diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap')
8 files changed, 3346 insertions, 0 deletions
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb new file mode 100644 index 0000000..43f9cb3 --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb @@ -0,0 +1,388 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 1: Elementary Materials Science Concepts" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.10: concentration_of_vacancies.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.10\n", +"//Given\n", +"NA=6.023*10^23 //mol^-1\n", +"d=2.33 //density of Si in g/cm3\n", +"Mat=28.09//g/mol\n", +"Ev=2.4 //ev/atom\n", +"Ev=2.4*1.6*10^-19 //J/atom\n", +"k=1.38*10^-23 //J/K\n", +"T=300 //kelvin\n", +"T1=1000//degree celcius\n", +"T1=T1+273 //in kelvin\n", +"N= (NA*d)/Mat\n", +"//at room temperature\n", +"nv=N*exp(-(Ev/(k*T)))\n", +"disp(nv,'concentration of vacancies in a Si crystal at room temperature in cm^-3 is')\n", +"//at 1000 degree celcius\n", +"nv=N*exp(-(Ev/(k*T1)))\n", +"disp(nv,'concentration of vacancies in a Si crystal at 1000 degree celcius in cm^-3 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.11: weight_fractions.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.11\n", +"//Given\n", +"//from fig 7.1\n", +"//at 210 degree celcius\n", +"disp('At 210 degree celcius')\n", +"C_L=50 //CL=50% Sn\n", +"C_alpha=18 //C_alpha=18% Sn\n", +"Co=40 // solidification of alloy\n", +"//lever rule\n", +"W_alpha=(C_L-Co)/(C_L-C_alpha)\n", +"disp(W_alpha*100,'weight fraction of alpha in the alloy is')\n", +"W_L=1-W_alpha\n", +"disp(W_L*100,'weight fraction of liquid phase in the alloy is')\n", +"//at 183.5 degree celcius\n", +"disp('At 183.5 degree celcius')\n", +"C_L=61.9 //CL=50% Sn\n", +"C_alpha=19.2 //C_alpha=18% Sn\n", +"Co=40 // solidification of alloy\n", +"//lever rule\n", +"W_alpha=(C_L-Co)/(C_L-C_alpha)\n", +"disp(W_alpha*100,'weight fraction of alpha in the alloy is')\n", +"W_L=1-W_alpha\n", +"disp(W_L*100,'weight fraction of liquid phase in the alloy is')\n", +"//at 182.5 degree celcius\n", +"disp('At 182.5 degree celcius')\n", +"C_beta=97.5 //CL=50% Sn\n", +"C_alpha=19.2 //C_alpha=18% Sn\n", +"Co=40 // solidification of alloy\n", +"//lever rule\n", +"W_alpha=(C_beta-Co)/(C_beta-C_alpha)\n", +"disp(W_alpha*100,'weight fraction of alpha in the alloy is')\n", +"W_beta=1-W_alpha\n", +"disp(W_beta*100,'weight fraction of beta phase in the alloy is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.1: Bond_length_and_bond_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.1\n", +"//Given\n", +"A=8*10^-77 // in J m^6\n", +"B=1.12*10^-133 // in J m^12\n", +"//lennard-Jones 6-12 potential Energy (PE)curve is E(r)=-A*r^-6+B*r^-12\n", +"//For bonding to occur PE should be minimum, hence differentiating the PE equation and setting it to Zero at r=ro we get\n", +"ro=(2*B/A)^(1/6)\n", +"disp(ro,'Bond length in meters is')\n", +"E_bond= -A*ro^-6+(B*ro^-12)//in J\n", +"E_bond=abs(E_bond/(1.6*10^-19))\n", +"disp(E_bond,'Bond Energy for solid argon in ev is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.2: rms_velocity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.2\n", +"//Given\n", +"R=8.314 // in J/mol/K\n", +"T=27 //in degree celcius\n", +"T=T+273 //in Kelvin\n", +"M_at=14 //in g/mol\n", +"//From Kinetic Theory\n", +"V_rms=sqrt((3*R*T)/(2*M_at*10^-3))\n", +"disp(V_rms,'rms velocity of Nitrogen molecule in atmosphere at 300K in m/s is')\n", +"V_rmsx=V_rms/sqrt(3)\n", +"disp(V_rmsx,'rms velocity in one direction in m/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.3: heat_capacity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.3\n", +"//Given\n", +"R=8.314 // in J/mol/K\n", +"M_at=63.6 //in g/mol\n", +"//Acc. to Dulong -Petit rule Cm=3R for NA atoms\n", +"C_gram=3*R/M_at \n", +"disp(C_gram,'Heat Capacity of copper per unit gram in J/g/K is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.4: speed_of_gas_with_non_interacting_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.4\n", +"//Given\n", +"k=1.38*10^-23 //in J/K\n", +"m=9.1*10^-31 // in Kg\n", +"T=300 // in Kelvin\n", +"v_av=sqrt(8*k*T/(%pi*m))\n", +"disp(v_av*10^-3,'Mean speed for a gas of non interacting electrons in Km is ')\n", +"v=sqrt(2*k*T/(m))\n", +"disp(v*10^-3,'Most probable speed for a gas of non interacting electrons in Km is')\n", +"v_rms=sqrt(3*k*T/(m))\n", +"disp(v_rms*10^-3,'rms velocity for a gas of non interacting electrons in Km is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.5: Minimum_rms_radio_signal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.5\n", +"//Given\n", +"L=100*10^-6//in Henry\n", +"C=100 *10^-12 //in Farad\n", +"T=300 // in Kelvin\n", +"R=200*10^3 //in ohms\n", +"k=1.38*10^-23 //in J/K\n", +"fo=1/(2*%pi*sqrt(L*C))//resonant frequency\n", +"Q=2*%pi*fo*C*R//quality factor\n", +"B=fo/Q //Bandwidth of tuned RLC \n", +"//Acc. to Johnson resistor noise equation\n", +"Vrms=sqrt(4*k*T*R*B) //in volts\n", +"Vrms=Vrms/10^-6 //in micro volts\n", +"disp(Vrms,' Minimum rms radio signal that can be detected in micro volts is')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.7: density_of_Cu.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.7\n", +"//Given\n", +"n=4\n", +"M_at=63.55*10^-3//Kg/mol\n", +"NA=6.022*10^23 //mol^-1\n", +"R=0.128// in nm\n", +"c=8 //no.of cornersof unit cells\n", +"f=6 //no.of faces of unit cells\n", +"//a\n", +"N=c*(1/8)+f*(1/2)\n", +"disp(N,'No. of atoms per unit cells is')\n", +"//b\n", +"//Lattice parameter \n", +"a=R*2*2^(1/2)\n", +"disp(a,'Lattice Parameter in nm is')\n", +"a=a*10^-9 //in m\n", +"//c\n", +"//APF=(No.of atoms in unit cell)*(Vol. of atom)/(Vol. of unit cell)\n", +"APF=4^2*%pi/(3*(2*sqrt(2))^3)\n", +"disp(APF,'Atomic Packing Factor is')\n", +"//d\n", +"p=n*M_at/(a^3*NA) //density \n", +"disp(p,'density of Copper in Kg/m3 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.8: miller_indices.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.8\n", +"//Given\n", +"a=1/%inf\n", +"b=-1/1\n", +"c=2/1\n", +"p = int32([1,1,1])\n", +"// 1/%inf = 0 ; (0/1 -1/1 2/1) hence lcm is taken for [1 1 1]\n", +"LCM = lcm(p)\n", +"h=a*double(LCM)\n", +"k=b*double(LCM)\n", +"l=c*double(LCM)\n", +" mprintf('miller indices = %d %d %d',h,k,l)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 1.9: fractional_concentration_of_vacancies.