*10^-5)//Vanderwaals constant b for neon gas in m^3/mol\n", +"R=8.314//Gas constant in J/mol.K\n", +"\n", +"//Calculations\n", +"Tc=(8*a)/(27*b*R)//Critical temperature in K\n", +"Vc=(3*b)/10^-5//Critical volume in m^3/mol * 10^-5\n", +"Pc=(a/(27*b^2))/10^6//Critical pressure in N/m^2 * 10^6\n", +"\n", +"//Output \n", +"printf('Critical temperature is %3.2f K \n Critical volume is %3.2f * 10^-5 m^3/mol \n Critical pressure is %3.3f * 10^6 N/m^2',Tc,Vc,Pc)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: Mean_free_path.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"n=181*10^-6//Coefficient of viscosity of a gas in p\n", +"v=3*10^4//Average speed of molecules in cm/s\n", +"d=1.2929*10^-3//Density in g/cm^3\n", +"\n", +"//Calculations\n", +"lemda=((3*n)/(d*v))/10^-6//Mean free path in cm*10^-6\n", +"\n", +"//Output\n", +"printf('Mean free path is %3.0f * 10^-6 cm',lemda)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Diffusion_coefficient_of_the_gas.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=(28*1.66*10^-27)//Molecular mass of a gas in kg\n", +"d=(3.48*10^-10)//Diameter in m\n", +"k=(1.38*10^-23)//Boltzmans constant in J/K\n", +"P=1.01*10^5//Pressure at STP in N/m^2\n", +"T=273//Temperature at STP in K\n", +"\n", +"//Calculations\n", +"D=((1/(P*3*d^2*sqrt(m)))*((2*k*T)/3.14)^(3/2))/10^-5//Diffusion coefficient of a gas at STP in m^2/s\n", +"\n", +"//Output\n", +"printf('Diffusion coefficient of a gas at STP is %3.2f * 10^-5 m^2/s',D)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.4: Viscosity_of_a_gas.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=(32*1.66*10^-27)//Molecular mass of a gas in kg\n", +"d=(3.65*10^-10)//Diameter in m\n", +"k=(1.38*10^-23)//Boltzmans constant in J/K\n", +"P=1.01*10^5//Pressure at STP in N/m^2\n", +"T=273//Temperature at STP in K\n", +"\n", +"//Calculations\n", +"n=((1/(3.14*d^2))*sqrt((8*k*T*m)/(9*3.14)))/10^-5//Viscosity of gas at STP in N.s/m^2\n", +"\n", +"//Output\n", +"printf('Viscosity of a gas at STP is %3.5f *10^-5 N.s/m^2',n)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: Thermal_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"v=460//Average speed of molecules in m/s\n", +"l=(720*10^-10)//Mean free path in m\n", +"Cv=21.06//Specific heat at constant volume in J/K.mol\n", +"k=(1.38*10^-23)//Boltzmans constant in J/K\n", +"P=1.01*10^5//Pressure at STP in N/m^2\n", +"T=273//Temperature at STP in K\n", +"N=6.022*10^23//Avagadro constant\n", +"\n", +"//Calculations\n", +"K=((1/3)*(Cv/N)*(P/(k*T))*v*l)/10^-2//Thermal conductivity of the gas at STP in W/m.K *10^-2\n", +"\n", +"//Output\n", +"printf('Thermal conductivity of the gas at STP is %3.5f *10^-2 W/m.K',K)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/7-Thin_Lens_and_Coaxial_systems_and_Aberrations.ipynb b/Principles_of_Physics_by_P_V_Naik/7-Thin_Lens_and_Coaxial_systems_and_Aberrations.ipynb new file mode 100644 index 0000000..5cbd6f3 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/7-Thin_Lens_and_Coaxial_systems_and_Aberrations.ipynb @@ -0,0 +1,169 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Thin Lens and Coaxial systems and Aberrations" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: Position_of_cardinal_points.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"f1=-12//Focal length of a converging lens in cm\n", +"f2=25//Focal length of a diverging lens in cm\n", +"d=8//Distance between the lens in cm\n", +"\n", +"//Calculations\n", +"C=(1/f1)+(1/f2)+(d/(f1*f2))//Inverse of focal length in cm^-1\n", +"D=(d/f2)+1//Constant value\n", +"A=(d/f1)+1//Constant value\n", +"O1F1=(-D/C)//Poistion of cardinal point in cm\n", +"O2F2=(A/C)//Poistion of cardinal point in cm\n", +"O1H1=(1-D)/C//Poistion of cardinal point in cm\n", +"O2H2=(A-1)/C//Poistion of cardinal point in cm\n", +"\n", +"//Output\n", +"printf('Position of cardinal points are O1F1 = %3.2f cm, O2F2 = %3.2f cm, O1H1 = %3.2f cm, O2H2 = %3.2f cm\n The system is in air, therfore, nodal points coincide with unit points',O1F1,O2F2,O1H1,O2H2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Focal_lengths.