summaryrefslogtreecommitdiff
path: root/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb')
-rw-r--r--Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb434
1 files changed, 434 insertions, 0 deletions
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb
new file mode 100644
index 0000000..7f841cf
--- /dev/null
+++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb
@@ -0,0 +1,434 @@
+{
+"cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 5: Semiconductors"
+ ]
+ },
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.11: Photoconductivity.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_11\n",
+"//Given\n",
+"//part(a)\n",
+"h=6.63*10^-34 //in Js\n",
+"c=3*10^8 // in m/s\n",
+"e=1.6*10^-19 // in coulombs\n",
+"ue=0.034 //in m2/V/s\n",
+"uh=0.0018 //in m2/V/s\n",
+"t=1*10^-3 // in seconds\n",
+"L=1*10^-3 //in m\n",
+"D=0.1*10^-3 //in m\n",
+"W=1*10^-3 //in m\n",
+"I=1// mW/cm^2\n",
+"I=I*10^-3*10^4 // conversion of units to W/m^2\n",
+"n=1 //quantum efficiency\n",
+"lambda=450*10^-9 // in m\n",
+"V=50 // in volts\n",
+"//part(a)\n",
+"A=L*W //in m3\n",
+"EHP_ph=(A*n*I*lambda)/(h*c)\n",
+"disp(EHP_ph,'No.of EHP/s generated per second is')\n",
+"//part(b)\n",
+"delta_sigma=e*n*I*lambda*t*(ue+uh)/(h*c*D)\n",
+"disp(delta_sigma,'Photo conductivity of the sample in ohm^-1 m^-1 is')\n",
+"//part(c)\n",
+"A=0.1*10^-6 //m2\n",
+"E=V/W\n",
+"delta_J=E*delta_sigma\n",
+"delta_I=A*delta_J\n",
+"disp(delta_I*10^3,'Photocurrent produced in mA is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.13: Diffusion_coefficient_of_electrons_in_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_13\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"T=300//in kelvin\n",
+"ue=1300 //in cm2/V/s\n",
+"//V=k*T/e\n",
+"V=0.0259 //thermal voltage in Volts\n",
+"//D=ue*k*T/e\n",
+"D=ue*V\n",
+"disp(D,'Diffusion coefficient of electrons at room temperature in cm2/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.17: Photogeneration_in_GaAs.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_17\n",
+"//Given\n",
+"Eg=1.42 //in eV\n",
+"//letE=hc/lambda=hf\n",
+"E=1.96 //in eV\n",
+"P_L=50 //in mW\n",
+"kT=0.0259 // in eV\n",
+"delta_E=E-(Eg+(3/2)*kT)\n",
+"P_H=(P_L/(E))*delta_E\n",
+"disp(P_H,'Amount of power dissipated as heat in mW is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.18: Schottky_diode.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_18\n",
+"//Given\n",
+"phi_m=4.28 //in eV\n",
+"e=1.6*10^-19 // in coulombs\n",
+"X=4.01 //in eV\n",
+"kT=0.026 // in eV\n",
+"Vf=0.1// in V\n",
+"T=300//in kelvin\n",
+"Be=30 //A/K2/cm2\n",
+"A=0.01 //cm2\n",
+"//part(a)\n",
+"phi_B=phi_m-X\n",
+"disp(phi_B,'Theoretical barrier height in eV')\n",
+"//part(b)\n",
+"phi_B=0.5 //in eV\n",
+"Io=A*Be*T^2*exp(-phi_B/kT)\n",
+"disp(Io*10^6,'Saturation current in micro amperes is')\n",
+"//let/E=e*Vf //in eV\n",
+"E=0.1 //in eV\n",
+"If=Io*(exp((E/kT))-1)\n",
+"disp(If*10^3,'Forward current in milli amperes is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.1: Intrinsic_concentration_and_conduction_of_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_1\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"h=6.6*10^-34 //in J s\n",
+"m=9.1*10^-31 //in Kg\n",
+"me=1.08*m\n",
+"mh=0.56*m\n",
+"T=300 //in Kelvin\n",
+"Eg=1.10 // in eV\n",
+"ue=1350//in cm2/V/s\n",
+"uh=450//in cm2/V/s\n",
+"k=1.38*10^-23 //m2 kg s-2 K-1\n",
+"Nc=2*((2*%pi*me*k*T)/h^2)^(3/2) //in m^-3\n",
+"Nc=Nc*10^-6 //in cm^-3\n",
+"Nv=2*((2*%pi*mh*k*T)/h^2)^(3/2) //in m^-3\n",
+"Nv=Nv*10^-6 //in cm^-3\n",
+"ni=sqrt(Nc*Nv)*exp(-Eg*e/(2*k*T))\n",
+"disp(ni,'Intrinsic concentration of Si in cm^-3 is')\n",
+"sigma=e*ni*(ue+uh)\n",
+"p=1/sigma\n",
+"disp(p,'Intrinsic resistivity of Si in ohm cm is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.2: Mean_speed_of_electrons_in_conduction_band.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_2\n",
+"//Given\n",
+"T=300//in kelvin\n",
+"k=1.38*10^-23 // in m2 kg s-2 K-1\n",
+"me=9.1*10^-31 // in Kg\n",
+"m=0.26*me\n",
+"Ve=sqrt(3*k*T/m)\n",
+"disp(Ve,'Mean speed of electrons in conduction band in m/s is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.3: Resistivity_of_intrinsic_and_doped_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_3\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"ue=1350//in cm2/V/s\n",
+"uh=450//in cm2/V/s\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"L=1 //in cm\n",
+"A=1 //in cm2\n",
+"N_Si=5*10^22 //in cm^-3\n",
+"sigma=e*ni*(ue+uh)\n",
+"R=L/(sigma*A)\n",
+"disp(R,'Resistance of a pure Silicon crystal in ohms is')\n",
+"Nd=N_Si/10^9\n",
+"n=Nd //at room temperature\n",
+"p=ni^2/Nd\n",
+"sigma=e*n*ue\n",
+"R=L/(sigma*A)\n",
+"disp(R,'Resistance in ohms of Silicon crystal when dopped with Arsenic with 1 in 10^9 is')\n",
+""
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.4: compensation_doping.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_4\n",
+"//Given\n",
+"Na=10^17 //acceptor atoms /cm3\n",
+"Nd=10^16 //donor atoms /cm3\n",
+"p=Na-Nd // in cm^-3\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"n=ni^2/p\n",
+"disp(n,'Electron concentration in cm^-3')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.5: fermi_level.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_5\n",
+"//Given\n",
+"Na=2*10^17 //acceptor atoms /cm3\n",
+"Nd=10^16 //acceptor atoms /cm3\n",
+"ni=1.45*10^10 //in cm^-3\n",
+"K=0.0259 // in eV\n",
+"//since Nd>>ni\n",
+"n=Nd\n",
+"//let EFn-EFi=E\n",
+"E=K*log(Nd/ni)\n",
+"disp(E,'Position of the fermi energy w.r.t fermi energy in intrinsic Si in eV is')\n",
+"//for intrinsic Si\n",
+"//ni=Nc*exp(-(Ec-E_Fi)/(k*T))\n",
+"//for doped Si\n",
+"//Nd=Nc*exp(-(Ec-E_Fn)/(k*T))\n",
+"//let x=Nd/ni\n",
+"//let K=k*T\n",
+"p=Na-Nd\n",
+"//let E=EFp-EFi\n",
+"//let n=p/ni\n",
+"E=-K*log(p/ni)\n",
+"disp(E,'Position of the fermi energy w.r.t fermi energy in n-type case in eV is')"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.7: Saturation_and_Intrinsic_temperatures.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_7\n",
+"//Given\n",
+"Nd=10^15 //in cm^-3\n",
+"Nc=2.8*10^19 //in cm^-3\n",
+"Ti=556 // in Kelvin\n",
+"k=8.62*10^-5 //in eV/K\n",
+"delta_E=0.045 //in eV\n",
+"T=300 //in kelvin\n",
+"//part(a)\n",
+"disp('From fig 5.16 the estimated temperature above which the si sample behaves as if intrinsic is 556 Kelvin')\n",
+"//part(b)\n",
+"Ts=delta_E/(k*log(Nc/(2*Nd)))\n",
+"Nc_Ts=Nc*(Ts/T)^(3/2)\n",
+"disp(Ts,'Lowest temperature in kelvin is')\n",
+"//the improved temperature \n",
+"Ts=delta_E/(k*log(Nc_Ts/(2*Nd)))\n",
+"printf('Extrinsic range of Si is %f K to 556 K',Ts)"
+ ]
+ }
+,
+{
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 5.9: Compensation_Doped_Si.sce"
+ ]
+ },
+ {
+"cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [],
+"source": [
+"clc\n",
+"//Chapter5\n",
+"//Ex_9\n",
+"//Given\n",
+"e=1.6*10^-19 // in coulombs\n",
+"Nd=10^17 //in cm^-3\n",
+"Na=9*10^16 //in cm^-3\n",
+"//part(a)\n",
+"ue1=800 // at 300 kelvin ue in cm2/V/s\n",
+"sigma1=e*Nd*ue1\n",
+"ue2=420 // at 400 kelvin ue in cm2/V/s\n",
+"sigma2=e*Nd*ue2\n",
+"disp(sigma2,sigma1,'when Si sample is doped with 10^17 arsenic atoms/cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')\n",
+"//part(b)\n",
+"ue1=600 // at 300 kelvin ue in cm2/V/s\n",
+"sigma1=e*(Nd-Na)*ue1\n",
+"ue2=400 // at 400 kelvin ue in cm2/V/s\n",
+"sigma2=e*(Nd-Na)*ue2\n",
+"disp(sigma2,sigma1,'when n-type Si is further doped with 9*10^16 boron atoms /cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')"
+ ]
+ }
+],
+"metadata": {
+ "kernelspec": {
+ "display_name": "Scilab",
+ "language": "scilab",
+ "name": "scilab"
+ },
+ "language_info": {
+ "file_extension": ".sce",
+ "help_links": [
+ {
+ "text": "MetaKernel Magics",
+ "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md"
+ }
+ ],
+ "mimetype": "text/x-octave",
+ "name": "scilab",
+ "version": "0.7.1"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}