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter1\n", +"//Ex_1.9\n", +"//Given\n", +"k=1.38*10^-23 //J/K\n", +"T=300 //kelvin\n", +"Ev=0.75 //eV/atom\n", +"Ev=Ev*1.6*10^-19 //in J\n", +"T1=660//degree celcius\n", +"T1=T1+273 //in kelvin\n", +"//at room temperature\n", +"//let nv/N=nv_N for convenience\n", +"nv_N=exp(-Ev/(k*T))\n", +"disp(nv_N,'Fractional concentration of vacancies in the aluminium crystal at room temperature is')\n", +"//at melting temperature\n", +"//let nv/N=nv_N for convenience\n", +"nv_N=exp(-Ev/(k*T1))\n", +"disp(nv_N,'Fractional concentration of vacancies in the aluminium crystal at melting temperature is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb new file mode 100644 index 0000000..847cd31 --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb @@ -0,0 +1,514 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 2: Electrical and thermal conduction in solids" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.10: resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.10\n", +"//Given\n", +"M_Au=197\n", +"w=0.1\n", +"M_Cu=63.55\n", +"p_exp=108 //n*ohm*m\n", +"X=M_Au*w/((1-w)*M_Cu+(w*M_Au))\n", +"C=450//n*ohm*m\n", +"p_Au=22.8 // resistivity in n*ohm*m\n", +"p=p_Au+C*X*(1-X) //Nordheim rule\n", +"x=((p-p_exp)/p)*100\n", +"disp(p,'resistivity of the alloy in n*ohm*m is')\n", +"disp(x,'The difference in the value from experimental value in % is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.11: worst_case_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.11\n", +"//Given\n", +"u=1.58*10^6 //in m/s\n", +"N=8.5*10^28 //m^-3\n", +"e=1.6*10^-19 // in coulombs\n", +"me=9.1*10^-31 //in Kg\n", +"N_I=0.01*N\n", +"l_I=N_I^(-1/3)\n", +"t_I=l_I/u\n", +"p=me/(e^2*N*t_I)\n", +"disp(p,' worst case resistivity in ohm*m')\n", +"//slight change in answer due to computational method" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.13: effective_resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.13\n", +"//Given\n", +"Xd=0.15\n", +"p_c=1*10^-7 //ohm*m\n", +"p_eff=p_c*((1+0.5*Xd)/(1-Xd))\n", +"disp(p_eff,'Effective resistivity in ohm m is')\n", +"//slight change in the answer due to printing the answer " + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.14: Effective_Resistivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.14\n", +"//Given\n", +"Xd=0.15\n", +"p_c=4*10^-8 //ohm*m\n", +"p_eff=p_c((1+0.5*Xd)/(1-Xd))\n", +"disp(p_eff,'Effective resistivity in ohm m is')\n", +"// change in the answer due to coding" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.16: change_in_dc_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.16\n", +"//Given\n", +"//at f=10MHz\n", +"a=10^-3 //in m\n", +"f=10*10^6 //in Hz\n", +"w=2*%pi*f\n", +"sigma_dc=5.9*10^7 // in m^-1\n", +"u=1.257*10^-6 //in Wb/A/m\n", +"delta=1/sqrt(0.5*w*sigma_dc*u)\n", +"//let r=r_ac/r_dc=a/(2*delta)\n", +"r=a/(2*delta)\n", +"disp(r,'Change in dc resistance of a copper wire at 10MHz is')\n", +"//part(b)\n", +"f=1*10^9 //in Hz\n", +"w=2*%pi*f\n", +"delta=1/sqrt(0.5*w*sigma_dc*u)\n", +"//let r=r_ac/r_dc=a/(2*delta)\n", +"r=a/(2*delta)\n", +"disp(r,'Change in dc resistance of a copper wire at 1GHz is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.18: drift_mobility.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.18\n", +"//Given\n", +"sigma=5.9*10^7 //ohm^-1*m^-2\n", +"RH=-0.55*10^-10//m^3/A/s\n", +"u_d=-RH*sigma\n", +"disp(u_d,'drift mobility of electrons in copper in m2/V/s')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.19: concentration_of_conduction_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.19\n", +"//Given\n", +"no=8.5*10^28 // in m3\n", +"e=1.6*10^-19 //in coulombs\n", +"u_d=3.2*10^-3 //m2/V/s\n", +"sigma=5.9*10^7 //in ohm^-1*m^-1\n", +"n=sigma/(e*u_d)\n", +"disp(n,'concentration of conduction electrons in copper in m^-3 is')\n", +"A=n/no\n", +"disp(A,'Average number of electrons contributed per atom is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.20: Thermal_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.20\n", +"//Given\n", +"sigma=1*10^7 //ohm^-1*m^-1\n", +"T=300// kelvin\n", +"C_WFL=2.44*10^-8 //W*ohm/K2\n", +"X_d=0.15\n", +"K_c=sigma*T*C_WFL\n", +"K_eff=K_c*((1-X_d)/(1+0.5*X_d))\n", +"disp(K_eff,'Thermal Conductiity at room temperature in W/m/K')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.21: temperature_drop.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.21\n", +"//Given\n", +"sigma=50*10^-9//in ohm\n", +"T=300 //kelvin\n", +"C_WFL=2.45*10^-8 //in W*ohm/K2 \n", +"L=30*10^-3 //in m\n", +"d=20*10^-3 //in m\n", +"Q=10 //in W\n", +"//Wiedemann-Franz Lorenz Law\n", +"k=sigma^-1*T*C_WFL //thermal conductivity\n", +"A=%pi*(d^2)/4\n", +"theta=L/(k*A) //thermal resistance\n", +"delta_T=theta*Q\n", +"disp(delta_T,'Temperature drop across the disk in degree celcius is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.2: drift_mobility_of_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.2\n", +"//Given\n", +"sigma=5.9*10^5 //in ohm^-1*cm^-1\n", +"e=1.6*10^-19 //Coulombs\n", +"d=8.93 //g/cm^3\n", +"Mat=63.5//g/mol\n", +"NA=6.02*10^23//mol^-1\n", +"n=d*NA/Mat\n", +"u_d=sigma/(e*n)//electron drift mobility\n", +"disp(u_d,'Drift mobility of electrons in copper at room temperature in cm2/V/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.3: Applied_electric_field.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.3\n", +"//Given\n", +"u_d=3.2*10^-3 //in m^2/V/s\n", +"u=1.2*10^6 //m/s\n", +"v_dx=0.1*u\n", +"// drift velocity of conduction electrons is v_dx=u_d*E\n", +"E=v_dx/u_d\n", +"disp(E,'Applied electric field in V/m is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.4: percentage_change_in_the_resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.4\n", +"//Given\n", +"T_summer=20 //in degree celcius\n", +"T_summer=T_summer+273 //in kelvin\n", +"T_winter=-30 //in degree celcius\n", +"T_winter=T_winter+273 //in kelvin\n", +"//we have R is proportional to A*T\n", +"//Hence\n", +"R=(T_summer-T_winter)/T_summer\n", +"R=R*100\n", +"disp(R,' Percentage change in the resistance of a pure metalwire from Saskatchewans summer too winter in % is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.5: drift_mobility_and_conductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.5\n", +"//Given\n", +"d=8.96*10^3 //in Kg/m3\n", +"NA=6.02*10^23 //mol^-1\n", +"Mat=63.56*10^-3 //Kg/mol\n", +"k=1.38*10^-23 //J/K\n", +"T=300 //kelvin\n", +"e=1.6*10^-19 //in couloumbs\n", +"m_e= 9.1*10^-31 //in Kg\n", +"u=1.25*10^6//m/s\n", +"f=4*10^12 //frequency in s^-1\n", +"Ns=d*NA/Mat// atomic concentration in m^-3\n", +"M=Mat/NA\n", +"w=2*%pi*f //angular frequency of the vibration \n", +"//by virtue of Equipartition of energy theorem\n", +"a=sqrt((2*k*T)/(M*w^2))\n", +"S=%pi*a^2 //cross sectional area\n", +"t=1/(S*u*Ns) //mean free time\n", +"u_d=e*t/m_e //drift velocity\n", +"u_d=u_d*10^4 //change in units\n", +"Ns=Ns/10^6 //in cm^-3\n", +"sigma=e*Ns*u_d //conductivity\n", +"disp(u_d,'drift velocity of electrons in m2/V/s is')\n", +"disp(sigma,' conductivity of copper in ohm^-1/cm is')\n", +"//slight change in the answer is due to the computation method, otherwise answer is matching with textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.7: TCR_and_n.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.7\n", +"//Given\n", +"n=1.2\n", +"To=293 //in kelvin\n", +"alpha_o=n/To\n", +"printf('Theoretical value of TCR at 293K is %f which is in well agreement with exprimental value',alpha_o)\n", +"alpha_o=0.00393 //experimental value\n", +"n=alpha_o*To\n", +"disp(n,'Theoretical value of n at 293K is in well agreement with exprimental value')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 2.9: temperature_of_the_filament.