diff options
Diffstat (limited to 'Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb')
-rw-r--r-- | Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb | 438 |
1 files changed, 438 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb b/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb new file mode 100644 index 0000000..a0d32c2 --- /dev/null +++ b/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb @@ -0,0 +1,438 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Motion" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Orbital_speed_and_centripetal_acceleration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"d=180//Distance of satellite above the surface of earth in km\n", +"t=90//Time taken to complete one revolution of the earth in minutes\n", +"r=6400//Radius of the earth in kms\n", +"\n", +"//Calculations\n", +"R=(r+d)*1000//Total distance in m\n", +"T=t*60//Time in seconds\n", +"v=(2*3.14*R)/T//Orbital speed in m/s\n", +"a=(v^2/R)//Centripetal acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Orbital speed is %i m/s \n Centripetal acceleration is %3.1f m/s^2',v,a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.05//Mass of the stone in kg\n", +"r=0.4//Radius of the string in m\n", +"\n", +"//Calculations\n", +"vh=sqrt(9.8*r)//Minimum speed when the stone is at the top of the circle in m/s\n", +"vl=sqrt((2/m)*(((1/2)*m*vh^2)+(m*9.8*2*r)))//Minimum speed when the stone is at the bottom of the circle in m/s\n", +"\n", +"//Output\n", +"printf('Minimum speed when the stone is at the top of the circle is %3.2f m/s \n Minimum speed when the stone is at the bottom of the circle is %3.2f m/s',vh,vl)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: Tension_and_acceleration.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=0.2//Mass of the ball in kg\n", +"r=1.5//Radius of vertical circle in m\n", +"q=35//Angle made by the ball in degrees\n", +"v=6//Velocity of the ball in m/s\n", +"\n", +"//Calculations\n", +"T=(m*((v^2/r)+(9.8*cosd(q))))//Tension in the string in N\n", +"at=9.8*sind(q)//Tangential acceleration in m/s^2\n", +"ar=(v^2/r)//Radial acceleration in m/s^2\n", +"a=sqrt(at^2+ar^2)//Acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Tension in the string is %3.1f N \n Tangential acceleration is %3.2f m/s^2 \n Radial acceleration is %i m/s^2',T,at,ar)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: Acceleratio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"//A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop\n", +"\n", +"//Calculations\n", +"ar=(6*9.8)//Radial acceleration in m/s^2\n", +"at=(9.8*sind(90))//Tangential acceleration in m/s^2\n", +"\n", +"//Output\n", +"printf('Radial acceleration is %3.1f m/s^2 \n Tangential acceleration is %3.1f m/s^2',ar,at)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Period_of_rotatio.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"l=0.95//Length of the strring in m\n", +"m=0.15//Mass of the bob in kg\n", +"r=0.25//Radius of the circle in m\n", +"\n", +"//Calculations\n", +"h=sqrt(l^2-r^2)//Height of the pendulum in m\n", +"t=2*3.14*sqrt(h/9.8)//Period of rotation in s\n", +"\n", +"//Output\n", +"printf('The period of rotation is %3.4f s',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.6: Coefficient_of_limiting_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"N=40//Minimum speed of rotor in rpm\n", +"r=2.5//Radius of rotor in m\n", +"\n", +"//Calculations\n", +"t=60/N//Time period in s\n", +"u=(9.8*t^2)/(4*3.14^2*r)//Coefficient of limiting friction\n", +"\n", +"//Output\n", +"printf('The coefficient of limiting friction between the object and the wall of the rotor is %3.4f',u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: Speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"a=30//Angle of inclination in degrees\n", +"t=3//Time in s\n", +"\n", +"//Calculations\n", +"a=(9.8*sind(a))//Acceleration in m/s^2\n", +"v=(0+a*t)//Velocity in m/s\n", +"\n", +"//Output\n", +"printf('Speed of the block after %i s is %3.1f m/s',t,v)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: Coefficient_of_static_and_kinetic_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=10//Mass of the block in kg\n", +"F1=40//Horizontal force to start moving in N\n", +"F2=32//Horizontal force to move with constant velocity in N\n", +"\n", +"//Calculations\n", +"u1=(F1/(m*9.8))//Coefficient of static friction\n", +"u2=(F2/(m*9.8))//Coefficient of kinetic friction\n", +"\n", +"//Output\n", +"printf('Coefficient of static friction is %3.3f \n Coefficient of kinetic friction is %3.3f',u1,u2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: Tension_and_coefficient_of_friction.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=[3,12]//Masses of the blocks in kg\n", +"q=50//Angle made by the string in degrees\n", +"a=3//Acceleration of 12kg block in m/s^2\n", +"\n", +"//Calculations\n", +"T=m(1)*(9.8+a)//Tension in the string in N\n", +"u=(m(2)*(9.8*sind(q)-a)-T)/(m(2)*9.8*cosd(q))//Coefficient of kinetic friction\n", +"\n", +"//Output\n", +"printf('Tension in the string is %3.1f N \n The coefficient of kinetic friction between %i kg block and the plane is %3.3f',T,m(2),u)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_1: Tensions_in_the_cables.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=50//Weight in N\n", +"a=[40,50]//Angles made by two cables in degrees\n", +"\n", +"//Calculations\n", +"//Solving two equations obtained from fig. 1.10 on page no.10\n", +"//-T1cos40+T2cos50=0\n", +"//T1sin40+T2sin50=50\n", +"A=[-cosd(a(1)) cosd(a(2))\n", +" sind(a(1)) sind(a(2))]//Coefficient matrix\n", +"B=[0\n", +" w]//Constant matrix\n", +"X=inv(A)*B//Variable matrix\n", +"\n", +"//Output\n", +"printf('Tensions in all three cables are %3.2f N, %3.2f N, %i N',X(1),X(2),w)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_5: Acceleration_of_the_block.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"m=100//Mass of block in kg\n", +"F=500//Force in N\n", +"q=30//Angle made with the horizontal in degrees\n", +"u=0.4//Coefficient of sliding friction\n", +"\n", +"//Calculations\n", +"R=m*9.8//Reaction force in N\n", +"f=(u*R)//Frictional force in N\n", +"a=(F*cosd(q)-f)/m//Acceleration of the block in m/s^2\n", +"\n", +"//Output\n", +"printf('The acceleration of the block is %3.2f m/s^2',a)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_6: Acceleration_and_Tension.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"m=[20,80]//Masses of blocks in kg\n", +"F=1000//Force with which 20kg block is pulled in N\n", +"\n", +"//Calculations\n", +"a=(F/(m(1)+m(2)))//Acceleration of the block in m/s^2\n", +"T=F-(m(1)*a)//Tension in the string in N\n", +"\n", +"//Output\n", +"printf('The acceleration produced is %i m/s^2 \n The tension in the string connecting the blocks is %i N',a,T)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.e_8: Weight_of_the_perso.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"//Input data\n", +"w=588//Weight of the person in N\n", +"a=3//Acceleration in m/s^2\n", +"\n", +"//Calculations\n", +"m=(w/9.8)//Mass of the person in kg\n", +"P=(w+(m*a))//Weight of the person when the elevator is accelerated upwards in N\n", +"\n", +"//Output\n", +"printf('Weight of the person when the elevator is accelerated upwards is %i N',P)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |