summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb')
-rw-r--r--Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb438
1 files changed, 438 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb b/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb
new file mode 100644
index 0000000..a0d32c2
--- /dev/null
+++ b/Principles_of_Physics_by_P_V_Naik/1-Motion.ipynb
@@ -0,0 +1,438 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Motion"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Orbital_speed_and_centripetal_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"d=180//Distance of satellite above the surface of earth in km\n",
+"t=90//Time taken to complete one revolution of the earth in minutes\n",
+"r=6400//Radius of the earth in kms\n",
+"\n",
+"//Calculations\n",
+"R=(r+d)*1000//Total distance in m\n",
+"T=t*60//Time in seconds\n",
+"v=(2*3.14*R)/T//Orbital speed in m/s\n",
+"a=(v^2/R)//Centripetal acceleration in m/s^2\n",
+"\n",
+"//Output\n",
+"printf('Orbital speed is %i m/s \n Centripetal acceleration is %3.1f m/s^2',v,a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: Speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=0.05//Mass of the stone in kg\n",
+"r=0.4//Radius of the string in m\n",
+"\n",
+"//Calculations\n",
+"vh=sqrt(9.8*r)//Minimum speed when the stone is at the top of the circle in m/s\n",
+"vl=sqrt((2/m)*(((1/2)*m*vh^2)+(m*9.8*2*r)))//Minimum speed when the stone is at the bottom of the circle in m/s\n",
+"\n",
+"//Output\n",
+"printf('Minimum speed when the stone is at the top of the circle is %3.2f m/s \n Minimum speed when the stone is at the bottom of the circle is %3.2f m/s',vh,vl)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: Tension_and_acceleration.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=0.2//Mass of the ball in kg\n",
+"r=1.5//Radius of vertical circle in m\n",
+"q=35//Angle made by the ball in degrees\n",
+"v=6//Velocity of the ball in m/s\n",
+"\n",
+"//Calculations\n",
+"T=(m*((v^2/r)+(9.8*cosd(q))))//Tension in the string in N\n",
+"at=9.8*sind(q)//Tangential acceleration in m/s^2\n",
+"ar=(v^2/r)//Radial acceleration in m/s^2\n",
+"a=sqrt(at^2+ar^2)//Acceleration in m/s^2\n",
+"\n",
+"//Output\n",
+"printf('Tension in the string is %3.1f N \n Tangential acceleration is %3.2f m/s^2 \n Radial acceleration is %i m/s^2',T,at,ar)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: Acceleratio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"//A small ball is released from height of 4r measured from the bottom of the loop, where r is the radius of the loop\n",
+"\n",
+"//Calculations\n",
+"ar=(6*9.8)//Radial acceleration in m/s^2\n",
+"at=(9.8*sind(90))//Tangential acceleration in m/s^2\n",
+"\n",
+"//Output\n",
+"printf('Radial acceleration is %3.1f m/s^2 \n Tangential acceleration is %3.1f m/s^2',ar,at)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Period_of_rotatio.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"l=0.95//Length of the strring in m\n",
+"m=0.15//Mass of the bob in kg\n",
+"r=0.25//Radius of the circle in m\n",
+"\n",
+"//Calculations\n",
+"h=sqrt(l^2-r^2)//Height of the pendulum in m\n",
+"t=2*3.14*sqrt(h/9.8)//Period of rotation in s\n",
+"\n",
+"//Output\n",
+"printf('The period of rotation is %3.4f s',t)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.6: Coefficient_of_limiting_friction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"N=40//Minimum speed of rotor in rpm\n",
+"r=2.5//Radius of rotor in m\n",
+"\n",
+"//Calculations\n",
+"t=60/N//Time period in s\n",
+"u=(9.8*t^2)/(4*3.14^2*r)//Coefficient of limiting friction\n",
+"\n",
+"//Output\n",
+"printf('The coefficient of limiting friction between the object and the wall of the rotor is %3.4f',u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: Speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"a=30//Angle of inclination in degrees\n",
+"t=3//Time in s\n",
+"\n",
+"//Calculations\n",
+"a=(9.8*sind(a))//Acceleration in m/s^2\n",
+"v=(0+a*t)//Velocity in m/s\n",
+"\n",
+"//Output\n",
+"printf('Speed of the block after %i s is %3.1f m/s',t,v)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: Coefficient_of_static_and_kinetic_friction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=10//Mass of the block in kg\n",
+"F1=40//Horizontal force to start moving in N\n",
+"F2=32//Horizontal force to move with constant velocity in N\n",
+"\n",
+"//Calculations\n",
+"u1=(F1/(m*9.8))//Coefficient of static friction\n",
+"u2=(F2/(m*9.8))//Coefficient of kinetic friction\n",
+"\n",
+"//Output\n",
+"printf('Coefficient of static friction is %3.3f \n Coefficient of kinetic friction is %3.3f',u1,u2)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: Tension_and_coefficient_of_friction.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=[3,12]//Masses of the blocks in kg\n",
+"q=50//Angle made by the string in degrees\n",
+"a=3//Acceleration of 12kg block in m/s^2\n",
+"\n",
+"//Calculations\n",
+"T=m(1)*(9.8+a)//Tension in the string in N\n",
+"u=(m(2)*(9.8*sind(q)-a)-T)/(m(2)*9.8*cosd(q))//Coefficient of kinetic friction\n",
+"\n",
+"//Output\n",
+"printf('Tension in the string is %3.1f N \n The coefficient of kinetic friction between %i kg block and the plane is %3.3f',T,m(2),u)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.e_1: Tensions_in_the_cables.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"w=50//Weight in N\n",
+"a=[40,50]//Angles made by two cables in degrees\n",
+"\n",
+"//Calculations\n",
+"//Solving two equations obtained from fig. 1.10 on page no.10\n",
+"//-T1cos40+T2cos50=0\n",
+"//T1sin40+T2sin50=50\n",
+"A=[-cosd(a(1)) cosd(a(2))\n",
+" sind(a(1)) sind(a(2))]//Coefficient matrix\n",
+"B=[0\n",
+" w]//Constant matrix\n",
+"X=inv(A)*B//Variable matrix\n",
+"\n",
+"//Output\n",
+"printf('Tensions in all three cables are %3.2f N, %3.2f N, %i N',X(1),X(2),w)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.e_5: Acceleration_of_the_block.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"m=100//Mass of block in kg\n",
+"F=500//Force in N\n",
+"q=30//Angle made with the horizontal in degrees\n",
+"u=0.4//Coefficient of sliding friction\n",
+"\n",
+"//Calculations\n",
+"R=m*9.8//Reaction force in N\n",
+"f=(u*R)//Frictional force in N\n",
+"a=(F*cosd(q)-f)/m//Acceleration of the block in m/s^2\n",
+"\n",
+"//Output\n",
+"printf('The acceleration of the block is %3.2f m/s^2',a)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.e_6: Acceleration_and_Tension.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"m=[20,80]//Masses of blocks in kg\n",
+"F=1000//Force with which 20kg block is pulled in N\n",
+"\n",
+"//Calculations\n",
+"a=(F/(m(1)+m(2)))//Acceleration of the block in m/s^2\n",
+"T=F-(m(1)*a)//Tension in the string in N\n",
+"\n",
+"//Output\n",
+"printf('The acceleration produced is %i m/s^2 \n The tension in the string connecting the blocks is %i N',a,T)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.e_8: Weight_of_the_perso.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"clear\n",
+"//Input data\n",
+"w=588//Weight of the person in N\n",
+"a=3//Acceleration in m/s^2\n",
+"\n",
+"//Calculations\n",
+"m=(w/9.8)//Mass of the person in kg\n",
+"P=(w+(m*a))//Weight of the person when the elevator is accelerated upwards in N\n",
+"\n",
+"//Output\n",
+"printf('Weight of the person when the elevator is accelerated upwards is %i N',P)"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}