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter2\n", +"//Ex_2.9\n", +"//Given\n", +"P=40 //in Watt\n", +"V=120 //in Volts\n", +"D=33*10^-6 //in meter\n", +"L=0.381 //in meter\n", +"To=293 // in kelvin\n", +"P_radiated=40//in watt\n", +"epsilon=0.35\n", +"sigma_s=5.6*10^-8 //in W/m2/K4\n", +"I=P/V\n", +"A=%pi*D^2/4\n", +"R=V/I // resistance of the filament\n", +"p_t=R*A/L // resistivity of tungsten\n", +"p_o=5.51*10^-8 // resistivity at room temperature in ohm*m\n", +"//p_t=p_o*(T/To)^1.2\n", +"T=To*(p_t/p_o)^(1/1.2)\n", +"disp(T,'Temperature of the bulb when it is operated at the rated voltage in Kelvin is ')\n", +"A=L*%pi*D\n", +"//Stefans Law\n", +"T=(P_radiated/(epsilon*sigma_s*A))^(1/4)\n", +"disp(T,'Temperature of the filament in kelvin is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb new file mode 100644 index 0000000..83cedd9 --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb @@ -0,0 +1,590 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 3: Elementary Quantum Physics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.10: Transmission_coefficient.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_10\n", +"//Given\n", +"h_bar=1.054*10^-34 // in J s\n", +"m=9.1*10^-31 //in Kg\n", +"e=1.6*10^-19 // in coulombs\n", +"Vo=10 //in ev\n", +"Vo=Vo*e //in J\n", +"E=7 // in eV\n", +"E=E*e // in J\n", +"a=5*10^-9 // in m\n", +"alpha=sqrt(2*m*(Vo-E)/h_bar^2)\n", +"To=16*E*(Vo-E)/Vo^2\n", +"T=To*exp(-2*alpha*a)\n", +"disp(T,'Transmission coefficient of condution electrons in copper is')\n", +"a=1*10^-9 // in m\n", +"T=To*exp(-2*alpha*a)\n", +"disp(T,'Transmission coefficient if the oxide barrier is 1 nm is')\n", +"// slight change in the answer due to approximations in alpha value" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.11: significance_of_small_h.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_11\n", +"//Given\n", +"h_bar=1.054*10^-34 // in J s\n", +"m=100// in Kg\n", +"g=10 // in m/s2\n", +"h=10 // in m\n", +"h1=15 // in m\n", +"a=10 // in m\n", +"E=m*g*h //total energy of carriage\n", +"Vo=m*g*h1 // PE required to reach the peak \n", +"alpha=sqrt(2*m*(Vo-E)/h_bar^2)\n", +"To=16*E*(Vo-E)/Vo^2\n", +"T=To*exp(-2*alpha*a)\n", +"disp(T, 'Transmission probability is')\n", +"//clculation using h_bar=10 KJs\n", +"h_bar=10*10^3 //Js\n", +"alpha=sqrt(2*m*(Vo-E)/h_bar^2)\n", +"D=Vo^2/(4*E*(Vo-E))\n", +"T=(1+(sinh(alpha*a))^2)^-1\n", +"disp(T,'transmission probability in a universe where h_bar is 10KJs is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.12: number_of_states_with_same_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_12\n", +"//Given\n", +"x=9\n", +"for n1=1:x\n", +" for n2=1:x\n", +" for n3=1:x\n", +"y=n1^2+n2^2+n3^2 //let y=N^2=n1^2+n2^2+n3^2\n", +"if (y==41) \n", +"\n", +" mprintf('%d\t%d\t%d\n',n1 ,n2 ,n3 )\n", +" \n", +"end;\n", +"end\n", +"end\n", +"end\n", +"disp('Thus there are nine possible states')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.13: wavelengths_of_radiation.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_13\n", +"//Given\n", +"h=6.6*10^-34 //in J s\n", +"c=3*10^8 //in m/s\n", +"m=9.1*10^-31 //in Kg\n", +"e=1.6*10^-19 // in coulombs\n", +"v=2.1*10^6 // in m/s\n", +"E=m*v^2/2 //in J\n", +"E=E/e // in eV\n", +"E1=-13.6 // in eV\n", +"//change in the energy is E=En-E1\n", +"n=sqrt(-13.6/(E+E1))\n", +"printf(' the electron gets excited to %d level',n)\n", +"n=3\n", +"E3=-13.6/n^2\n", +"delta_E31=E3-E1 // in eV\n", +"delta_E31=delta_E31*e //in J\n", +"lambda_31=h*c/delta_E31\n", +"disp(lambda_31*10^9,'wavelength of emmited radiation from n=3 to n=1 in nm is')\n", +"//Another probability is transition fromm n=3 to n=2\n", +"n=2\n", +"E2=-13.6/n^2\n", +"delta_E32=E3-E2 // in eV\n", +"delta_E32=delta_E32*e // in J\n", +"lambda_32=h*c/delta_E32\n", +"disp(lambda_32*10^9,'wavelength of emmited radiation from n=3 to n=2 in nm is')\n", +"//Another probability is transition fromm n=2 to n=1\n", +"E2=-13.6/n^2\n", +"delta_E21=E2-E1 // in eV\n", +"delta_E21=delta_E21*e // in J\n", +"lambda_21=h*c/delta_E21\n", +"disp(lambda_21*10^9,'wavelength of emmited radiation from n=2 to n=1 in nm is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.14: Ionization_energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_14\n", +"//Given\n", +"Z=2 \n", +"n=1\n", +"E1=-Z^2*13.6/n^2\n", +"E1=abs(E1)\n", +"disp(E1,'Energy required to ionize He+ further in eV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.15: Fraunhofer_lines.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_15\n", +"//Given\n", +"Z=1\n", +"n1=2\n", +"n2=3\n", +"R_inf=1.0974*10^7 // in m^-1\n", +"//Let x=1/lambda\n", +"x=R_inf*Z^2*((1/n1^2)-(1/n2^2))\n", +"lambda=1/x\n", +"disp(lambda*10^10, 'Wavelength of first spectral line in Angstroms is')\n", +"n1=2\n", +"n2=4\n", +"x=R_inf*Z^2*((1/n1^2)-(1/n2^2))\n", +"lambda=1/x\n", +"disp(lambda*10^10, 'Wavelength of second spectral line in Angstroms is')\n", +"disp('These spectral lines correspond to H_alpha and H_beta lines of Hydrogen')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.16: Giant_atoms_in_space.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_16\n", +"//Given\n", +"h=6.6*10^-34 //in J s\n", +"e=1.6*10^-19 // in coulombs\n", +"E1=13.6 //in eV\n", +"E1=E1*e //in J\n", +"Z=1\n", +"n1=109\n", +"n2=110\n", +"ao=52.918*10^-12 // in m\n", +"v=Z^2*E1*((1/n1^2)-(1/n2^2))/h\n", +"disp(v*10^-6,'Frequency of radiation in MHz is')\n", +"disp('The frequency of radiation in the transition from n1=109 to n2=110 is same as that of the detected frequency .Hence, the radiation comes from excited hydrogen atoms in the give transition')\n", +"x=2*n2^2*ao\n", +"disp(x*10^6,'The sie of the atom in micro meter is')\n", +"//slight difference in the answer is due to approximations" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.1: energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_1\n", +"//Given\n", +"lambda=450*10^-9 // in nm\n", +"h=6.6*10^-34 //in J s\n", +"e=1.6*10^-19 // in coulombs\n", +"c=3*10^8 //in m/s\n", +"E_ph=h*c/lambda //in J\n", +"E_ph=E_ph/e // in eV\n", +"disp(E_ph,' Energy of blue photon in eV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.20: efficiency_of_HeNe_laser.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_20\n", +"//Given\n", +"P_out=2.5*10^-3 // in Watt\n", +"I=5*10^-3 // in Amp\n", +"V=2000 // in volts\n", +"P_in=V*I\n", +"E=(P_out/P_in)*100\n", +"disp(E,'Efficiency of the laser in % is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.21: Doppler_Broadened_Linewidth.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_21\n", +"//Given\n", +"lambda_o=632.8*10^-9 //in m\n", +"c=3*10^8 //in m/s\n", +"T=127 //in degree celcius\n", +"T=T+273 // in Kelvin\n", +"m_A=20.2*10^-3 // in Kg/mol\n", +"NA=6.023*10^23 //mol^-1\n", +"k=1.38*10^-23 //in J/K\n", +"m=m_A/NA //in Kg\n", +"vx=sqrt(k*T/m)\n", +"vo=c/lambda_o\n", +"delta_v=2*vo*vx/c\n", +"disp(delta_v*10^-9,'delta_v in GHz is')\n", +"delta_lambda=delta_v*(-lambda_o/vo)\n", +"disp(abs(delta_lambda),'delta_lambda in meters is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.2: Photoelectric_experiment.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_2\n", +"//Given\n", +"lambda_o=522*10^-9 // in nm\n", +"lambda=250*10^-9 // in nm\n", +"h=6.6*10^-34 //in J s\n", +"c=3*10^8 //in m/s\n", +"e=1.6*10^-19 //in coulombs\n", +"I=20*10^-3 //in W/cm2\n", +"I=20*10^-3*10^4 //in J/s/m2\n", +"//part(a)\n", +"phi=h*c/(lambda_o*e) //in eV\n", +"disp(phi,'Work function of sodium in eV is')\n", +"KE=h*c/(lambda*e)-phi\n", +"disp(KE,'Kinetic energy of photoemitted electrons in eV is')\n", +"J=(e*I*lambda)/(h*c)\n", +"disp(J,'Photoelectric current density in A/m2 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.4: wavelength_of_electron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_4\n", +"//Given\n", +"theta=15.2 // in degree\n", +"d=0.234 // in nm\n", +"V=100 //in V\n", +"lambda=2*d*sind(theta) //Braggs condition\n", +"disp(lambda,'Wavelength of electron in nm is')\n", +"lambda=1.226/sqrt(V) //debroglie wavelength in nm\n", +"disp(lambda,'de Broglie Wavelength of electron in nm is')\n", +"disp('de Broglie Wavelength is in excellent agreement with that determined from Braggs condition')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.5: energy.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_5\n", +"//Given\n", +"h=6.6*10^-34 //in J s\n", +"c=3*10^8 //in m/s\n", +"n=1\n", +"m=9.1*10^-31 //in Kg\n", +"a=0.1*10^-9 //in m\n", +"e=1.6*10^-19 //in coulombs\n", +"E1=(h^2*n^2)/(8*m*a^2)\n", +"E1=E1/e //in eV\n", +"disp(E1,'Ground Energy of the electron in J is')\n", +"//part(b)\n", +"n=3\n", +"E3=E1*n^2\n", +"disp(E3,'Energy required to put the electrons in third energy level in eV is')\n", +"E=E3-E1\n", +"disp(E,'Energy required to take the electron from E1 to E3 in eV is ')\n", +"lambda=h*c/(E*e)\n", +"disp(lambda,'wavelength of the required photon in nm is')\n", +"disp( 'which is an X-ray photon')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.6: separation_of_energy_levels.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_6\n", +"//Given\n", +"h=6.6*10^-34 //in J s\n", +"c=3*10^8 //in m/s\n", +"n=1\n", +"m=0.1 //in Kg\n", +"a=1 //in m\n", +"E1=(h^2*n^2)/(8*m*a^2)\n", +"v=sqrt(2*E1/m)\n", +"disp(v,'Minimum speed of the object in m/s')\n", +"//calculation of quantum number n \n", +"v=1 //in m/s\n", +"E_n=m*v^2/2\n", +"n=sqrt((8*m*a^2*E_n)/h^2)\n", +"disp(n,'Quantum number if the object is moving with a minimum speed of 1m/s is')\n", +"delta_E=(h^2/(8*m*a^2))*(2*n+1) //delta_E=E_n+1-En\n", +"disp(delta_E,'Separation of energy levels of the object moving with speed of 1 m/s in Joules is ')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.8: uncertainity_principle_on_Atomic_scale.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_8\n", +"//Given\n", +"h_bar=1.054*10^-34 // in J s\n", +"delta_x=0.1*10^-9 //in m\n", +"m_e=9.1*10^-31 //in Kg\n", +"delta_Px=h_bar/delta_x\n", +"disp(delta_Px,'uncertainity in momemtum in Kg m/s is')\n", +"delta_v=delta_Px/m_e\n", +"KE=delta_Px^2/(2*m_e)\n", +"disp(KE,'Uncertainity in Kinetic Energy in J is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 3.9: uncertainity_principle_with_macroscopic_objects.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter3\n", +"//Ex_9\n", +"//Given\n", +"h_bar=1.054*10^-34 // in J s\n", +"delta_x=1 //in m\n", +"m=0.1 //in Kg\n", +"delta_Px=h_bar/delta_x\n", +"delta_v=delta_Px/m\n", +"disp(delta_v,'minimum uncetainity in the velocity in m/s is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb new file mode 100644 index 0000000..0fa7c27 --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb @@ -0,0 +1,351 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 4: Bonding the Band Theory of Solids and Statistics" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.10: Mean_free_path_of_electrons_in_a_metal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_10\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"me=9.1*10^-31 //in Kg\n", +"u_d=43*10^-4 // in cm2/V/s\n", +"v_e=1.22*10^6 // in m/s\n", +"T=u_d*me/e\n", +"l_e=v_e*T\n", +"disp(l_e,'Mean free path of electrons in meters is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.11: Thermocouple_EMF.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_11\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"T=373 // in kelvin\n", +"To=273 // in kelvin\n", +"k=1.38*10^-23 //in m2 kg /k/s2\n", +"//from table 4.3\n", +"E_FAO= 11.6 //in eV\n", +"E_FAO=E_FAO*e //in J\n", +"x_A=2.78\n", +"E_FBO= 7.01 //in eV\n", +"E_FBO=E_FBO*e //in J\n", +"x_B=-1.79\n", +"//Mott jones Equation\n", +"V_AB=(-%pi^2*k^2/(6*e))*((x_A/E_FAO)-(x_B/E_FBO))*(T^2-To^2)\n", +"disp(V_AB*10^6,'EMF in micro volts available from Al and Cu thermocouple with the given respective temperatures at the junctions is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.13: Vacuum_tubes.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_13\n", +"//Given\n", +"phi=2.6 //in eV\n", +"e=1.6*10^-19 //in coulombs\n", +"phi=phi*e //in Joules\n", +"Be=3*10^4 //schottky coefficient in A/m2/K2\n", +"T=1600 //in degree celcius\n", +"T=T+273 //in Kelvin\n", +"k=1.38*10^-23 //m2 kg s-2 K-1\n", +"d=2*10^-3 //in m\n", +"l=4*10^-2 //in in m\n", +"//Richardson-Dushman Equation\n", +"J=Be*T^2*exp(-phi/(k*T))\n", +"A=%pi*d*l\n", +"I=J*A\n", +"disp(I,'Saturation current in Amperes if the tube is operated at 1873 kelvin is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.14: Field_Assisted_Thermionic_Emission.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_14\n", +"//Given\n", +"phi=2.6 //in eV\n", +"e=1.6*10^-19 //in coulombs\n", +"phi=phi*e //in Joules\n", +"x=1*10^-3 // distance in m\n", +"V=4*10^3 // in Volts\n", +"Be=3*10^4 //schottky coefficient in A/m2/K2\n", +"T=1600 //in degree celcius\n", +"T=T+273 //in Kelvin\n", +"k=1.38*10^-23 //m2 kg s-2 K-1\n", +"d=2*10^-3 //in m\n", +"l=4*10^-2 //in in m\n", +"A=2.5*10^-4 //in m2 //from example 12\n", +"E=V/x\n", +"beta_s=3.79*10^-5 //in eV/sqrt(V/m)\n", +"phi_eff=phi-beta_s*sqrt(E)\n", +"Io=A*Be*T^2\n", +"I1=Io*exp(-phi/(k*T))\n", +"I2=I1*exp((phi-phi_eff)*e/(k*T)) //converting phi value from joules to eV\n", +"disp(I2,'Theoretical saturation current in Amperes is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.5: Fermi_speed.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_5\n", +"//Given\n", +"E_FO=7 //in eV\n", +"e=1.6*10^-19 // in coulombs\n", +"E_FO=E_FO*e //in Joules\n", +"me=9.1*10^-31 //in Kg\n", +"v_f=sqrt(2*E_FO/me)\n", +"disp(v_f,'Speed of the conduction electrons in m/s is')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.6: Cutt_Off_wavelength.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_6\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"Eg=1.1 //in eV\n", +"Eg=Eg*e // in Joules\n", +"h=6.6*10^-34 //in Js\n", +"c=3*10^8 // in m/s\n", +"lambda=h*c/Eg\n", +"disp(lambda*10^6,'Wavelength of light that can be absorbed by an Si photodetector at Eg=1.1 eV in micro meter is')\n", +"disp('Hence the light of wavelength 1.31 micro meter and 1.55 micro meter will not be absorbed by Si and thus cannot be detected by detector')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.7: Density_of_states_in_a_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_7\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"h=6.626*10^-34 //in Js\n", +"me=9.1*10^-31 //in Kg\n", +"//let x=k*T\n", +"x=0.026 // in eV\n", +"E=5 //in ev\n", +"E=E*e // in Joules\n", +"g_E=(8*%pi*sqrt(2))*(me/h^2)^(3/2)*sqrt(E)// in J^-1*m^-3\n", +"//convesion of units\n", +"g_E=g_E*10^-6*e //in eV^-1 cm^-3\n", +"disp(g_E,'density of states at the center of the band in cm^-3*J^-1 is')\n", +"//part(b)\n", +"n_E=g_E*x // in cm^-3\n", +"disp(n_E,' No.of states per unit volume within kT about the center in cm^-3 is')\n", +"//part(c)\n", +"E=0.026 //in eV\n", +"E=E*e // in joules\n", +"g_E=(8*%pi*sqrt(2))*(me/h^2)^(3/2)*sqrt(E)// in J^-1*m^-3\n", +"//convesion of units\n", +"g_E=g_E*10^-6*e //in eV^-1 cm^-3\n", +"disp(g_E,'density of states at at kT above the band in cm^-3*J^-1 is')\n", +"//part(d)\n", +"n_E=g_E*x // in cm^-3\n", +"disp(n_E,' No.of states per unit volume within kT about the center in cm^-3 is')\n", +"//solved using the values taken from the solution of textbook" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.8: Total_number_of_states_in_a_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_8\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"h=6.626*10^-34 //in Js\n", +"me=9.1*10^-31 //in Kg\n", +"d=10.5 // in g/cm\n", +"Mat=107.9 //g/mol\n", +"NA=6.023*10^23 // mol^-1\n", +"E_ctr=5 //in ev\n", +"E_ctr=E_ctr*e // in Joules\n", +"S_band=2*(16*%pi*sqrt(2)/3)*(me/h^2)^(3/2)*(E_ctr)^(3/2)// in states m^-3\n", +"//convesion of units\n", +"S_band=S_band*10^-6 //in states cm^-3\n", +"disp(S_band,'No. of states in the band in states cm^-3 is')\n", +"n_Ag=d*NA/Mat\n", +"disp(n_Ag,'No.of atoms per unit volume in silver in atoms per cm3 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 4.9: Mean_speed_of_conduction_electrons.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter4\n", +"//Ex_9\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"h=6.626*10^-34 //in Js\n", +"me=9.1*10^-31 //in Kg\n", +"d=8.96 // in g/cm\n", +"Mat=63.5 // g/ mol \n", +"NA=6.023*10^23 // mol^-1\n", +"n=d*NA/Mat //in cm^-3\n", +"n=n*10^6 //in m^-3\n", +"E_FO=(h^2/(8*me))*(3*n/%pi)^(2/3) //in J\n", +"E_FO=E_FO/e //in eV\n", +"disp(E_FO,'Fermi energy at 0 Kelvin in eV is')\n", +"E_FO=(h^2/(8*me))*(3*n/%pi)^(2/3) //in J\n", +"v_e=sqrt(6*E_FO/(5*me))\n", +"disp(v_e,'Average speed of conduction electrons in m/s is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb new file mode 100644 index 0000000..7f841cf --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb @@ -0,0 +1,434 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: Photoconductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_11\n", +"//Given\n", +"//part(a)\n", +"h=6.63*10^-34 //in Js\n", +"c=3*10^8 // in m/s\n", +"e=1.6*10^-19 // in coulombs\n", +"ue=0.034 //in m2/V/s\n", +"uh=0.0018 //in m2/V/s\n", +"t=1*10^-3 // in seconds\n", +"L=1*10^-3 //in m\n", +"D=0.1*10^-3 //in m\n", +"W=1*10^-3 //in m\n", +"I=1// mW/cm^2\n", +"I=I*10^-3*10^4 // conversion of units to W/m^2\n", +"n=1 //quantum efficiency\n", +"lambda=450*10^-9 // in m\n", +"V=50 // in volts\n", +"//part(a)\n", +"A=L*W //in m3\n", +"EHP_ph=(A*n*I*lambda)/(h*c)\n", +"disp(EHP_ph,'No.of EHP/s generated per second is')\n", +"//part(b)\n", +"delta_sigma=e*n*I*lambda*t*(ue+uh)/(h*c*D)\n", +"disp(delta_sigma,'Photo conductivity of the sample in ohm^-1 m^-1 is')\n", +"//part(c)\n", +"A=0.1*10^-6 //m2\n", +"E=V/W\n", +"delta_J=E*delta_sigma\n", +"delta_I=A*delta_J\n", +"disp(delta_I*10^3,'Photocurrent produced in mA is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13: Diffusion_coefficient_of_electrons_in_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_13\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"T=300//in kelvin\n", +"ue=1300 //in cm2/V/s\n", +"//V=k*T/e\n", +"V=0.0259 //thermal voltage in Volts\n", +"//D=ue*k*T/e\n", +"D=ue*V\n", +"disp(D,'Diffusion coefficient of electrons at room temperature in cm2/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.17: Photogeneration_in_GaAs.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_17\n", +"//Given\n", +"Eg=1.42 //in eV\n", +"//letE=hc/lambda=hf\n", +"E=1.96 //in eV\n", +"P_L=50 //in mW\n", +"kT=0.0259 // in eV\n", +"delta_E=E-(Eg+(3/2)*kT)\n", +"P_H=(P_L/(E))*delta_E\n", +"disp(P_H,'Amount of power dissipated as heat in mW is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.18: Schottky_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_18\n", +"//Given\n", +"phi_m=4.28 //in eV\n", +"e=1.6*10^-19 // in coulombs\n", +"X=4.01 //in eV\n", +"kT=0.026 // in eV\n", +"Vf=0.1// in V\n", +"T=300//in kelvin\n", +"Be=30 //A/K2/cm2\n", +"A=0.01 //cm2\n", +"//part(a)\n", +"phi_B=phi_m-X\n", +"disp(phi_B,'Theoretical barrier height in eV')\n", +"//part(b)\n", +"phi_B=0.5 //in eV\n", +"Io=A*Be*T^2*exp(-phi_B/kT)\n", +"disp(Io*10^6,'Saturation current in micro amperes is')\n", +"//let/E=e*Vf //in eV\n", +"E=0.1 //in eV\n", +"If=Io*(exp((E/kT))-1)\n", +"disp(If*10^3,'Forward current in milli amperes is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Intrinsic_concentration_and_conduction_of_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_1\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"h=6.6*10^-34 //in J s\n", +"m=9.1*10^-31 //in Kg\n", +"me=1.08*m\n", +"mh=0.56*m\n", +"T=300 //in Kelvin\n", +"Eg=1.10 // in eV\n", +"ue=1350//in cm2/V/s\n", +"uh=450//in cm2/V/s\n", +"k=1.38*10^-23 //m2 kg s-2 K-1\n", +"Nc=2*((2*%pi*me*k*T)/h^2)^(3/2) //in m^-3\n", +"Nc=Nc*10^-6 //in cm^-3\n", +"Nv=2*((2*%pi*mh*k*T)/h^2)^(3/2) //in m^-3\n", +"Nv=Nv*10^-6 //in cm^-3\n", +"ni=sqrt(Nc*Nv)*exp(-Eg*e/(2*k*T))\n", +"disp(ni,'Intrinsic concentration of Si in cm^-3 is')\n", +"sigma=e*ni*(ue+uh)\n", +"p=1/sigma\n", +"disp(p,'Intrinsic resistivity of Si in ohm cm is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Mean_speed_of_electrons_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_2\n", +"//Given\n", +"T=300//in kelvin\n", +"k=1.38*10^-23 // in m2 kg s-2 K-1\n", +"me=9.1*10^-31 // in Kg\n", +"m=0.26*me\n", +"Ve=sqrt(3*k*T/m)\n", +"disp(Ve,'Mean speed of electrons in conduction band in m/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Resistivity_of_intrinsic_and_doped_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_3\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"ue=1350//in cm2/V/s\n", +"uh=450//in cm2/V/s\n", +"ni=1.45*10^10 //in cm^-3\n", +"L=1 //in cm\n", +"A=1 //in cm2\n", +"N_Si=5*10^22 //in cm^-3\n", +"sigma=e*ni*(ue+uh)\n", +"R=L/(sigma*A)\n", +"disp(R,'Resistance of a pure Silicon crystal in ohms is')\n", +"Nd=N_Si/10^9\n", +"n=Nd //at room temperature\n", +"p=ni^2/Nd\n", +"sigma=e*n*ue\n", +"R=L/(sigma*A)\n", +"disp(R,'Resistance in ohms of Silicon crystal when dopped with Arsenic with 1 in 10^9 is')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: compensation_doping.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_4\n", +"//Given\n", +"Na=10^17 //acceptor atoms /cm3\n", +"Nd=10^16 //donor atoms /cm3\n", +"p=Na-Nd // in cm^-3\n", +"ni=1.45*10^10 //in cm^-3\n", +"n=ni^2/p\n", +"disp(n,'Electron concentration in cm^-3')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_5\n", +"//Given\n", +"Na=2*10^17 //acceptor atoms /cm3\n", +"Nd=10^16 //acceptor atoms /cm3\n", +"ni=1.45*10^10 //in cm^-3\n", +"K=0.0259 // in eV\n", +"//since Nd>>ni\n", +"n=Nd\n", +"//let EFn-EFi=E\n", +"E=K*log(Nd/ni)\n", +"disp(E,'Position of the fermi energy w.r.t fermi energy in intrinsic Si in eV is')\n", +"//for intrinsic Si\n", +"//ni=Nc*exp(-(Ec-E_Fi)/(k*T))\n", +"//for doped Si\n", +"//Nd=Nc*exp(-(Ec-E_Fn)/(k*T))\n", +"//let x=Nd/ni\n", +"//let K=k*T\n", +"p=Na-Nd\n", +"//let E=EFp-EFi\n", +"//let n=p/ni\n", +"E=-K*log(p/ni)\n", +"disp(E,'Position of the fermi energy w.r.t fermi energy in n-type case in eV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: Saturation_and_Intrinsic_temperatures.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_7\n", +"//Given\n", +"Nd=10^15 //in cm^-3\n", +"Nc=2.8*10^19 //in cm^-3\n", +"Ti=556 // in Kelvin\n", +"k=8.62*10^-5 //in eV/K\n", +"delta_E=0.045 //in eV\n", +"T=300 //in kelvin\n", +"//part(a)\n", +"disp('From fig 5.16 the estimated temperature above which the si sample behaves as if intrinsic is 556 Kelvin')\n", +"//part(b)\n", +"Ts=delta_E/(k*log(Nc/(2*Nd)))\n", +"Nc_Ts=Nc*(Ts/T)^(3/2)\n", +"disp(Ts,'Lowest temperature in kelvin is')\n", +"//the improved temperature \n", +"Ts=delta_E/(k*log(Nc_Ts/(2*Nd)))\n", +"printf('Extrinsic range of Si is %f K to 556 K',Ts)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Compensation_Doped_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_9\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"Nd=10^17 //in cm^-3\n", +"Na=9*10^16 //in cm^-3\n", +"//part(a)\n", +"ue1=800 // at 300 kelvin ue in cm2/V/s\n", +"sigma1=e*Nd*ue1\n", +"ue2=420 // at 400 kelvin ue in cm2/V/s\n", +"sigma2=e*Nd*ue2\n", +"disp(sigma2,sigma1,'when Si sample is doped with 10^17 arsenic atoms/cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')\n", +"//part(b)\n", +"ue1=600 // at 300 kelvin ue in cm2/V/s\n", +"sigma1=e*(Nd-Na)*ue1\n", +"ue2=400 // at 400 kelvin ue in cm2/V/s\n", +"sigma2=e*(Nd-Na)*ue2\n", +"disp(sigma2,sigma1,'when n-type Si is further doped with 9*10^16 boron atoms /cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb new file mode 100644 index 0000000..e59f476 --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb @@ -0,0 +1,490 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 6: Semiconductor devices" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.10: jet_amplifier.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_10\n", +"//Given\n", +"V_GS=-1.5 //in Volts\n", +"V_GS_off=-5 //in Volts\n", +"I_DSS=10*10^-3 // in A\n", +"R_D=2000 // in ohms\n", +"I_DS=I_DSS*(1-(V_GS/V_GS_off))^2 // in A\n", +"gm=-2*sqrt(I_DSS*I_DS)/V_GS_off\n", +"Av=-gm*R_D\n", +"disp(Av,'voltage amplification for small signal is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.11: drain_current.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_11\n", +"//Given\n", +"Z=50*10^-6 //in m\n", +"L=10*10^-6 //in m\n", +"t_ox=450*10^-10 //in m\n", +"V_GS=8//in V\n", +"V_th=4//in V\n", +"V_DS=20//in V\n", +"lambda=0.01\n", +"ue=750*10^-4 //in m2/V/s\n", +"epsilon_r=3.9\n", +"epsilon_o=8.85*10^-12//F/m2\n", +"epsilon=epsilon_r*epsilon_o\n", +"K=(Z*ue*epsilon)/(2*L*t_ox)\n", +"I_DS=K*(V_GS-V_th)^2*(1+lambda*V_DS)\n", +"disp(I_DS*10^3,'drain current in mA is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.13: shot_noise.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_13\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"I=10^-3 //in A\n", +"Th=10^-6 //in s\n", +"B=1/Th //in Hz\n", +"i_sn=sqrt(2*e*I*B)\n", +"disp(i_sn,'shot noise current in amperes is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.1: Built_in_potential.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_1\n", +"//Given\n", +"//let K=kT/e\n", +"K=0.0259 //in V\n", +"Nd=10^17 //in cm^-3\n", +"Na=10^16 //in cm^-3\n", +"ni_Si=1.45*10^10 //in cm^-3\n", +"ni_Ge=2.40*10^13 //in cm^-3\n", +"ni_GaAs=1.79*10^6 //in cm^-3\n", +"//Vo=(k*T/e)*log(Nd*Na/ni^2)\n", +"Vo_Si=(K)*log(Nd*Na/ni_Si^2)\n", +"disp(Vo_Si,'Built in potential for Si in Volts is')\n", +"Vo_Ge=(K)*log(Nd*Na/ni_Ge^2)\n", +"disp(Vo_Ge,'Built in potential for Ge in Volts is')\n", +"Vo_GaAs=(K)*log(Nd*Na/ni_GaAs^2)\n", +"disp(Vo_GaAs,'Built in potential for GaAs in Volts is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.2: depletion_width.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_2\n", +"//Given\n", +"//let K=kT/e\n", +"K=0.0259 //in V\n", +"Na=10^18 //in cm^-3\n", +"Nd=10^16 //in cm^-3\n", +"e=1.6*10^-19 // in coulombs\n", +"Eo=8.85*10^-12 //in m-3 kg-1 s4 A2\n", +"Er=11.9 \n", +"E=Eo*Er\n", +"ni=1.45*10^10 //in cm^-3\n", +"//Vo=(k*T/e)*log(Nd*Na/ni^2)\n", +"Vo=(K)*log(Nd*Na/ni^2)\n", +"disp(Vo)\n", +"Nd=Nd*10^6 //in m^-3\n", +"Wo=sqrt(2*E*Vo/(e*Nd))\n", +"disp(Wo*10^6,'Depletion width in micro meters is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.3: Forward_and_Reverse_biased.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_3\n", +"//Given\n", +"//part(a)\n", +"//let K=k*T/e\n", +"K=0.0259 // in V\n", +"Te=5*10^-9 // in s\n", +"Th=417*10^-9 // in s\n", +"ue=120 //in cm2/V/s\n", +"uh=440 //in cm2/V/s\n", +"Na=5*10^18 // in cm^-3\n", +"Nd=10^16 //in cm^-3\n", +"T1=300 //in kelvin\n", +"T2=373 //in kelvin\n", +"Tg=10^-6 //in seconds\n", +"Vr=5 //in volts\n", +"ni_300=1.45*10^10 //in cm^-3 at 300K\n", +"ni_373=1.2*10^12 //in cm^-3 at 373K\n", +"A=0.01 //in cm2\n", +"e=1.6*10^-19 // in coulombs\n", +"epsilon_o=8.85*10^-12 //in F/m\n", +"epsilon_r=11.9\n", +"V=0.6 //in v\n", +"//De=k*T*ue/e\n", +"De=K*ue\n", +"Dh=K*uh\n", +"Le=sqrt(De*Te)\n", +"Lh=sqrt(Dh*Th)\n", +"disp(Le,'Diffusion length of electrons in cm is')\n", +"disp(Lh,'Diffusion length of holes in cm is')\n", +"//part(b)\n", +"//Vo=(k*T/e)*log(Nd*Na/ni^2)\n", +"Vo=K*log(Nd*Na/ni_300^2)\n", +"disp(Vo,'Built-in potential in volts is')\n", +"//part(C)\n", +"Iso_300=A*e*ni_300^2*Dh/(Lh*Nd)\n", +"//I=Iso*exp(eV/kT)\n", +"I=Iso_300*exp(V/K)\n", +"disp(I,'Current when there is a forward bias of 0.6 V at 300K in Amperes is')\n", +"//part(d)\n", +"Iso_373=Iso_300*(ni_373/ni_300)^2\n", +"I=Iso_373*exp((V/K)*(T1/T2))\n", +"disp(I,'Current when there is a forward bias of 0.6 V at 373K in Amperes is')\n", +"//part(e)\n", +"Nd=Nd*10^6 //in m^-3\n", +"epsilon=epsilon_o*epsilon_r\n", +"W=sqrt(2*epsilon*(Vo+Vr)/(e*Nd))\n", +"W=W*10^2 //in cm\n", +"ni=1.45*10^10 //in cm^-3\n", +"I_gen=e*A*W*ni/Tg\n", +"disp(I_gen,'Thermal generation current in Amperes is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.5: resistance_and_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_5\n", +"//Given\n", +"A=10^-6 //in m2\n", +"Vo=0.856 //in V\n", +"I=5*10^-3 // in Amperes\n", +"Iso=0.176*10^-12 //in Amperes\n", +"e=1.6*10^-19 // in coulombs\n", +"Eo=8.85*10^-12 //in m-3 kg-1 s4 A2\n", +"Er=11.9 \n", +"Th=417*10^-9 //in seconds\n", +"Nd=10^22 //in m^-3\n", +"//let K=kT/e\n", +"K=0.0259 //in V\n", +"//Vo=(k*T/e)*log(I/Iso)\n", +"V=(K)*log(I/Iso)\n", +"I=5 // in mA\n", +"rd=25/I\n", +"disp(rd,'Incremental diode resistance in ohms is')\n", +"E=Eo*Er\n", +"C_dep=A*sqrt((e*E*Nd)/(2*(Vo-V)))\n", +"disp(C_dep,'Depletion capacitance of the diode in Farads')\n", +"C_diff=Th*I/25\n", +"disp(C_diff,'Incremental difusion coefficient in Farads is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.6: Avalanche_breakdown.