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"f=15//Focal length of achromatic doublet made up of crown and flint glasses in cm\n", +"fl=[0.01506,0.02427]//Dispersive power of crown and flint glasses respectively \n", +"\n", +"//Calculations\n", +"//Solving two equations\n", +"//(1/f)=(1/f1)+(1/f2)\n", +"//(f1/f2)=(-0.01506/0.02427)\n", +"fx=(fl(1)/fl(2))//Ratio of focal lengths\n", +"f2=(-(1/fx)+1)/(1/f)//Focal length of converging lens in cm\n", +"f1=(-fx*f2)//Focal length of diverging lens in cm\n", +"\n", +"//Output\n", +"printf('Focal length of converging lens is %3.4f cm \n Focal length of diverging lens is %3.1f cm',f2,f1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: Radii_of_curvature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"f=20//Focal length in cm\n", +"fl=[0.015,0.019]//Dispersive powers of crown and flint glasses respectively\n", +"r=[1.495,1.53]//Refractive indices respectively\n", +"\n", +"//Calculations\n", +"fx=-(fl(1)/fl(2))//Ratio of focal lengths\n", +"//Solving two equations\n", +"//(1/f)=(1/f1)+(1/f2)\n", +"//(f1/f2)=(-0.015/0.019)\n", +"f2=((1/fx)+1)/(1/f)//Focal length of converging lens in cm\n", +"f1=(fx*f2)//Focal length of diverging lens in cm\n", +"r2=(r(2)-1)*f2//Radius of curvature of convergent lens in cm\n", +"r1=1/(((1/f1)/(r(1)-1))+(1/r2))//Radius of curvature of divergent lens in cm\n", +"\n", +"//Output\n", +"printf('Radius of curvature of converging lens is %3.4f cm \n Radius of curvature of diverging lens is %3.3f cm',r2,r1)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.4: Radii_of_curvature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=1.5//Refractive index of the material of a thin lens\n", +"f=-20//Focal length of the lens in cm\n", +"rx=-6//Ratio of radii of curvature of lens\n", +"\n", +"//Calculations\n", +"r1=1/((1/f)/((r-1)*(1-(1/rx))))//Radius of curvature of convergent lens in cm\n", +"r2=(rx*r1)//Radius of curvature of divergent lens in cm\n", +"\n", +"//Output\n", +"printf('Radii of curvature of lens are %3.2f cm and %i cm',r1,r2)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Physics_by_P_V_Naik/9-Interference.ipynb b/Principles_of_Physics_by_P_V_Naik/9-Interference.ipynb new file mode 100644 index 0000000..bef1703 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/9-Interference.ipynb @@ -0,0 +1,188 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 9: Interference" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.1: Wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"t=0.2//Thickness of film in micro m\n", +"r=1.25//Refractive index of liquid\n", +"w=[4000,5000]//Range of wavelength in Angstrom\n", +"q=35//Angle observed in degrees\n", +"\n", +"//Calculations\n", +"u=asind(sind(q)/r)//Angle of reflection in degrees\n", +"w1=(2*t*10^-6*r*cosd(u))/10^-10//Wavelength in Angstrom\n", +"w2=w1/2//Wavelength in Angstrom\n", +"\n", +"//Output\n", +"printf('Wavelength absent in reflected light is %i Angstrom',w2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.2: Thickness_of_the_film.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=1.39//Refractive index of the film \n", +"q=30//Angle observed in degrees\n", +"w=[5125,5000]//Wavelengths of two consecutive dark bands in Angstrom\n", +"\n", +"//Calculations\n", +"r1=asind(sind(q)/r)//Angle of reflection in degrees\n", +"n=w(2)/(w(1)-w(2))//Constant value\n", +"t=((n*w(1)*10^-8)/(2*r*cosd(r1)))/10^-4//Thickness of the film in cm *10^-4\n", +"\n", +"//Output\n", +"printf('Thickness of the film is %3.4f *10^-4 cm',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.3: Angle_of_wedge.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=1.4//Refractive index of the material\n", +"w=5893//Wavelength of yellow light in Angstrom\n", +"n=10//Number of bands\n", +"w1=0.009//Width of band in m\n", +"\n", +"//Calculations\n", +"b=asind((w*10^-8)/(2*r*n*w1))//Angle of wedge in degrees\n", +"\n", +"//Output\n", +"printf('Angle of wedge is %3.4f degrees',b)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.4: Thickness.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"r=1//Refractive index\n", +"n=4//Number of bands\n", +"w=6500//Wavelength in Angstrom\n", +"\n", +"//Calculations\n", +"t=(((n+(1/2))*w*10^-8)/(2*r))/10^-4//Thickness of wedge shaped air film in cm *10^-4\n", +"\n", +"//Output\n", +"printf('Thickness of wedge shaped air film is %3.4f *10^-4 cm',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 9.5: Radius_of_curvature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d=0.5//Diameter of the ring in cm\n", +"n=4//number of bands\n", +"w=5893//Wavelength of light in Angstrom\n", +"q=30//Angle at which light enters in degrees\n", +"\n", +"//Calculations\n", +"R=((d^2*cosd(q))/(2*(2*n+1)*w*10^-8))//Radius of curvature of lens in cm\n", +"\n", +"//Output\n", +"printf('Radius of curvature of lens is %3.1f cm',R)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |