summaryrefslogtreecommitdiff
path: root/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap
diff options
context:
space:
mode:
authorPrashant S2020-04-14 10:25:32 +0530
committerGitHub2020-04-14 10:25:32 +0530
commit06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch)
tree2b1df110e24ff0174830d7f825f43ff1c134d1af /Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap
parentabb52650288b08a680335531742a7126ad0fb846 (diff)
parent476705d693c7122d34f9b049fa79b935405c9b49 (diff)
downloadall-scilab-tbc-books-ipynb-master.tar.gz
all-scilab-tbc-books-ipynb-master.tar.bz2
all-scilab-tbc-books-ipynb-master.zip
Merge pull request #1 from prashantsinalkar/masterHEADmaster
Initial commit
Diffstat (limited to 'Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap')
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb388
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb514
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb590
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb351
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb434
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb490
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb452
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb127
8 files changed, 3346 insertions, 0 deletions
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb
new file mode 100644
index 0000000..43f9cb3
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/1-Elementary_Materials_Science_Concepts.ipynb
@@ -0,0 +1,388 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 1: Elementary Materials Science Concepts"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.10: concentration_of_vacancies.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.10\n",
+"//Given\n",
+"NA=6.023*10^23 //mol^-1\n",
+"d=2.33 //density of Si in g/cm3\n",
+"Mat=28.09//g/mol\n",
+"Ev=2.4 //ev/atom\n",
+"Ev=2.4*1.6*10^-19 //J/atom\n",
+"k=1.38*10^-23 //J/K\n",
+"T=300 //kelvin\n",
+"T1=1000//degree celcius\n",
+"T1=T1+273 //in kelvin\n",
+"N= (NA*d)/Mat\n",
+"//at room temperature\n",
+"nv=N*exp(-(Ev/(k*T)))\n",
+"disp(nv,'concentration of vacancies in a Si crystal at room temperature in cm^-3 is')\n",
+"//at 1000 degree celcius\n",
+"nv=N*exp(-(Ev/(k*T1)))\n",
+"disp(nv,'concentration of vacancies in a Si crystal at 1000 degree celcius in cm^-3 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.11: weight_fractions.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.11\n",
+"//Given\n",
+"//from fig 7.1\n",
+"//at 210 degree celcius\n",
+"disp('At 210 degree celcius')\n",
+"C_L=50 //CL=50% Sn\n",
+"C_alpha=18 //C_alpha=18% Sn\n",
+"Co=40 // solidification of alloy\n",
+"//lever rule\n",
+"W_alpha=(C_L-Co)/(C_L-C_alpha)\n",
+"disp(W_alpha*100,'weight fraction of alpha in the alloy is')\n",
+"W_L=1-W_alpha\n",
+"disp(W_L*100,'weight fraction of liquid phase in the alloy is')\n",
+"//at 183.5 degree celcius\n",
+"disp('At 183.5 degree celcius')\n",
+"C_L=61.9 //CL=50% Sn\n",
+"C_alpha=19.2 //C_alpha=18% Sn\n",
+"Co=40 // solidification of alloy\n",
+"//lever rule\n",
+"W_alpha=(C_L-Co)/(C_L-C_alpha)\n",
+"disp(W_alpha*100,'weight fraction of alpha in the alloy is')\n",
+"W_L=1-W_alpha\n",
+"disp(W_L*100,'weight fraction of liquid phase in the alloy is')\n",
+"//at 182.5 degree celcius\n",
+"disp('At 182.5 degree celcius')\n",
+"C_beta=97.5 //CL=50% Sn\n",
+"C_alpha=19.2 //C_alpha=18% Sn\n",
+"Co=40 // solidification of alloy\n",
+"//lever rule\n",
+"W_alpha=(C_beta-Co)/(C_beta-C_alpha)\n",
+"disp(W_alpha*100,'weight fraction of alpha in the alloy is')\n",
+"W_beta=1-W_alpha\n",
+"disp(W_beta*100,'weight fraction of beta phase in the alloy is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.1: Bond_length_and_bond_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.1\n",
+"//Given\n",
+"A=8*10^-77 // in J m^6\n",
+"B=1.12*10^-133 // in J m^12\n",
+"//lennard-Jones 6-12 potential Energy (PE)curve is E(r)=-A*r^-6+B*r^-12\n",
+"//For bonding to occur PE should be minimum, hence differentiating the PE equation and setting it to Zero at r=ro we get\n",
+"ro=(2*B/A)^(1/6)\n",
+"disp(ro,'Bond length in meters is')\n",
+"E_bond= -A*ro^-6+(B*ro^-12)//in J\n",
+"E_bond=abs(E_bond/(1.6*10^-19))\n",
+"disp(E_bond,'Bond Energy for solid argon in ev is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.2: rms_velocity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.2\n",
+"//Given\n",
+"R=8.314 // in J/mol/K\n",
+"T=27 //in degree celcius\n",
+"T=T+273 //in Kelvin\n",
+"M_at=14 //in g/mol\n",
+"//From Kinetic Theory\n",
+"V_rms=sqrt((3*R*T)/(2*M_at*10^-3))\n",
+"disp(V_rms,'rms velocity of Nitrogen molecule in atmosphere at 300K in m/s is')\n",
+"V_rmsx=V_rms/sqrt(3)\n",
+"disp(V_rmsx,'rms velocity in one direction in m/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.3: heat_capacity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.3\n",
+"//Given\n",
+"R=8.314 // in J/mol/K\n",
+"M_at=63.6 //in g/mol\n",
+"//Acc. to Dulong -Petit rule Cm=3R for NA atoms\n",
+"C_gram=3*R/M_at \n",
+"disp(C_gram,'Heat Capacity of copper per unit gram in J/g/K is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.4: speed_of_gas_with_non_interacting_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.4\n",
+"//Given\n",
+"k=1.38*10^-23 //in J/K\n",
+"m=9.1*10^-31 // in Kg\n",
+"T=300 // in Kelvin\n",
+"v_av=sqrt(8*k*T/(%pi*m))\n",
+"disp(v_av*10^-3,'Mean speed for a gas of non interacting electrons in Km is ')\n",
+"v=sqrt(2*k*T/(m))\n",
+"disp(v*10^-3,'Most probable speed for a gas of non interacting electrons in Km is')\n",
+"v_rms=sqrt(3*k*T/(m))\n",
+"disp(v_rms*10^-3,'rms velocity for a gas of non interacting electrons in Km is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.5: Minimum_rms_radio_signal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.5\n",
+"//Given\n",
+"L=100*10^-6//in Henry\n",
+"C=100 *10^-12 //in Farad\n",
+"T=300 // in Kelvin\n",
+"R=200*10^3 //in ohms\n",
+"k=1.38*10^-23 //in J/K\n",
+"fo=1/(2*%pi*sqrt(L*C))//resonant frequency\n",
+"Q=2*%pi*fo*C*R//quality factor\n",
+"B=fo/Q //Bandwidth of tuned RLC \n",
+"//Acc. to Johnson resistor noise equation\n",
+"Vrms=sqrt(4*k*T*R*B) //in volts\n",
+"Vrms=Vrms/10^-6 //in micro volts\n",
+"disp(Vrms,' Minimum rms radio signal that can be detected in micro volts is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.7: density_of_Cu.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.7\n",
+"//Given\n",
+"n=4\n",
+"M_at=63.55*10^-3//Kg/mol\n",
+"NA=6.022*10^23 //mol^-1\n",
+"R=0.128// in nm\n",
+"c=8 //no.of cornersof unit cells\n",
+"f=6 //no.of faces of unit cells\n",
+"//a\n",
+"N=c*(1/8)+f*(1/2)\n",
+"disp(N,'No. of atoms per unit cells is')\n",
+"//b\n",
+"//Lattice parameter \n",
+"a=R*2*2^(1/2)\n",
+"disp(a,'Lattice Parameter in nm is')\n",
+"a=a*10^-9 //in m\n",
+"//c\n",
+"//APF=(No.of atoms in unit cell)*(Vol. of atom)/(Vol. of unit cell)\n",
+"APF=4^2*%pi/(3*(2*sqrt(2))^3)\n",
+"disp(APF,'Atomic Packing Factor is')\n",
+"//d\n",
+"p=n*M_at/(a^3*NA) //density \n",
+"disp(p,'density of Copper in Kg/m3 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.8: miller_indices.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.8\n",
+"//Given\n",
+"a=1/%inf\n",
+"b=-1/1\n",
+"c=2/1\n",
+"p = int32([1,1,1])\n",
+"// 1/%inf = 0 ; (0/1 -1/1 2/1) hence lcm is taken for [1 1 1]\n",
+"LCM = lcm(p)\n",
+"h=a*double(LCM)\n",
+"k=b*double(LCM)\n",
+"l=c*double(LCM)\n",
+" mprintf('miller indices = %d %d %d',h,k,l)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 1.9: fractional_concentration_of_vacancies.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter1\n",
+"//Ex_1.9\n",
+"//Given\n",
+"k=1.38*10^-23 //J/K\n",
+"T=300 //kelvin\n",
+"Ev=0.75 //eV/atom\n",
+"Ev=Ev*1.6*10^-19 //in J\n",
+"T1=660//degree celcius\n",
+"T1=T1+273 //in kelvin\n",
+"//at room temperature\n",
+"//let nv/N=nv_N for convenience\n",
+"nv_N=exp(-Ev/(k*T))\n",
+"disp(nv_N,'Fractional concentration of vacancies in the aluminium crystal at room temperature is')\n",
+"//at melting temperature\n",
+"//let nv/N=nv_N for convenience\n",
+"nv_N=exp(-Ev/(k*T1))\n",
+"disp(nv_N,'Fractional concentration of vacancies in the aluminium crystal at melting temperature is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb
new file mode 100644
index 0000000..847cd31
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/2-Electrical_and_thermal_conduction_in_solids.ipynb
@@ -0,0 +1,514 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 2: Electrical and thermal conduction in solids"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.10: resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.10\n",
+"//Given\n",
+"M_Au=197\n",
+"w=0.1\n",
+"M_Cu=63.55\n",
+"p_exp=108 //n*ohm*m\n",
+"X=M_Au*w/((1-w)*M_Cu+(w*M_Au))\n",
+"C=450//n*ohm*m\n",
+"p_Au=22.8 // resistivity in n*ohm*m\n",
+"p=p_Au+C*X*(1-X) //Nordheim rule\n",
+"x=((p-p_exp)/p)*100\n",
+"disp(p,'resistivity of the alloy in n*ohm*m is')\n",
+"disp(x,'The difference in the value from experimental value in % is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.11: worst_case_resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.11\n",
+"//Given\n",
+"u=1.58*10^6 //in m/s\n",
+"N=8.5*10^28 //m^-3\n",
+"e=1.6*10^-19 // in coulombs\n",
+"me=9.1*10^-31 //in Kg\n",
+"N_I=0.01*N\n",
+"l_I=N_I^(-1/3)\n",
+"t_I=l_I/u\n",
+"p=me/(e^2*N*t_I)\n",
+"disp(p,' worst case resistivity in ohm*m')\n",
+"//slight change in answer due to computational method"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.13: effective_resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.13\n",
+"//Given\n",
+"Xd=0.15\n",
+"p_c=1*10^-7 //ohm*m\n",
+"p_eff=p_c*((1+0.5*Xd)/(1-Xd))\n",
+"disp(p_eff,'Effective resistivity in ohm m is')\n",
+"//slight change in the answer due to printing the answer "
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.14: Effective_Resistivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.14\n",
+"//Given\n",
+"Xd=0.15\n",
+"p_c=4*10^-8 //ohm*m\n",
+"p_eff=p_c((1+0.5*Xd)/(1-Xd))\n",
+"disp(p_eff,'Effective resistivity in ohm m is')\n",
+"// change in the answer due to coding"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.16: change_in_dc_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.16\n",
+"//Given\n",
+"//at f=10MHz\n",
+"a=10^-3 //in m\n",
+"f=10*10^6 //in Hz\n",
+"w=2*%pi*f\n",
+"sigma_dc=5.9*10^7 // in m^-1\n",
+"u=1.257*10^-6 //in Wb/A/m\n",
+"delta=1/sqrt(0.5*w*sigma_dc*u)\n",
+"//let r=r_ac/r_dc=a/(2*delta)\n",
+"r=a/(2*delta)\n",
+"disp(r,'Change in dc resistance of a copper wire at 10MHz is')\n",
+"//part(b)\n",
+"f=1*10^9 //in Hz\n",
+"w=2*%pi*f\n",
+"delta=1/sqrt(0.5*w*sigma_dc*u)\n",
+"//let r=r_ac/r_dc=a/(2*delta)\n",
+"r=a/(2*delta)\n",
+"disp(r,'Change in dc resistance of a copper wire at 1GHz is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.18: drift_mobility.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.18\n",
+"//Given\n",
+"sigma=5.9*10^7 //ohm^-1*m^-2\n",
+"RH=-0.55*10^-10//m^3/A/s\n",
+"u_d=-RH*sigma\n",
+"disp(u_d,'drift mobility of electrons in copper in m2/V/s')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.19: concentration_of_conduction_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.19\n",
+"//Given\n",
+"no=8.5*10^28 // in m3\n",
+"e=1.6*10^-19 //in coulombs\n",
+"u_d=3.2*10^-3 //m2/V/s\n",
+"sigma=5.9*10^7 //in ohm^-1*m^-1\n",
+"n=sigma/(e*u_d)\n",
+"disp(n,'concentration of conduction electrons in copper in m^-3 is')\n",
+"A=n/no\n",
+"disp(A,'Average number of electrons contributed per atom is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.20: Thermal_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.20\n",
+"//Given\n",
+"sigma=1*10^7 //ohm^-1*m^-1\n",
+"T=300// kelvin\n",
+"C_WFL=2.44*10^-8 //W*ohm/K2\n",
+"X_d=0.15\n",
+"K_c=sigma*T*C_WFL\n",
+"K_eff=K_c*((1-X_d)/(1+0.5*X_d))\n",
+"disp(K_eff,'Thermal Conductiity at room temperature in W/m/K')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.21: temperature_drop.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.21\n",
+"//Given\n",
+"sigma=50*10^-9//in ohm\n",
+"T=300 //kelvin\n",
+"C_WFL=2.45*10^-8 //in W*ohm/K2 \n",
+"L=30*10^-3 //in m\n",
+"d=20*10^-3 //in m\n",
+"Q=10 //in W\n",
+"//Wiedemann-Franz Lorenz Law\n",
+"k=sigma^-1*T*C_WFL //thermal conductivity\n",
+"A=%pi*(d^2)/4\n",
+"theta=L/(k*A) //thermal resistance\n",
+"delta_T=theta*Q\n",
+"disp(delta_T,'Temperature drop across the disk in degree celcius is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.2: drift_mobility_of_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.2\n",
+"//Given\n",
+"sigma=5.9*10^5 //in ohm^-1*cm^-1\n",
+"e=1.6*10^-19 //Coulombs\n",
+"d=8.93 //g/cm^3\n",
+"Mat=63.5//g/mol\n",
+"NA=6.02*10^23//mol^-1\n",
+"n=d*NA/Mat\n",
+"u_d=sigma/(e*n)//electron drift mobility\n",
+"disp(u_d,'Drift mobility of electrons in copper at room temperature in cm2/V/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.3: Applied_electric_field.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.3\n",
+"//Given\n",
+"u_d=3.2*10^-3 //in m^2/V/s\n",
+"u=1.2*10^6 //m/s\n",
+"v_dx=0.1*u\n",
+"// drift velocity of conduction electrons is v_dx=u_d*E\n",
+"E=v_dx/u_d\n",
+"disp(E,'Applied electric field in V/m is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.4: percentage_change_in_the_resistance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.4\n",
+"//Given\n",
+"T_summer=20 //in degree celcius\n",
+"T_summer=T_summer+273 //in kelvin\n",
+"T_winter=-30 //in degree celcius\n",
+"T_winter=T_winter+273 //in kelvin\n",
+"//we have R is proportional to A*T\n",
+"//Hence\n",
+"R=(T_summer-T_winter)/T_summer\n",
+"R=R*100\n",
+"disp(R,' Percentage change in the resistance of a pure metalwire from Saskatchewans summer too winter in % is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.5: drift_mobility_and_conductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.5\n",
+"//Given\n",
+"d=8.96*10^3 //in Kg/m3\n",
+"NA=6.02*10^23 //mol^-1\n",
+"Mat=63.56*10^-3 //Kg/mol\n",
+"k=1.38*10^-23 //J/K\n",
+"T=300 //kelvin\n",
+"e=1.6*10^-19 //in couloumbs\n",
+"m_e= 9.1*10^-31 //in Kg\n",
+"u=1.25*10^6//m/s\n",
+"f=4*10^12 //frequency in s^-1\n",
+"Ns=d*NA/Mat// atomic concentration in m^-3\n",
+"M=Mat/NA\n",
+"w=2*%pi*f //angular frequency of the vibration \n",
+"//by virtue of Equipartition of energy theorem\n",
+"a=sqrt((2*k*T)/(M*w^2))\n",
+"S=%pi*a^2 //cross sectional area\n",
+"t=1/(S*u*Ns) //mean free time\n",
+"u_d=e*t/m_e //drift velocity\n",
+"u_d=u_d*10^4 //change in units\n",
+"Ns=Ns/10^6 //in cm^-3\n",
+"sigma=e*Ns*u_d //conductivity\n",
+"disp(u_d,'drift velocity of electrons in m2/V/s is')\n",
+"disp(sigma,' conductivity of copper in ohm^-1/cm is')\n",
+"//slight change in the answer is due to the computation method, otherwise answer is matching with textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.7: TCR_and_n.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.7\n",
+"//Given\n",
+"n=1.2\n",
+"To=293 //in kelvin\n",
+"alpha_o=n/To\n",
+"printf('Theoretical value of TCR at 293K is %f which is in well agreement with exprimental value',alpha_o)\n",
+"alpha_o=0.00393 //experimental value\n",
+"n=alpha_o*To\n",
+"disp(n,'Theoretical value of n at 293K is in well agreement with exprimental value')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 2.9: temperature_of_the_filament.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter2\n",
+"//Ex_2.9\n",
+"//Given\n",
+"P=40 //in Watt\n",
+"V=120 //in Volts\n",
+"D=33*10^-6 //in meter\n",
+"L=0.381 //in meter\n",
+"To=293 // in kelvin\n",
+"P_radiated=40//in watt\n",
+"epsilon=0.35\n",
+"sigma_s=5.6*10^-8 //in W/m2/K4\n",
+"I=P/V\n",
+"A=%pi*D^2/4\n",
+"R=V/I // resistance of the filament\n",
+"p_t=R*A/L // resistivity of tungsten\n",
+"p_o=5.51*10^-8 // resistivity at room temperature in ohm*m\n",
+"//p_t=p_o*(T/To)^1.2\n",
+"T=To*(p_t/p_o)^(1/1.2)\n",
+"disp(T,'Temperature of the bulb when it is operated at the rated voltage in Kelvin is ')\n",
+"A=L*%pi*D\n",
+"//Stefans Law\n",
+"T=(P_radiated/(epsilon*sigma_s*A))^(1/4)\n",
+"disp(T,'Temperature of the filament in kelvin is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb
new file mode 100644
index 0000000..83cedd9
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/3-Elementary_Quantum_Physics.ipynb
@@ -0,0 +1,590 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3: Elementary Quantum Physics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.10: Transmission_coefficient.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_10\n",
+"//Given\n",
+"h_bar=1.054*10^-34 // in J s\n",
+"m=9.1*10^-31 //in Kg\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Vo=10 //in ev\n",
+"Vo=Vo*e //in J\n",
+"E=7 // in eV\n",
+"E=E*e // in J\n",
+"a=5*10^-9 // in m\n",
+"alpha=sqrt(2*m*(Vo-E)/h_bar^2)\n",
+"To=16*E*(Vo-E)/Vo^2\n",
+"T=To*exp(-2*alpha*a)\n",
+"disp(T,'Transmission coefficient of condution electrons in copper is')\n",
+"a=1*10^-9 // in m\n",
+"T=To*exp(-2*alpha*a)\n",
+"disp(T,'Transmission coefficient if the oxide barrier is 1 nm is')\n",
+"// slight change in the answer due to approximations in alpha value"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.11: significance_of_small_h.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_11\n",
+"//Given\n",
+"h_bar=1.054*10^-34 // in J s\n",
+"m=100// in Kg\n",
+"g=10 // in m/s2\n",
+"h=10 // in m\n",
+"h1=15 // in m\n",
+"a=10 // in m\n",
+"E=m*g*h //total energy of carriage\n",
+"Vo=m*g*h1 // PE required to reach the peak \n",
+"alpha=sqrt(2*m*(Vo-E)/h_bar^2)\n",
+"To=16*E*(Vo-E)/Vo^2\n",
+"T=To*exp(-2*alpha*a)\n",
+"disp(T, 'Transmission probability is')\n",
+"//clculation using h_bar=10 KJs\n",
+"h_bar=10*10^3 //Js\n",
+"alpha=sqrt(2*m*(Vo-E)/h_bar^2)\n",
+"D=Vo^2/(4*E*(Vo-E))\n",
+"T=(1+(sinh(alpha*a))^2)^-1\n",
+"disp(T,'transmission probability in a universe where h_bar is 10KJs is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.12: number_of_states_with_same_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_12\n",
+"//Given\n",
+"x=9\n",
+"for n1=1:x\n",
+" for n2=1:x\n",
+" for n3=1:x\n",
+"y=n1^2+n2^2+n3^2 //let y=N^2=n1^2+n2^2+n3^2\n",
+"if (y==41) \n",
+"\n",
+" mprintf('%d\t%d\t%d\n',n1 ,n2 ,n3 )\n",
+" \n",
+"end;\n",
+"end\n",
+"end\n",
+"end\n",
+"disp('Thus there are nine possible states')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.13: wavelengths_of_radiation.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_13\n",
+"//Given\n",
+"h=6.6*10^-34 //in J s\n",
+"c=3*10^8 //in m/s\n",
+"m=9.1*10^-31 //in Kg\n",
+"e=1.6*10^-19 // in coulombs\n",
+"v=2.1*10^6 // in m/s\n",
+"E=m*v^2/2 //in J\n",
+"E=E/e // in eV\n",
+"E1=-13.6 // in eV\n",
+"//change in the energy is E=En-E1\n",
+"n=sqrt(-13.6/(E+E1))\n",
+"printf(' the electron gets excited to %d level',n)\n",
+"n=3\n",
+"E3=-13.6/n^2\n",
+"delta_E31=E3-E1 // in eV\n",
+"delta_E31=delta_E31*e //in J\n",
+"lambda_31=h*c/delta_E31\n",
+"disp(lambda_31*10^9,'wavelength of emmited radiation from n=3 to n=1 in nm is')\n",
+"//Another probability is transition fromm n=3 to n=2\n",
+"n=2\n",
+"E2=-13.6/n^2\n",
+"delta_E32=E3-E2 // in eV\n",
+"delta_E32=delta_E32*e // in J\n",
+"lambda_32=h*c/delta_E32\n",
+"disp(lambda_32*10^9,'wavelength of emmited radiation from n=3 to n=2 in nm is')\n",
+"//Another probability is transition fromm n=2 to n=1\n",
+"E2=-13.6/n^2\n",
+"delta_E21=E2-E1 // in eV\n",
+"delta_E21=delta_E21*e // in J\n",
+"lambda_21=h*c/delta_E21\n",
+"disp(lambda_21*10^9,'wavelength of emmited radiation from n=2 to n=1 in nm is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.14: Ionization_energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_14\n",
+"//Given\n",
+"Z=2 \n",
+"n=1\n",
+"E1=-Z^2*13.6/n^2\n",
+"E1=abs(E1)\n",
+"disp(E1,'Energy required to ionize He+ further in eV is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.15: Fraunhofer_lines.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_15\n",
+"//Given\n",
+"Z=1\n",
+"n1=2\n",
+"n2=3\n",
+"R_inf=1.0974*10^7 // in m^-1\n",
+"//Let x=1/lambda\n",
+"x=R_inf*Z^2*((1/n1^2)-(1/n2^2))\n",
+"lambda=1/x\n",
+"disp(lambda*10^10, 'Wavelength of first spectral line in Angstroms is')\n",
+"n1=2\n",
+"n2=4\n",
+"x=R_inf*Z^2*((1/n1^2)-(1/n2^2))\n",
+"lambda=1/x\n",
+"disp(lambda*10^10, 'Wavelength of second spectral line in Angstroms is')\n",
+"disp('These spectral lines correspond to H_alpha and H_beta lines of Hydrogen')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.16: Giant_atoms_in_space.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_16\n",
+"//Given\n",
+"h=6.6*10^-34 //in J s\n",
+"e=1.6*10^-19 // in coulombs\n",
+"E1=13.6 //in eV\n",
+"E1=E1*e //in J\n",
+"Z=1\n",
+"n1=109\n",
+"n2=110\n",
+"ao=52.918*10^-12 // in m\n",
+"v=Z^2*E1*((1/n1^2)-(1/n2^2))/h\n",
+"disp(v*10^-6,'Frequency of radiation in MHz is')\n",
+"disp('The frequency of radiation in the transition from n1=109 to n2=110 is same as that of the detected frequency .Hence, the radiation comes from excited hydrogen atoms in the give transition')\n",
+"x=2*n2^2*ao\n",
+"disp(x*10^6,'The sie of the atom in micro meter is')\n",
+"//slight difference in the answer is due to approximations"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.1: energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_1\n",
+"//Given\n",
+"lambda=450*10^-9 // in nm\n",
+"h=6.6*10^-34 //in J s\n",
+"e=1.6*10^-19 // in coulombs\n",
+"c=3*10^8 //in m/s\n",
+"E_ph=h*c/lambda //in J\n",
+"E_ph=E_ph/e // in eV\n",
+"disp(E_ph,' Energy of blue photon in eV is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.20: efficiency_of_HeNe_laser.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_20\n",
+"//Given\n",
+"P_out=2.5*10^-3 // in Watt\n",
+"I=5*10^-3 // in Amp\n",
+"V=2000 // in volts\n",
+"P_in=V*I\n",
+"E=(P_out/P_in)*100\n",
+"disp(E,'Efficiency of the laser in % is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.21: Doppler_Broadened_Linewidth.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_21\n",
+"//Given\n",
+"lambda_o=632.8*10^-9 //in m\n",
+"c=3*10^8 //in m/s\n",
+"T=127 //in degree celcius\n",
+"T=T+273 // in Kelvin\n",
+"m_A=20.2*10^-3 // in Kg/mol\n",
+"NA=6.023*10^23 //mol^-1\n",
+"k=1.38*10^-23 //in J/K\n",
+"m=m_A/NA //in Kg\n",
+"vx=sqrt(k*T/m)\n",
+"vo=c/lambda_o\n",
+"delta_v=2*vo*vx/c\n",
+"disp(delta_v*10^-9,'delta_v in GHz is')\n",
+"delta_lambda=delta_v*(-lambda_o/vo)\n",
+"disp(abs(delta_lambda),'delta_lambda in meters is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.2: Photoelectric_experiment.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_2\n",
+"//Given\n",
+"lambda_o=522*10^-9 // in nm\n",
+"lambda=250*10^-9 // in nm\n",
+"h=6.6*10^-34 //in J s\n",
+"c=3*10^8 //in m/s\n",
+"e=1.6*10^-19 //in coulombs\n",
+"I=20*10^-3 //in W/cm2\n",
+"I=20*10^-3*10^4 //in J/s/m2\n",
+"//part(a)\n",
+"phi=h*c/(lambda_o*e) //in eV\n",
+"disp(phi,'Work function of sodium in eV is')\n",
+"KE=h*c/(lambda*e)-phi\n",
+"disp(KE,'Kinetic energy of photoemitted electrons in eV is')\n",
+"J=(e*I*lambda)/(h*c)\n",
+"disp(J,'Photoelectric current density in A/m2 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.4: wavelength_of_electron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_4\n",
+"//Given\n",
+"theta=15.2 // in degree\n",
+"d=0.234 // in nm\n",
+"V=100 //in V\n",
+"lambda=2*d*sind(theta) //Braggs condition\n",
+"disp(lambda,'Wavelength of electron in nm is')\n",
+"lambda=1.226/sqrt(V) //debroglie wavelength in nm\n",
+"disp(lambda,'de Broglie Wavelength of electron in nm is')\n",
+"disp('de Broglie Wavelength is in excellent agreement with that determined from Braggs condition')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.5: energy.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_5\n",
+"//Given\n",
+"h=6.6*10^-34 //in J s\n",
+"c=3*10^8 //in m/s\n",
+"n=1\n",
+"m=9.1*10^-31 //in Kg\n",
+"a=0.1*10^-9 //in m\n",
+"e=1.6*10^-19 //in coulombs\n",
+"E1=(h^2*n^2)/(8*m*a^2)\n",
+"E1=E1/e //in eV\n",
+"disp(E1,'Ground Energy of the electron in J is')\n",
+"//part(b)\n",
+"n=3\n",
+"E3=E1*n^2\n",
+"disp(E3,'Energy required to put the electrons in third energy level in eV is')\n",
+"E=E3-E1\n",
+"disp(E,'Energy required to take the electron from E1 to E3 in eV is ')\n",
+"lambda=h*c/(E*e)\n",
+"disp(lambda,'wavelength of the required photon in nm is')\n",
+"disp( 'which is an X-ray photon')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.6: separation_of_energy_levels.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_6\n",
+"//Given\n",
+"h=6.6*10^-34 //in J s\n",
+"c=3*10^8 //in m/s\n",
+"n=1\n",
+"m=0.1 //in Kg\n",
+"a=1 //in m\n",
+"E1=(h^2*n^2)/(8*m*a^2)\n",
+"v=sqrt(2*E1/m)\n",
+"disp(v,'Minimum speed of the object in m/s')\n",
+"//calculation of quantum number n \n",
+"v=1 //in m/s\n",
+"E_n=m*v^2/2\n",
+"n=sqrt((8*m*a^2*E_n)/h^2)\n",
+"disp(n,'Quantum number if the object is moving with a minimum speed of 1m/s is')\n",
+"delta_E=(h^2/(8*m*a^2))*(2*n+1) //delta_E=E_n+1-En\n",
+"disp(delta_E,'Separation of energy levels of the object moving with speed of 1 m/s in Joules is ')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.8: uncertainity_principle_on_Atomic_scale.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_8\n",
+"//Given\n",
+"h_bar=1.054*10^-34 // in J s\n",
+"delta_x=0.1*10^-9 //in m\n",
+"m_e=9.1*10^-31 //in Kg\n",
+"delta_Px=h_bar/delta_x\n",
+"disp(delta_Px,'uncertainity in momemtum in Kg m/s is')\n",
+"delta_v=delta_Px/m_e\n",
+"KE=delta_Px^2/(2*m_e)\n",
+"disp(KE,'Uncertainity in Kinetic Energy in J is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 3.9: uncertainity_principle_with_macroscopic_objects.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter3\n",
+"//Ex_9\n",
+"//Given\n",
+"h_bar=1.054*10^-34 // in J s\n",
+"delta_x=1 //in m\n",
+"m=0.1 //in Kg\n",
+"delta_Px=h_bar/delta_x\n",
+"delta_v=delta_Px/m\n",
+"disp(delta_v,'minimum uncetainity in the velocity in m/s is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb
new file mode 100644
index 0000000..0fa7c27
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/4-Bonding_the_Band_Theory_of_Solids_and_Statistics.ipynb
@@ -0,0 +1,351 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4: Bonding the Band Theory of Solids and Statistics"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.10: Mean_free_path_of_electrons_in_a_metal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_10\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"me=9.1*10^-31 //in Kg\n",
+"u_d=43*10^-4 // in cm2/V/s\n",
+"v_e=1.22*10^6 // in m/s\n",
+"T=u_d*me/e\n",
+"l_e=v_e*T\n",
+"disp(l_e,'Mean free path of electrons in meters is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.11: Thermocouple_EMF.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_11\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"T=373 // in kelvin\n",
+"To=273 // in kelvin\n",
+"k=1.38*10^-23 //in m2 kg /k/s2\n",
+"//from table 4.3\n",
+"E_FAO= 11.6 //in eV\n",
+"E_FAO=E_FAO*e //in J\n",
+"x_A=2.78\n",
+"E_FBO= 7.01 //in eV\n",
+"E_FBO=E_FBO*e //in J\n",
+"x_B=-1.79\n",
+"//Mott jones Equation\n",
+"V_AB=(-%pi^2*k^2/(6*e))*((x_A/E_FAO)-(x_B/E_FBO))*(T^2-To^2)\n",
+"disp(V_AB*10^6,'EMF in micro volts available from Al and Cu thermocouple with the given respective temperatures at the junctions is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.13: Vacuum_tubes.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_13\n",
+"//Given\n",
+"phi=2.6 //in eV\n",
+"e=1.6*10^-19 //in coulombs\n",
+"phi=phi*e //in Joules\n",
+"Be=3*10^4 //schottky coefficient in A/m2/K2\n",
+"T=1600 //in degree celcius\n",
+"T=T+273 //in Kelvin\n",
+"k=1.38*10^-23 //m2 kg s-2 K-1\n",
+"d=2*10^-3 //in m\n",
+"l=4*10^-2 //in in m\n",
+"//Richardson-Dushman Equation\n",
+"J=Be*T^2*exp(-phi/(k*T))\n",
+"A=%pi*d*l\n",
+"I=J*A\n",
+"disp(I,'Saturation current in Amperes if the tube is operated at 1873 kelvin is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.14: Field_Assisted_Thermionic_Emission.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_14\n",
+"//Given\n",
+"phi=2.6 //in eV\n",
+"e=1.6*10^-19 //in coulombs\n",
+"phi=phi*e //in Joules\n",
+"x=1*10^-3 // distance in m\n",
+"V=4*10^3 // in Volts\n",
+"Be=3*10^4 //schottky coefficient in A/m2/K2\n",
+"T=1600 //in degree celcius\n",
+"T=T+273 //in Kelvin\n",
+"k=1.38*10^-23 //m2 kg s-2 K-1\n",
+"d=2*10^-3 //in m\n",
+"l=4*10^-2 //in in m\n",
+"A=2.5*10^-4 //in m2 //from example 12\n",
+"E=V/x\n",
+"beta_s=3.79*10^-5 //in eV/sqrt(V/m)\n",
+"phi_eff=phi-beta_s*sqrt(E)\n",
+"Io=A*Be*T^2\n",
+"I1=Io*exp(-phi/(k*T))\n",
+"I2=I1*exp((phi-phi_eff)*e/(k*T)) //converting phi value from joules to eV\n",
+"disp(I2,'Theoretical saturation current in Amperes is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5: Fermi_speed.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_5\n",
+"//Given\n",
+"E_FO=7 //in eV\n",
+"e=1.6*10^-19 // in coulombs\n",
+"E_FO=E_FO*e //in Joules\n",
+"me=9.1*10^-31 //in Kg\n",
+"v_f=sqrt(2*E_FO/me)\n",