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_6\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"Nd=10^16 //in cm^-3\n", +"Ebr=4*10^5//in V/cm\n", +"epsilono=8.85*10^-12*10^-2 //in F/cm\n", +"epsilonr=11.9 \n", +"epsilon=epsilono*epsilonr\n", +"Vbr=epsilon*Ebr^2/(2*e*Nd)\n", +"disp(Vbr,'Reverse break down voltage of the Si diode in Volts is')\n", +"//part(b)\n", +"Nd=10^17 //in cm^-3\n", +"Ebr=6*10^5//in V/cm\n", +"Vbr=epsilon*Ebr^2/(2*e*Nd)\n", +"disp(Vbr,'Reverse break down voltage in Volts when phosphorous doping is incresed to 10^17 cm^-3 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.7: A_pnp_transistor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_7\n", +"//Given\n", +"//part(a)\n", +"Th=250*10^-9 //in seconds\n", +"A=0.02*10^-2 //in cm2\n", +"Av=10 //voltage gain\n", +"ni=1.45*10^10 //in cm^-3\n", +"Nd=2*10^16 //in cm^-3\n", +"W_B=2*10^-4 //in cm\n", +"uh=410 //in cm2/V/s\n", +"I_E=2.5*10^-3 //in Amperes\n", +"//let K=kT/e\n", +"K=0.0259 //in V\n", +"//Dh=(kT/e)*uh\n", +"Dh=K*uh\n", +"Tt=W_B^2/(2*Dh)\n", +"e=1.6*10^-19 // in coulombs\n", +"alpha=1-(Tt/Th)\n", +"disp(alpha,'CB current transfer ratio is')\n", +"funcprot(0)\n", +"beta=alpha/(1-alpha)\n", +"disp(beta,'current gain is')\n", +"//part(c)\n", +"I_EO=e*A*Dh*ni^2/(Nd*W_B)\n", +"//V_EB=(k*T/e)*log(I_E/I_EO)\n", +"V_EB=(K)*log(I_E/I_EO)\n", +"disp(V_EB,'V_EB in volts is')\n", +"//re=(k*T/e)/IE=25/IE(mA)\n", +"I_E=2.5 //in mA\n", +"re=25/I_E\n", +"disp(re,'small signal input resistance in ohms is')\n", +"//part(d)\n", +"R_C=Av*re\n", +"disp(R_C,'R_C in ohms is')\n", +"//part(e)\n", +"I_E=2.5*10^-3 //in Amperes\n", +"I_B=I_E*(1-alpha)\n", +"disp(I_B*10^6,'base current in micro amperes is')\n", +"//part(f)\n", +"f=1/Tt\n", +"disp(f*10^-6,'upper frequency range limit in MHz is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.8: Emitter_Injection_Efficiency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_8\n", +"//Given\n", +"//part(c)\n", +"Nd=2*10^16 //in cm^-3\n", +"Na=10^19 //in cm^-3\n", +"W_B=2*10^-4 //in cm\n", +"W_E=2*10^-4 //in cm\n", +"ue=110 //in cm2/V/s\n", +"uh=410 //in cm2/V/s\n", +"Th=250*10^-9 //in seconds\n", +"//let K=kT/e\n", +"K=0.0259 //in V\n", +"//Dh=(kT/e)*uh\n", +"Dh=K*uh\n", +"Tt=W_B^2/(2*Dh)\n", +"gamma=1/(1+((Nd*W_B*ue)/(Na*W_E*uh)))\n", +"disp(gamma,'Injection frequency is')\n", +"alpha=gamma*(1-(Tt/Th))\n", +"disp(alpha,'Modified alpha is')\n", +"beta=alpha/(1-alpha)\n", +"disp(beta,'modified current gain is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 6.9: power_and_voltage.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter6\n", +"//Ex_9\n", +"//Given\n", +"//rms output voltage\n", +"Ic=2.5 // in mA\n", +"Rc=1000 //in ohms\n", +"beta=100\n", +"vs=1//in mV\n", +"Rs=50 // in ohms\n", +"r_be=beta*25/Ic //Ic in mA\n", +"gm=Ic/25 //Ic in mA\n", +"//Av=v_ce/v_be=gm*Rc\n", +"Av=gm*Rc\n", +"v_be=vs*(r_be)/(r_be+Rs)//in mV\n", +"v_ce=Av*v_be\n", +"disp(v_ce,'rms output voltage in mV is')\n", +"v_be=v_be*10^-3 //in volts\n", +"Ap=beta*Av\n", +"P_in=v_be^2/r_be\n", +"disp(P_in*10^9,'Input power in watts is')\n", +"P_out=P_in*Ap\n", +"disp(P_out*10^6,'output power in watts is')\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb new file mode 100644 index 0000000..4dea30e --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb @@ -0,0 +1,452 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 7: Dielectric Materials and Insulation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.10: Dielectric_Breakdown_in_a_coaxial_cable.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_10\n", +"//Given\n", +"//part(C)\n", +"d=0.5 // cm\n", +"a=d/2 //in cm\n", +"t=0.5 // in cm\n", +"Ebr_X=217 // in kV/cm from table 7.5\n", +"Ebr_S=158 // in kV/cm from table 7.5\n", +"b=a+t\n", +"Vbr_X=Ebr_X*a*log(b/a)\n", +"disp(Vbr_X,'breakdown voltage of XLPE in kV is')\n", +"Vbr_S=Ebr_S*a*log(b/a)\n", +"disp(Vbr_S,'breakdown voltage of Silicone rubber in kV is')\n", +"//part(d)\n", +"//letE=epsiolon\n", +"Er_X=2.3 // for XLPE\n", +"Er_S=3.7 // for Silicone rubber\n", +"//Eair_br=Ebr\n", +"Eair_br_X=100 //in kV/cm\n", +"Eair_br_S=100 //in kV/cm\n", +"//Vair_br=Eair_br*a*log(b/a)/Er\n", +"Vair_br_X=Eair_br_X*a*log(b/a)/Er_X\n", +"disp(Vair_br_X,'Voltage for partial discharge in a microvoid for XLPE in kV is')\n", +"Vair_br_S=Eair_br_S*a*log(b/a)/Er_S\n", +"disp(Vair_br_S, 'Voltage for partial discharge in a microvoid for Silicone rubber in kV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.11: conductance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_11\n", +"//Given\n", +"//letE=epsiolon\n", +"Er_100c=2.69\n", +"Er_25c=2.60\n", +"f=1*10^3 // in Hz\n", +"w=2*%pi*f\n", +"C_25c=560*10^-12 // in Farads\n", +"//Gp=w*C*tan(delta)\n", +"//let x=tan(delta)=0.002\n", +"x=0.002\n", +"Gp=w*C_25c*x\n", +"disp(Gp,'Equivalent parallel conductance at 25 degree celcius in ohm^-1 is')\n", +"//at 100 c\n", +"x=0.01\n", +"C_100c=C_25c*Er_100c/Er_25c\n", +"Gp=w*C_100c*x\n", +"disp(Gp,'Equivalent parallel conductance at 100 degree celcius in ohm^-1 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.12: Force.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_12\n", +"//Given\n", +"Eo=8.85*10^-12//F/m2\n", +"Er=1000\n", +"D=3*10^-3 //in m\n", +"V=5000 // in V\n", +"d=200*10^-12 //in m/V\n", +"L=10*10^-3 //in mm\n", +"A=%pi*(D/2)^2\n", +"F=Eo*Er*A*V/(d*L)\n", +"disp(F,'Force required to spark the gap in Newton is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.13: frequency.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_13\n", +"//Given\n", +"fs=1 //in MHz\n", +"k=0.1\n", +"fa=fs/(sqrt(1-k^2))\n", +"disp(fa,'fa value in MHz for given fs is')\n", +"printf('thus fa-fs is only %f kHz, which means they are very close ',(fa-fs)*10^3)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.14: Quality_factor_of_the_crystal.