+"disp(v_f,'Speed of the conduction electrons in m/s is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6: Cutt_Off_wavelength.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_6\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Eg=1.1 //in eV\n",
+"Eg=Eg*e // in Joules\n",
+"h=6.6*10^-34 //in Js\n",
+"c=3*10^8 // in m/s\n",
+"lambda=h*c/Eg\n",
+"disp(lambda*10^6,'Wavelength of light that can be absorbed by an Si photodetector at Eg=1.1 eV in micro meter is')\n",
+"disp('Hence the light of wavelength 1.31 micro meter and 1.55 micro meter will not be absorbed by Si and thus cannot be detected by detector')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7: Density_of_states_in_a_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_7\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"h=6.626*10^-34 //in Js\n",
+"me=9.1*10^-31 //in Kg\n",
+"//let x=k*T\n",
+"x=0.026 // in eV\n",
+"E=5 //in ev\n",
+"E=E*e // in Joules\n",
+"g_E=(8*%pi*sqrt(2))*(me/h^2)^(3/2)*sqrt(E)// in J^-1*m^-3\n",
+"//convesion of units\n",
+"g_E=g_E*10^-6*e //in eV^-1 cm^-3\n",
+"disp(g_E,'density of states at the center of the band in cm^-3*J^-1 is')\n",
+"//part(b)\n",
+"n_E=g_E*x // in cm^-3\n",
+"disp(n_E,' No.of states per unit volume within kT about the center in cm^-3 is')\n",
+"//part(c)\n",
+"E=0.026 //in eV\n",
+"E=E*e // in joules\n",
+"g_E=(8*%pi*sqrt(2))*(me/h^2)^(3/2)*sqrt(E)// in J^-1*m^-3\n",
+"//convesion of units\n",
+"g_E=g_E*10^-6*e //in eV^-1 cm^-3\n",
+"disp(g_E,'density of states at at kT above the band in cm^-3*J^-1 is')\n",
+"//part(d)\n",
+"n_E=g_E*x // in cm^-3\n",
+"disp(n_E,' No.of states per unit volume within kT about the center in cm^-3 is')\n",
+"//solved using the values taken from the solution of textbook"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8: Total_number_of_states_in_a_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_8\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"h=6.626*10^-34 //in Js\n",
+"me=9.1*10^-31 //in Kg\n",
+"d=10.5 // in g/cm\n",
+"Mat=107.9 //g/mol\n",
+"NA=6.023*10^23 // mol^-1\n",
+"E_ctr=5 //in ev\n",
+"E_ctr=E_ctr*e // in Joules\n",
+"S_band=2*(16*%pi*sqrt(2)/3)*(me/h^2)^(3/2)*(E_ctr)^(3/2)// in states m^-3\n",
+"//convesion of units\n",
+"S_band=S_band*10^-6 //in states cm^-3\n",
+"disp(S_band,'No. of states in the band in states cm^-3 is')\n",
+"n_Ag=d*NA/Mat\n",
+"disp(n_Ag,'No.of atoms per unit volume in silver in atoms per cm3 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9: Mean_speed_of_conduction_electrons.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter4\n",
+"//Ex_9\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"h=6.626*10^-34 //in Js\n",
+"me=9.1*10^-31 //in Kg\n",
+"d=8.96 // in g/cm\n",
+"Mat=63.5 // g/ mol \n",
+"NA=6.023*10^23 // mol^-1\n",
+"n=d*NA/Mat //in cm^-3\n",
+"n=n*10^6 //in m^-3\n",
+"E_FO=(h^2/(8*me))*(3*n/%pi)^(2/3) //in J\n",
+"E_FO=E_FO/e //in eV\n",
+"disp(E_FO,'Fermi energy at 0 Kelvin in eV is')\n",
+"E_FO=(h^2/(8*me))*(3*n/%pi)^(2/3) //in J\n",
+"v_e=sqrt(6*E_FO/(5*me))\n",
+"disp(v_e,'Average speed of conduction electrons in m/s is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb
new file mode 100644
index 0000000..7f841cf
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb
@@ -0,0 +1,434 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: Photoconductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_11\n",
+"//Given\n",
+"//part(a)\n",
+"h=6.63*10^-34 //in Js\n",
+"c=3*10^8 // in m/s\n",
+"e=1.6*10^-19 // in coulombs\n",
+"ue=0.034 //in m2/V/s\n",
+"uh=0.0018 //in m2/V/s\n",
+"t=1*10^-3 // in seconds\n",
+"L=1*10^-3 //in m\n",
+"D=0.1*10^-3 //in m\n",
+"W=1*10^-3 //in m\n",
+"I=1// mW/cm^2\n",
+"I=I*10^-3*10^4 // conversion of units to W/m^2\n",
+"n=1 //quantum efficiency\n",
+"lambda=450*10^-9 // in m\n",
+"V=50 // in volts\n",
+"//part(a)\n",
+"A=L*W //in m3\n",
+"EHP_ph=(A*n*I*lambda)/(h*c)\n",
+"disp(EHP_ph,'No.of EHP/s generated per second is')\n",
+"//part(b)\n",
+"delta_sigma=e*n*I*lambda*t*(ue+uh)/(h*c*D)\n",
+"disp(delta_sigma,'Photo conductivity of the sample in ohm^-1 m^-1 is')\n",
+"//part(c)\n",
+"A=0.1*10^-6 //m2\n",
+"E=V/W\n",
+"delta_J=E*delta_sigma\n",
+"delta_I=A*delta_J\n",
+"disp(delta_I*10^3,'Photocurrent produced in mA is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: Diffusion_coefficient_of_electrons_in_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_13\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"T=300//in kelvin\n",
+"ue=1300 //in cm2/V/s\n",
+"//V=k*T/e\n",
+"V=0.0259 //thermal voltage in Volts\n",
+"//D=ue*k*T/e\n",
+"D=ue*V\n",
+"disp(D,'Diffusion coefficient of electrons at room temperature in cm2/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: Photogeneration_in_GaAs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_17\n",
+"//Given\n",
+"Eg=1.42 //in eV\n",
+"//letE=hc/lambda=hf\n",
+"E=1.96 //in eV\n",
+"P_L=50 //in mW\n",
+"kT=0.0259 // in eV\n",
+"delta_E=E-(Eg+(3/2)*kT)\n",
+"P_H=(P_L/(E))*delta_E\n",
+"disp(P_H,'Amount of power dissipated as heat in mW is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: Schottky_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_18\n",
+"//Given\n",
+"phi_m=4.28 //in eV\n",
+"e=1.6*10^-19 // in coulombs\n",
+"X=4.01 //in eV\n",
+"kT=0.026 // in eV\n",
+"Vf=0.1// in V\n",
+"T=300//in kelvin\n",
+"Be=30 //A/K2/cm2\n",
+"A=0.01 //cm2\n",
+"//part(a)\n",
+"phi_B=phi_m-X\n",
+"disp(phi_B,'Theoretical barrier height in eV')\n",
+"//part(b)\n",
+"phi_B=0.5 //in eV\n",
+"Io=A*Be*T^2*exp(-phi_B/kT)\n",
+"disp(Io*10^6,'Saturation current in micro amperes is')\n",
+"//let/E=e*Vf //in eV\n",
+"E=0.1 //in eV\n",
+"If=Io*(exp((E/kT))-1)\n",
+"disp(If*10^3,'Forward current in milli amperes is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Intrinsic_concentration_and_conduction_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_1\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"h=6.6*10^-34 //in J s\n",
+"m=9.1*10^-31 //in Kg\n",
+"me=1.08*m\n",
+"mh=0.56*m\n",
+"T=300 //in Kelvin\n",
+"Eg=1.10 // in eV\n",
+"ue=1350//in cm2/V/s\n",
+"uh=450//in cm2/V/s\n",
+"k=1.38*10^-23 //m2 kg s-2 K-1\n",
+"Nc=2*((2*%pi*me*k*T)/h^2)^(3/2) //in m^-3\n",
+"Nc=Nc*10^-6 //in cm^-3\n",
+"Nv=2*((2*%pi*mh*k*T)/h^2)^(3/2) //in m^-3\n",
+"Nv=Nv*10^-6 //in cm^-3\n",
+"ni=sqrt(Nc*Nv)*exp(-Eg*e/(2*k*T))\n",
+"disp(ni,'Intrinsic concentration of Si in cm^-3 is')\n",
+"sigma=e*ni*(ue+uh)\n",
+"p=1/sigma\n",
+"disp(p,'Intrinsic resistivity of Si in ohm cm is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Mean_speed_of_electrons_in_conduction_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_2\n",
+"//Given\n",
+"T=300//in kelvin\n",
+"k=1.38*10^-23 // in m2 kg s-2 K-1\n",
+"me=9.1*10^-31 // in Kg\n",
+"m=0.26*me\n",
+"Ve=sqrt(3*k*T/m)\n",
+"disp(Ve,'Mean speed of electrons in conduction band in m/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Resistivity_of_intrinsic_and_doped_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_3\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"ue=1350//in cm2/V/s\n",
+"uh=450//in cm2/V/s\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"L=1 //in cm\n",
+"A=1 //in cm2\n",
+"N_Si=5*10^22 //in cm^-3\n",
+"sigma=e*ni*(ue+uh)\n",
+"R=L/(sigma*A)\n",
+"disp(R,'Resistance of a pure Silicon crystal in ohms is')\n",
+"Nd=N_Si/10^9\n",
+"n=Nd //at room temperature\n",
+"p=ni^2/Nd\n",
+"sigma=e*n*ue\n",
+"R=L/(sigma*A)\n",
+"disp(R,'Resistance in ohms of Silicon crystal when dopped with Arsenic with 1 in 10^9 is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: compensation_doping.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_4\n",
+"//Given\n",
+"Na=10^17 //acceptor atoms /cm3\n",
+"Nd=10^16 //donor atoms /cm3\n",
+"p=Na-Nd // in cm^-3\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"n=ni^2/p\n",
+"disp(n,'Electron concentration in cm^-3')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_5\n",
+"//Given\n",
+"Na=2*10^17 //acceptor atoms /cm3\n",
+"Nd=10^16 //acceptor atoms /cm3\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"K=0.0259 // in eV\n",
+"//since Nd>>ni\n",
+"n=Nd\n",
+"//let EFn-EFi=E\n",
+"E=K*log(Nd/ni)\n",
+"disp(E,'Position of the fermi energy w.r.t fermi energy in intrinsic Si in eV is')\n",
+"//for intrinsic Si\n",
+"//ni=Nc*exp(-(Ec-E_Fi)/(k*T))\n",
+"//for doped Si\n",
+"//Nd=Nc*exp(-(Ec-E_Fn)/(k*T))\n",
+"//let x=Nd/ni\n",
+"//let K=k*T\n",
+"p=Na-Nd\n",
+"//let E=EFp-EFi\n",
+"//let n=p/ni\n",
+"E=-K*log(p/ni)\n",
+"disp(E,'Position of the fermi energy w.r.t fermi energy in n-type case in eV is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Saturation_and_Intrinsic_temperatures.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_7\n",
+"//Given\n",
+"Nd=10^15 //in cm^-3\n",
+"Nc=2.8*10^19 //in cm^-3\n",
+"Ti=556 // in Kelvin\n",
+"k=8.62*10^-5 //in eV/K\n",
+"delta_E=0.045 //in eV\n",
+"T=300 //in kelvin\n",
+"//part(a)\n",
+"disp('From fig 5.16 the estimated temperature above which the si sample behaves as if intrinsic is 556 Kelvin')\n",
+"//part(b)\n",
+"Ts=delta_E/(k*log(Nc/(2*Nd)))\n",
+"Nc_Ts=Nc*(Ts/T)^(3/2)\n",
+"disp(Ts,'Lowest temperature in kelvin is')\n",
+"//the improved temperature \n",
+"Ts=delta_E/(k*log(Nc_Ts/(2*Nd)))\n",
+"printf('Extrinsic range of Si is %f K to 556 K',Ts)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Compensation_Doped_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_9\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Nd=10^17 //in cm^-3\n",
+"Na=9*10^16 //in cm^-3\n",
+"//part(a)\n",
+"ue1=800 // at 300 kelvin ue in cm2/V/s\n",
+"sigma1=e*Nd*ue1\n",
+"ue2=420 // at 400 kelvin ue in cm2/V/s\n",
+"sigma2=e*Nd*ue2\n",
+"disp(sigma2,sigma1,'when Si sample is doped with 10^17 arsenic atoms/cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')\n",
+"//part(b)\n",
+"ue1=600 // at 300 kelvin ue in cm2/V/s\n",
+"sigma1=e*(Nd-Na)*ue1\n",
+"ue2=400 // at 400 kelvin ue in cm2/V/s\n",
+"sigma2=e*(Nd-Na)*ue2\n",
+"disp(sigma2,sigma1,'when n-type Si is further doped with 9*10^16 boron atoms /cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb
new file mode 100644
index 0000000..e59f476
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/6-Semiconductor_devices.ipynb
@@ -0,0 +1,490 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 6: Semiconductor devices"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.10: jet_amplifier.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_10\n",
+"//Given\n",
+"V_GS=-1.5 //in Volts\n",
+"V_GS_off=-5 //in Volts\n",
+"I_DSS=10*10^-3 // in A\n",
+"R_D=2000 // in ohms\n",
+"I_DS=I_DSS*(1-(V_GS/V_GS_off))^2 // in A\n",
+"gm=-2*sqrt(I_DSS*I_DS)/V_GS_off\n",
+"Av=-gm*R_D\n",
+"disp(Av,'voltage amplification for small signal is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.11: drain_current.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_11\n",
+"//Given\n",
+"Z=50*10^-6 //in m\n",
+"L=10*10^-6 //in m\n",
+"t_ox=450*10^-10 //in m\n",
+"V_GS=8//in V\n",
+"V_th=4//in V\n",
+"V_DS=20//in V\n",
+"lambda=0.01\n",
+"ue=750*10^-4 //in m2/V/s\n",
+"epsilon_r=3.9\n",
+"epsilon_o=8.85*10^-12//F/m2\n",
+"epsilon=epsilon_r*epsilon_o\n",
+"K=(Z*ue*epsilon)/(2*L*t_ox)\n",
+"I_DS=K*(V_GS-V_th)^2*(1+lambda*V_DS)\n",
+"disp(I_DS*10^3,'drain current in mA is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.13: shot_noise.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_13\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"I=10^-3 //in A\n",
+"Th=10^-6 //in s\n",
+"B=1/Th //in Hz\n",
+"i_sn=sqrt(2*e*I*B)\n",
+"disp(i_sn,'shot noise current in amperes is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.1: Built_in_potential.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_1\n",
+"//Given\n",
+"//let K=kT/e\n",
+"K=0.0259 //in V\n",
+"Nd=10^17 //in cm^-3\n",
+"Na=10^16 //in cm^-3\n",
+"ni_Si=1.45*10^10 //in cm^-3\n",
+"ni_Ge=2.40*10^13 //in cm^-3\n",
+"ni_GaAs=1.79*10^6 //in cm^-3\n",
+"//Vo=(k*T/e)*log(Nd*Na/ni^2)\n",
+"Vo_Si=(K)*log(Nd*Na/ni_Si^2)\n",
+"disp(Vo_Si,'Built in potential for Si in Volts is')\n",
+"Vo_Ge=(K)*log(Nd*Na/ni_Ge^2)\n",
+"disp(Vo_Ge,'Built in potential for Ge in Volts is')\n",
+"Vo_GaAs=(K)*log(Nd*Na/ni_GaAs^2)\n",
+"disp(Vo_GaAs,'Built in potential for GaAs in Volts is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.2: depletion_width.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_2\n",
+"//Given\n",
+"//let K=kT/e\n",
+"K=0.0259 //in V\n",
+"Na=10^18 //in cm^-3\n",
+"Nd=10^16 //in cm^-3\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Eo=8.85*10^-12 //in m-3 kg-1 s4 A2\n",
+"Er=11.9 \n",
+"E=Eo*Er\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"//Vo=(k*T/e)*log(Nd*Na/ni^2)\n",
+"Vo=(K)*log(Nd*Na/ni^2)\n",
+"disp(Vo)\n",
+"Nd=Nd*10^6 //in m^-3\n",
+"Wo=sqrt(2*E*Vo/(e*Nd))\n",
+"disp(Wo*10^6,'Depletion width in micro meters is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.3: Forward_and_Reverse_biased.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_3\n",
+"//Given\n",
+"//part(a)\n",
+"//let K=k*T/e\n",
+"K=0.0259 // in V\n",
+"Te=5*10^-9 // in s\n",
+"Th=417*10^-9 // in s\n",
+"ue=120 //in cm2/V/s\n",
+"uh=440 //in cm2/V/s\n",
+"Na=5*10^18 // in cm^-3\n",
+"Nd=10^16 //in cm^-3\n",
+"T1=300 //in kelvin\n",
+"T2=373 //in kelvin\n",
+"Tg=10^-6 //in seconds\n",
+"Vr=5 //in volts\n",
+"ni_300=1.45*10^10 //in cm^-3 at 300K\n",
+"ni_373=1.2*10^12 //in cm^-3 at 373K\n",
+"A=0.01 //in cm2\n",
+"e=1.6*10^-19 // in coulombs\n",
+"epsilon_o=8.85*10^-12 //in F/m\n",
+"epsilon_r=11.9\n",
+"V=0.6 //in v\n",
+"//De=k*T*ue/e\n",
+"De=K*ue\n",
+"Dh=K*uh\n",
+"Le=sqrt(De*Te)\n",
+"Lh=sqrt(Dh*Th)\n",
+"disp(Le,'Diffusion length of electrons in cm is')\n",
+"disp(Lh,'Diffusion length of holes in cm is')\n",
+"//part(b)\n",
+"//Vo=(k*T/e)*log(Nd*Na/ni^2)\n",
+"Vo=K*log(Nd*Na/ni_300^2)\n",
+"disp(Vo,'Built-in potential in volts is')\n",
+"//part(C)\n",
+"Iso_300=A*e*ni_300^2*Dh/(Lh*Nd)\n",
+"//I=Iso*exp(eV/kT)\n",
+"I=Iso_300*exp(V/K)\n",
+"disp(I,'Current when there is a forward bias of 0.6 V at 300K in Amperes is')\n",
+"//part(d)\n",
+"Iso_373=Iso_300*(ni_373/ni_300)^2\n",
+"I=Iso_373*exp((V/K)*(T1/T2))\n",
+"disp(I,'Current when there is a forward bias of 0.6 V at 373K in Amperes is')\n",
+"//part(e)\n",
+"Nd=Nd*10^6 //in m^-3\n",
+"epsilon=epsilon_o*epsilon_r\n",
+"W=sqrt(2*epsilon*(Vo+Vr)/(e*Nd))\n",
+"W=W*10^2 //in cm\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"I_gen=e*A*W*ni/Tg\n",
+"disp(I_gen,'Thermal generation current in Amperes is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.5: resistance_and_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_5\n",
+"//Given\n",
+"A=10^-6 //in m2\n",
+"Vo=0.856 //in V\n",
+"I=5*10^-3 // in Amperes\n",
+"Iso=0.176*10^-12 //in Amperes\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Eo=8.85*10^-12 //in m-3 kg-1 s4 A2\n",
+"Er=11.9 \n",
+"Th=417*10^-9 //in seconds\n",
+"Nd=10^22 //in m^-3\n",
+"//let K=kT/e\n",
+"K=0.0259 //in V\n",
+"//Vo=(k*T/e)*log(I/Iso)\n",
+"V=(K)*log(I/Iso)\n",
+"I=5 // in mA\n",
+"rd=25/I\n",
+"disp(rd,'Incremental diode resistance in ohms is')\n",
+"E=Eo*Er\n",
+"C_dep=A*sqrt((e*E*Nd)/(2*(Vo-V)))\n",
+"disp(C_dep,'Depletion capacitance of the diode in Farads')\n",
+"C_diff=Th*I/25\n",
+"disp(C_diff,'Incremental difusion coefficient in Farads is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.6: Avalanche_breakdown.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_6\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Nd=10^16 //in cm^-3\n",
+"Ebr=4*10^5//in V/cm\n",
+"epsilono=8.85*10^-12*10^-2 //in F/cm\n",
+"epsilonr=11.9 \n",
+"epsilon=epsilono*epsilonr\n",
+"Vbr=epsilon*Ebr^2/(2*e*Nd)\n",
+"disp(Vbr,'Reverse break down voltage of the Si diode in Volts is')\n",
+"//part(b)\n",
+"Nd=10^17 //in cm^-3\n",
+"Ebr=6*10^5//in V/cm\n",
+"Vbr=epsilon*Ebr^2/(2*e*Nd)\n",
+"disp(Vbr,'Reverse break down voltage in Volts when phosphorous doping is incresed to 10^17 cm^-3 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.7: A_pnp_transistor.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_7\n",
+"//Given\n",
+"//part(a)\n",
+"Th=250*10^-9 //in seconds\n",
+"A=0.02*10^-2 //in cm2\n",
+"Av=10 //voltage gain\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"Nd=2*10^16 //in cm^-3\n",
+"W_B=2*10^-4 //in cm\n",
+"uh=410 //in cm2/V/s\n",
+"I_E=2.5*10^-3 //in Amperes\n",
+"//let K=kT/e\n",
+"K=0.0259 //in V\n",
+"//Dh=(kT/e)*uh\n",
+"Dh=K*uh\n",
+"Tt=W_B^2/(2*Dh)\n",
+"e=1.6*10^-19 // in coulombs\n",
+"alpha=1-(Tt/Th)\n",
+"disp(alpha,'CB current transfer ratio is')\n",
+"funcprot(0)\n",
+"beta=alpha/(1-alpha)\n",
+"disp(beta,'current gain is')\n",
+"//part(c)\n",
+"I_EO=e*A*Dh*ni^2/(Nd*W_B)\n",
+"//V_EB=(k*T/e)*log(I_E/I_EO)\n",
+"V_EB=(K)*log(I_E/I_EO)\n",
+"disp(V_EB,'V_EB in volts is')\n",
+"//re=(k*T/e)/IE=25/IE(mA)\n",
+"I_E=2.5 //in mA\n",
+"re=25/I_E\n",
+"disp(re,'small signal input resistance in ohms is')\n",
+"//part(d)\n",
+"R_C=Av*re\n",
+"disp(R_C,'R_C in ohms is')\n",
+"//part(e)\n",
+"I_E=2.5*10^-3 //in Amperes\n",
+"I_B=I_E*(1-alpha)\n",
+"disp(I_B*10^6,'base current in micro amperes is')\n",
+"//part(f)\n",
+"f=1/Tt\n",
+"disp(f*10^-6,'upper frequency range limit in MHz is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.8: Emitter_Injection_Efficiency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_8\n",
+"//Given\n",
+"//part(c)\n",
+"Nd=2*10^16 //in cm^-3\n",
+"Na=10^19 //in cm^-3\n",
+"W_B=2*10^-4 //in cm\n",
+"W_E=2*10^-4 //in cm\n",
+"ue=110 //in cm2/V/s\n",
+"uh=410 //in cm2/V/s\n",
+"Th=250*10^-9 //in seconds\n",
+"//let K=kT/e\n",
+"K=0.0259 //in V\n",
+"//Dh=(kT/e)*uh\n",
+"Dh=K*uh\n",
+"Tt=W_B^2/(2*Dh)\n",
+"gamma=1/(1+((Nd*W_B*ue)/(Na*W_E*uh)))\n",
+"disp(gamma,'Injection frequency is')\n",
+"alpha=gamma*(1-(Tt/Th))\n",
+"disp(alpha,'Modified alpha is')\n",
+"beta=alpha/(1-alpha)\n",
+"disp(beta,'modified current gain is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 6.9: power_and_voltage.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter6\n",
+"//Ex_9\n",
+"//Given\n",
+"//rms output voltage\n",
+"Ic=2.5 // in mA\n",
+"Rc=1000 //in ohms\n",
+"beta=100\n",
+"vs=1//in mV\n",
+"Rs=50 // in ohms\n",
+"r_be=beta*25/Ic //Ic in mA\n",
+"gm=Ic/25 //Ic in mA\n",
+"//Av=v_ce/v_be=gm*Rc\n",
+"Av=gm*Rc\n",
+"v_be=vs*(r_be)/(r_be+Rs)//in mV\n",
+"v_ce=Av*v_be\n",
+"disp(v_ce,'rms output voltage in mV is')\n",
+"v_be=v_be*10^-3 //in volts\n",
+"Ap=beta*Av\n",
+"P_in=v_be^2/r_be\n",
+"disp(P_in*10^9,'Input power in watts is')\n",
+"P_out=P_in*Ap\n",
+"disp(P_out*10^6,'output power in watts is')\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb
new file mode 100644
index 0000000..4dea30e
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/7-Dielectric_Materials_and_Insulation.ipynb
@@ -0,0 +1,452 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 7: Dielectric Materials and Insulation"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.10: Dielectric_Breakdown_in_a_coaxial_cable.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_10\n",
+"//Given\n",
+"//part(C)\n",
+"d=0.5 // cm\n",
+"a=d/2 //in cm\n",
+"t=0.5 // in cm\n",
+"Ebr_X=217 // in kV/cm from table 7.5\n",
+"Ebr_S=158 // in kV/cm from table 7.5\n",
+"b=a+t\n",
+"Vbr_X=Ebr_X*a*log(b/a)\n",
+"disp(Vbr_X,'breakdown voltage of XLPE in kV is')\n",
+"Vbr_S=Ebr_S*a*log(b/a)\n",
+"disp(Vbr_S,'breakdown voltage of Silicone rubber in kV is')\n",
+"//part(d)\n",
+"//letE=epsiolon\n",
+"Er_X=2.3 // for XLPE\n",
+"Er_S=3.7 // for Silicone rubber\n",
+"//Eair_br=Ebr\n",
+"Eair_br_X=100 //in kV/cm\n",
+"Eair_br_S=100 //in kV/cm\n",
+"//Vair_br=Eair_br*a*log(b/a)/Er\n",
+"Vair_br_X=Eair_br_X*a*log(b/a)/Er_X\n",
+"disp(Vair_br_X,'Voltage for partial discharge in a microvoid for XLPE in kV is')\n",
+"Vair_br_S=Eair_br_S*a*log(b/a)/Er_S\n",
+"disp(Vair_br_S, 'Voltage for partial discharge in a microvoid for Silicone rubber in kV is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.11: conductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_11\n",
+"//Given\n",
+"//letE=epsiolon\n",
+"Er_100c=2.69\n",
+"Er_25c=2.60\n",
+"f=1*10^3 // in Hz\n",
+"w=2*%pi*f\n",
+"C_25c=560*10^-12 // in Farads\n",
+"//Gp=w*C*tan(delta)\n",
+"//let x=tan(delta)=0.002\n",
+"x=0.002\n",
+"Gp=w*C_25c*x\n",
+"disp(Gp,'Equivalent parallel conductance at 25 degree celcius in ohm^-1 is')\n",
+"//at 100 c\n",
+"x=0.01\n",
+"C_100c=C_25c*Er_100c/Er_25c\n",
+"Gp=w*C_100c*x\n",
+"disp(Gp,'Equivalent parallel conductance at 100 degree celcius in ohm^-1 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.12: Force.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_12\n",
+"//Given\n",
+"Eo=8.85*10^-12//F/m2\n",
+"Er=1000\n",
+"D=3*10^-3 //in m\n",
+"V=5000 // in V\n",
+"d=200*10^-12 //in m/V\n",
+"L=10*10^-3 //in mm\n",
+"A=%pi*(D/2)^2\n",
+"F=Eo*Er*A*V/(d*L)\n",
+"disp(F,'Force required to spark the gap in Newton is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.13: frequency.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_13\n",
+"//Given\n",
+"fs=1 //in MHz\n",
+"k=0.1\n",
+"fa=fs/(sqrt(1-k^2))\n",
+"disp(fa,'fa value in MHz for given fs is')\n",
+"printf('thus fa-fs is only %f kHz, which means they are very close ',(fa-fs)*10^3)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.14: Quality_factor_of_the_crystal.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_14\n",
+"//Given\n",
+"Co=5 //in pF\n",
+"fa=1.0025 //in MHz\n",
+"fs=1 //in MHz\n",
+"R=20 //in ohms\n",
+"C=Co*((fa/fs)^2-1)\n",
+"disp(C,'Capacitance value in the equivalent circuit of the crystal in pF is')\n",
+"L=1/(C*(2*%pi*fs)^2)\n",
+"disp(L,'Inductance value in the equivalent circuit of the crystal in Henry is')\n",
+"fs=fs*10^6 //in Hz\n",
+"C=C*10^-12 //in F\n",
+"Q=1/(2*%pi*fs*R*C)\n",
+"disp(Q,'Quality factor of the crystal is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.15: Minimum_radiation_intensity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_15\n",
+"//Given\n",
+"P=380*10^-6 //in C/m2/K\n",
+"c=380//in J/Kg/K\n",
+"//let epsilon=E\n",
+"Eo=8.85*10^-12 //in F/m\n",
+"Er=290\n",
+"rho=7000//in Kg/m3\n",
+"delta_V=0.001 //in V\n",
+"delta_t=0.2 //in seconds\n",
+"I=(P/(rho*c*Eo*Er))^-1*delta_V/delta_t\n",
+"disp(I,'Minimum radiation intensity that can be measured in W/m2 is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.1: dielectric_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_1\n",
+"//Given\n",
+"NA=6.023*10^23 // in mol^-1\n",
+"d=1.8 //g/cm3\n",
+"Mat=39.95 //in mol^-1\n",
+"epsilon_o=8.85*10^-12//F/m2\n",
+"alpha_e=1.7*10^-40 //F*m2\n",
+"N=NA*d/Mat //in cm^-3\n",
+"N=N*10^6 // in m^-3\n",
+"epsilon_r=1+(N*alpha_e/epsilon_o)\n",
+"disp(epsilon_r,'Dielectric constant of solid Ar is')\n",
+"//using clausius-mossotti equation\n",
+"epsilon_r=(1+(2*N*alpha_e/(3*epsilon_o)))/(1-(N*alpha_e/(3*epsilon_o)))\n",
+"disp(epsilon_r,'using clausius-mossotti equation, Dielectric constant of solid Ar is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.2: Electronic_Polarizability_of_covalent_solids.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_2\n",
+"//Given\n",
+"N=5*10^28 //in m^-3\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Z=4\n",
+"me=9.1*10^-31 //in Kg\n",
+"epsilon_o=8.85*10^-12//F/m2\n",
+"epsilon_r=11.9\n",
+"//part(a)\n",
+"alpha_e=(3*epsilon_o/N)*((epsilon_r-1)/(epsilon_r+2))\n",
+"disp(alpha_e,'Electronic polarizability in F/m2')\n",
+"//part(b)\n",
+"//let x=E_loc/E\n",
+"x=(epsilon_r+2)/3\n",
+"printf('Local field is a factor of %f greater than applied field',x)\n",
+"//part(c)\n",
+"wo=sqrt(Z*e^2/(me*alpha_e))\n",
+"fo=wo/(2*%pi)\n",
+"disp(fo,'resonant frequency in Hz is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.3: dielectric_constant.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_3\n",
+"//Given\n",
+"//let epsilon=E\n",
+"Eo=8.85*10^-12 //in F/m\n",
+"Ni=1.43*10^28//in m^-3\n",
+"alpha_e_Cs=3.35*10^-40 //F m2\n",
+"alpha_e_Cl=3.40*10^-40 //F m2\n",
+"alpha_i=6*10^-40 //F m2\n",
+"//(Er-1)/(Er+2)=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)\n",
+"//let x=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-)+Ni*alpha_i)\n",
+"//after few mathematical steps we get\n",
+"//Er=(2*x+1)/(1-x)\n",
+"x=(1/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl+Ni*alpha_i)\n",
+"Er=(2*x+1)/(1-x)\n",
+"disp(Er,'Dielectric constant at low frequency is')\n",
+"//similarly\n",
+"//let y=(1/(3*E0))*(Ni*alpha_e(Cs+)+Ni*alpha_e(Cl-))\n",
+"//after few mathematical steps we get\n",
+"//Erop=(2*x+1)/(1-x)\n",
+"y=(1/(3*Eo))*(Ni*alpha_e_Cs+Ni*alpha_e_Cl)\n",
+"Erop=(2*y+1)/(1-y)\n",
+"disp(Erop,'Dielectric constant at optical frequency is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.6: Dielectric_loss_per_unit_capacitance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_6\n",
+"//Given\n",
+"//power dissipated at a given voltage per unit capacitance depends only on w*tan(delta)\n",
+"//at f=60 //in Hz.\n",
+"f=60 //in Hz.\n",
+"w=2*%pi*f\n",
+"//let x=tan(delta)\n",
+"x_PC=9*10^-4 //Ploycarbonate\n",
+"x_SR=2.25*10^-2 //Silicone rubber\n",
+"x_E=4.7*10^-2 //Epoxy with mineral filler\n",
+"p_PC=w*x_PC\n",
+"p_SR=w*x_SR\n",
+"p_E=w*x_E\n",
+"a=min(p_PC,p_SR,p_E)\n",
+"printf('The minimum w*tan(delta) is %f which corresponds to polycarbonate',a)\n",
+"disp('Hence the lowest power dissipation per unit capacitance at a given voltage corresponds to polycarbonate at 60Hz')\n",
+"//at f=1 //in MHz.\n",
+"f=10^6 //in Hz.\n",
+"w=2*%pi*f\n",
+"//let x=tan(delta)\n",
+"x_PC=1*10^-2 //Ploycarbonate\n",
+"x_SR=4*10^-3 //Silicone rubber\n",
+"x_E=3*10^-2 //Epoxy with mineral filler\n",
+"p_PC=w*x_PC\n",
+"p_SR=w*x_SR\n",
+"p_E=w*x_E\n",
+"a=min(p_PC,p_SR,p_E)\n",
+"printf('The minimum w*tan(delta) is %f which corresponds to Silicone rubber',a)\n",
+"disp('Hence, the lowest power dissipation per unit capacitance at a given voltage corresponds to Silicone rubber at 1MHz')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 7.7: Dielectric_loss.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter7\n",
+"//Ex_7\n",
+"//Given\n",
+"//at 60 Hz\n",
+"f=60 //Hz\n",
+"E=100*10^3*10^2 //in V/m\n",
+"//values taken from table 7.3\n",
+"epsilon_o=8.85*10^-12 //in F/m\n",
+"epsilon_r_HLPE=2.3\n",
+"epsilon_r_Alumina=8.5\n",
+"//let x=tan(delta)\n",
+"x_HLPE=3*10^-4\n",
+"x_Alumina=1*10^-3\n",
+"W_vol_HLPE=2*%pi*f*E^2*epsilon_o*epsilon_r_HLPE*x_HLPE //in W/m3\n",
+"W_vol_HLPE=W_vol_HLPE/10^3 //in mW/cm3\n",
+"disp(W_vol_HLPE,'Heat dissipated per unit volume of HLPE at 60 Hz in mW/cm3 is')\n",
+"W_vol_Alumina=2*%pi*f*E^2*epsilon_o*epsilon_r_Alumina*x_Alumina\n",
+"W_vol_Alumina=W_vol_Alumina/10^3 //in mW/cm3\n",
+"disp(W_vol_Alumina, 'Heat dissipated per unit volume of Alumina at 60 Hz in mW/cm3 is')\n",
+"//at 1 MHz\n",
+"f=10^6 //Hz\n",
+"x_HLPE=4*10^-4\n",
+"x_Alumina=1*10^-3\n",
+"W_vol_HLPE=2*%pi*f*E^2*epsilon_o*epsilon_r_HLPE*x_HLPE //in W/m3\n",
+"W_vol_HLPE=W_vol_HLPE/10^6 //in W/cm3\n",
+"disp(W_vol_HLPE,'Heat dissipated per unit volume of HLPE at 1 MHz in mW/cm3 is')\n",
+"W_vol_Alumina=2*%pi*f*E^2*epsilon_o*epsilon_r_Alumina*x_Alumina\n",
+"W_vol_Alumina=W_vol_Alumina/10^6 //in W/cm3\n",
+"disp(W_vol_Alumina, 'Heat dissipated per unit volume of Alumina at 1 MHz in mW/cm3 is')\n",
+"disp('The heats at 60Hz are small comparing to heats at 1MHz')\n",
+""
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb
new file mode 100644
index 0000000..3605fb5
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/8-Magnetic_properties_and_conductivity.ipynb
@@ -0,0 +1,127 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 8: Magnetic properties and conductivity"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.3: Saturation_magnetization_in_iron.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter8\n",
+"//Ex_3\n",
+"//Given\n",
+"Mat=55.85*10^-3 //in Kg/mol\n",
+"NA=6.022*10^23 // in mol^-1\n",
+"p=7.86*10^3 //in kg/m3\n",
+"Msat=1.75*10^6 //in A/m\n",
+"funcprot(0)\n",
+"beta=9.27*10^-24 //in J/tesla\n",
+"n_at=p*NA/(Mat)\n",
+"x=Msat/(n_at*beta)\n",
+"printf('In the solid each Fe atom contributes only %f bohr magneton',x)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.5: Inductance.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter8\n",
+"//Ex_5\n",
+"//Given\n",
+"u_o=4*%pi*10^-7 //in H/m\n",
+"u_ri=2*10^3 //\n",
+"N=200 //no. of turns\n",
+"d=0.005 //in m\n",
+"D=2.5*10^-2 //in m\n",
+"A=%pi*(d^2)/4\n",
+"l=%pi*D\n",
+"L=u_ri*u_o*N^2*A/l\n",
+"disp(L,'Approximate inductance of the coil in Henry is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 8.7: Energy_stored_in_the_solenoid.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter8\n",
+"//Ex_7\n",
+"//Given\n",
+"N=500 //no.of turns\n",
+"B=5 //in Tesla\n",
+"l=1 //in m\n",
+"r=10^-3 //in m\n",
+"uo=4*%pi*10^-7 //in H/m\n",
+"d=10*10^-2 //in m\n",
+"I=(B*l)/(uo*N)\n",
+"disp(I,'current in Amperes is')\n",
+"E_vol=B^2/(2*uo)\n",
+"v=%pi*l*d^2/4\n",
+"E=E_vol*v\n",
+"disp(E,'Energy stored in the solenoid in joules is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}