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_14\n", +"//Given\n", +"Co=5 //in pF\n", +"fa=1.0025 //in MHz\n", +"fs=1 //in MHz\n", +"R=20 //in ohms\n", +"C=Co*((fa/fs)^2-1)\n", +"disp(C,'Capacitance value in the equivalent circuit of the crystal in pF is')\n", +"L=1/(C*(2*%pi*fs)^2)\n", +"disp(L,'Inductance value in the equivalent circuit of the crystal in Henry is')\n", +"fs=fs*10^6 //in Hz\n", +"C=C*10^-12 //in F\n", +"Q=1/(2*%pi*fs*R*C)\n", +"disp(Q,'Quality factor of the crystal is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.15: Minimum_radiation_intensity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_15\n", +"//Given\n", +"P=380*10^-6 //in C/m2/K\n", +"c=380//in J/Kg/K\n", +"//let epsilon=E\n", +"Eo=8.85*10^-12 //in F/m\n", +"Er=290\n", +"rho=7000//in Kg/m3\n", +"delta_V=0.001 //in V\n", +"delta_t=0.2 //in seconds\n", +"I=(P/(rho*c*Eo*Er))^-1*delta_V/delta_t\n", +"disp(I,'Minimum radiation intensity that can be measured in W/m2 is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.1: dielectric_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_1\n", +"//Given\n", +"NA=6.023*10^23 // in mol^-1\n", +"d=1.8 //g/cm3\n", +"Mat=39.95 //in mol^-1\n", +"epsilon_o=8.85*10^-12//F/m2\n", +"alpha_e=1.7*10^-40 //F*m2\n", +"N=NA*d/Mat //in cm^-3\n", +"N=N*10^6 // in m^-3\n", +"epsilon_r=1+(N*alpha_e/epsilon_o)\n", +"disp(epsilon_r,'Dielectric constant of solid Ar is')\n", +"//using clausius-mossotti equation\n", +"epsilon_r=(1+(2*N*alpha_e/(3*epsilon_o)))/(1-(N*alpha_e/(3*epsilon_o)))\n", +"disp(epsilon_r,'using clausius-mossotti equation, Dielectric constant of solid Ar is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.2: Electronic_Polarizability_of_covalent_solids.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_2\n", +"//Given\n", +"N=5*10^28 //in m^-3\n", +"e=1.6*10^-19 // in coulombs\n", +"Z=4\n", +"me=9.1*10^-31 //in Kg\n", +"epsilon_o=8.85*10^-12//F/m2\n", +"epsilon_r=11.9\n", +"//part(a)\n", +"alpha_e=(3*epsilon_o/N)*((epsilon_r-1)/(epsilon_r+2))\n", +"disp(alpha_e,'Electronic polarizability in F/m2')\n", +"//part(b)\n", +"//let x=E_loc/E\n", +"x=(epsilon_r+2)/3\n", +"printf('Local field is a factor of %f greater than applied field',x)\n", +"//part(c)\n", +"wo=sqrt(Z*e^2/(me*alpha_e))\n", +"fo=wo/(2*%pi)\n", +"disp(fo,'resonant frequency in Hz is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.3: dielectric_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_3\n", +"//Given\n", +"//let epsilon=E\n", +"Eo=8.85*10^-12 //in F/m\n", +"Ni=1.43*10^28//in m^-3\n", +"alpha_e_Cs=3.35*10^-40 //F m2\n", +"alpha_e_Cl=3.40*10^-40 //F m2\n", +"alpha_i=6*10^-40 //F m2\n", +"//(Er-1)/(Er+2)=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)\n", +"//let x=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)\n", +"//after few mathematical steps we get\n", +"//Er=(2*x+1)/(1-x)\n", +"x=(1/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl+Ni*alpha_i)\n", +"Er=(2*x+1)/(1-x)\n", +"disp(Er,'Dielectric constant at low frequency is')\n", +"//similarly\n", +"//let y=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-))\n", +"//after few mathematical steps we get\n", +"//Erop=(2*x+1)/(1-x)\n", +"y=(1/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl)\n", +"Erop=(2*y+1)/(1-y)\n", +"disp(Erop,'Dielectric constant at optical frequency is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.6: Dielectric_loss_per_unit_capacitance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_6\n", +"//Given\n", +"//power dissipated at a given voltage per unit capacitance depends only on w*tan(delta)\n", +"//at f=60 //in Hz.\n", +"f=60 //in Hz.\n", +"w=2*%pi*f\n", +"//let x=tan(delta)\n", +"x_PC=9*10^-4 //Ploycarbonate\n", +"x_SR=2.25*10^-2 //Silicone rubber\n", +"x_E=4.7*10^-2 //Epoxy with mineral filler\n", +"p_PC=w*x_PC\n", +"p_SR=w*x_SR\n", +"p_E=w*x_E\n", +"a=min(p_PC,p_SR,p_E)\n", +"printf('The minimum w*tan(delta) is %f which corresponds to polycarbonate',a)\n", +"disp('Hence the lowest power dissipation per unit capacitance at a given voltage corresponds to polycarbonate at 60Hz')\n", +"//at f=1 //in MHz.\n", +"f=10^6 //in Hz.\n", +"w=2*%pi*f\n", +"//let x=tan(delta)\n", +"x_PC=1*10^-2 //Ploycarbonate\n", +"x_SR=4*10^-3 //Silicone rubber\n", +"x_E=3*10^-2 //Epoxy with mineral filler\n", +"p_PC=w*x_PC\n", +"p_SR=w*x_SR\n", +"p_E=w*x_E\n", +"a=min(p_PC,p_SR,p_E)\n", +"printf('The minimum w*tan(delta) is %f which corresponds to Silicone rubber',a)\n", +"disp('Hence, the lowest power dissipation per unit capacitance at a given voltage corresponds to Silicone rubber at 1MHz')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 7.7: Dielectric_loss.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter7\n", +"//Ex_7\n", +"//Given\n", +"//at 60 Hz\n", +"f=60 //Hz\n", +"E=100*10^3*10^2 //in V/m\n", +"//values taken from table 7.3\n", +"epsilon_o=8.85*10^-12 //in F/m\n", +"epsilon_r_HLPE=2.3\n", +"epsilon_r_Alumina=8.5\n", +"//let x=tan(delta)\n", +"x_HLPE=3*10^-4\n", +"x_Alumina=1*10^-3\n", +"W_vol_HLPE=2*%pi*f*E^2*epsilon_o*epsilon_r_HLPE*x_HLPE //in W/m3\n", +"W_vol_HLPE=W_vol_HLPE/10^3 //in mW/cm3\n", +"disp(W_vol_HLPE,'Heat dissipated per unit volume of HLPE at 60 Hz in mW/cm3 is')\n", +"W_vol_Alumina=2*%pi*f*E^2*epsilon_o*epsilon_r_Alumina*x_Alumina\n", +"W_vol_Alumina=W_vol_Alumina/10^3 //in mW/cm3\n", +"disp(W_vol_Alumina, 'Heat dissipated per unit volume of Alumina at 60 Hz in mW/cm3 is')\n", +"//at 1 MHz\n", +"f=10^6 //Hz\n", +"x_HLPE=4*10^-4\n", +"x_Alumina=1*10^-3\n", +"W_vol_HLPE=2*%pi*f*E^2*epsilon_o*epsilon_r_HLPE*x_HLPE //in W/m3\n", +"W_vol_HLPE=W_vol_HLPE/10^6 //in W/cm3\n", +"disp(W_vol_HLPE,'Heat dissipated per unit volume of HLPE at 1 MHz in mW/cm3 is')\n", +"W_vol_Alumina=2*%pi*f*E^2*epsilon_o*epsilon_r_Alumina*x_Alumina\n", +"W_vol_Alumina=W_vol_Alumina/10^6 //in W/cm3\n", +"disp(W_vol_Alumina, 'Heat dissipated per unit volume of Alumina at 1 MHz in mW/cm3 is')\n", +"disp('The heats at 60Hz are small comparing to heats at 1MHz')\n", +"" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb new file mode 100644 index 0000000..3605fb5 --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb @@ -0,0 +1,127 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Magnetic properties and conductivity" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Saturation_magnetization_in_iron.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter8\n", +"//Ex_3\n", +"//Given\n", +"Mat=55.85*10^-3 //in Kg/mol\n", +"NA=6.022*10^23 // in mol^-1\n", +"p=7.86*10^3 //in kg/m3\n", +"Msat=1.75*10^6 //in A/m\n", +"funcprot(0)\n", +"beta=9.27*10^-24 //in J/tesla\n", +"n_at=p*NA/(Mat)\n", +"x=Msat/(n_at*beta)\n", +"printf('In the solid each Fe atom contributes only %f bohr magneton',x)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: Inductance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter8\n", +"//Ex_5\n", +"//Given\n", +"u_o=4*%pi*10^-7 //in H/m\n", +"u_ri=2*10^3 //\n", +"N=200 //no. of turns\n", +"d=0.005 //in m\n", +"D=2.5*10^-2 //in m\n", +"A=%pi*(d^2)/4\n", +"l=%pi*D\n", +"L=u_ri*u_o*N^2*A/l\n", +"disp(L,'Approximate inductance of the coil in Henry is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: Energy_stored_in_the_solenoid.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter8\n", +"//Ex_7\n", +"//Given\n", +"N=500 //no.of turns\n", +"B=5 //in Tesla\n", +"l=1 //in m\n", +"r=10^-3 //in m\n", +"uo=4*%pi*10^-7 //in H/m\n", +"d=10*10^-2 //in m\n", +"I=(B*l)/(uo*N)\n", +"disp(I,'current in Amperes is')\n", +"E_vol=B^2/(2*uo)\n", +"v=%pi*l*d^2/4\n", +"E=E_vol*v\n", +"disp(E,'Energy stored in the solenoid in joules is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |