diff options
Diffstat (limited to 'Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb')
-rw-r--r-- | Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb | 434 |
1 files changed, 434 insertions, 0 deletions
diff --git a/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb new file mode 100644 index 0000000..7f841cf --- /dev/null +++ b/Principles_of_Electrical_Engineering_Materials_by_S_O_Kasap/5-Semiconductors.ipynb @@ -0,0 +1,434 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5: Semiconductors" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.11: Photoconductivity.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_11\n", +"//Given\n", +"//part(a)\n", +"h=6.63*10^-34 //in Js\n", +"c=3*10^8 // in m/s\n", +"e=1.6*10^-19 // in coulombs\n", +"ue=0.034 //in m2/V/s\n", +"uh=0.0018 //in m2/V/s\n", +"t=1*10^-3 // in seconds\n", +"L=1*10^-3 //in m\n", +"D=0.1*10^-3 //in m\n", +"W=1*10^-3 //in m\n", +"I=1// mW/cm^2\n", +"I=I*10^-3*10^4 // conversion of units to W/m^2\n", +"n=1 //quantum efficiency\n", +"lambda=450*10^-9 // in m\n", +"V=50 // in volts\n", +"//part(a)\n", +"A=L*W //in m3\n", +"EHP_ph=(A*n*I*lambda)/(h*c)\n", +"disp(EHP_ph,'No.of EHP/s generated per second is')\n", +"//part(b)\n", +"delta_sigma=e*n*I*lambda*t*(ue+uh)/(h*c*D)\n", +"disp(delta_sigma,'Photo conductivity of the sample in ohm^-1 m^-1 is')\n", +"//part(c)\n", +"A=0.1*10^-6 //m2\n", +"E=V/W\n", +"delta_J=E*delta_sigma\n", +"delta_I=A*delta_J\n", +"disp(delta_I*10^3,'Photocurrent produced in mA is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.13: Diffusion_coefficient_of_electrons_in_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_13\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"T=300//in kelvin\n", +"ue=1300 //in cm2/V/s\n", +"//V=k*T/e\n", +"V=0.0259 //thermal voltage in Volts\n", +"//D=ue*k*T/e\n", +"D=ue*V\n", +"disp(D,'Diffusion coefficient of electrons at room temperature in cm2/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.17: Photogeneration_in_GaAs.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_17\n", +"//Given\n", +"Eg=1.42 //in eV\n", +"//letE=hc/lambda=hf\n", +"E=1.96 //in eV\n", +"P_L=50 //in mW\n", +"kT=0.0259 // in eV\n", +"delta_E=E-(Eg+(3/2)*kT)\n", +"P_H=(P_L/(E))*delta_E\n", +"disp(P_H,'Amount of power dissipated as heat in mW is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.18: Schottky_diode.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_18\n", +"//Given\n", +"phi_m=4.28 //in eV\n", +"e=1.6*10^-19 // in coulombs\n", +"X=4.01 //in eV\n", +"kT=0.026 // in eV\n", +"Vf=0.1// in V\n", +"T=300//in kelvin\n", +"Be=30 //A/K2/cm2\n", +"A=0.01 //cm2\n", +"//part(a)\n", +"phi_B=phi_m-X\n", +"disp(phi_B,'Theoretical barrier height in eV')\n", +"//part(b)\n", +"phi_B=0.5 //in eV\n", +"Io=A*Be*T^2*exp(-phi_B/kT)\n", +"disp(Io*10^6,'Saturation current in micro amperes is')\n", +"//let/E=e*Vf //in eV\n", +"E=0.1 //in eV\n", +"If=Io*(exp((E/kT))-1)\n", +"disp(If*10^3,'Forward current in milli amperes is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.1: Intrinsic_concentration_and_conduction_of_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_1\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"h=6.6*10^-34 //in J s\n", +"m=9.1*10^-31 //in Kg\n", +"me=1.08*m\n", +"mh=0.56*m\n", +"T=300 //in Kelvin\n", +"Eg=1.10 // in eV\n", +"ue=1350//in cm2/V/s\n", +"uh=450//in cm2/V/s\n", +"k=1.38*10^-23 //m2 kg s-2 K-1\n", +"Nc=2*((2*%pi*me*k*T)/h^2)^(3/2) //in m^-3\n", +"Nc=Nc*10^-6 //in cm^-3\n", +"Nv=2*((2*%pi*mh*k*T)/h^2)^(3/2) //in m^-3\n", +"Nv=Nv*10^-6 //in cm^-3\n", +"ni=sqrt(Nc*Nv)*exp(-Eg*e/(2*k*T))\n", +"disp(ni,'Intrinsic concentration of Si in cm^-3 is')\n", +"sigma=e*ni*(ue+uh)\n", +"p=1/sigma\n", +"disp(p,'Intrinsic resistivity of Si in ohm cm is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.2: Mean_speed_of_electrons_in_conduction_band.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_2\n", +"//Given\n", +"T=300//in kelvin\n", +"k=1.38*10^-23 // in m2 kg s-2 K-1\n", +"me=9.1*10^-31 // in Kg\n", +"m=0.26*me\n", +"Ve=sqrt(3*k*T/m)\n", +"disp(Ve,'Mean speed of electrons in conduction band in m/s is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.3: Resistivity_of_intrinsic_and_doped_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_3\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"ue=1350//in cm2/V/s\n", +"uh=450//in cm2/V/s\n", +"ni=1.45*10^10 //in cm^-3\n", +"L=1 //in cm\n", +"A=1 //in cm2\n", +"N_Si=5*10^22 //in cm^-3\n", +"sigma=e*ni*(ue+uh)\n", +"R=L/(sigma*A)\n", +"disp(R,'Resistance of a pure Silicon crystal in ohms is')\n", +"Nd=N_Si/10^9\n", +"n=Nd //at room temperature\n", +"p=ni^2/Nd\n", +"sigma=e*n*ue\n", +"R=L/(sigma*A)\n", +"disp(R,'Resistance in ohms of Silicon crystal when dopped with Arsenic with 1 in 10^9 is')\n", +"" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.4: compensation_doping.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_4\n", +"//Given\n", +"Na=10^17 //acceptor atoms /cm3\n", +"Nd=10^16 //donor atoms /cm3\n", +"p=Na-Nd // in cm^-3\n", +"ni=1.45*10^10 //in cm^-3\n", +"n=ni^2/p\n", +"disp(n,'Electron concentration in cm^-3')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.5: fermi_level.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_5\n", +"//Given\n", +"Na=2*10^17 //acceptor atoms /cm3\n", +"Nd=10^16 //acceptor atoms /cm3\n", +"ni=1.45*10^10 //in cm^-3\n", +"K=0.0259 // in eV\n", +"//since Nd>>ni\n", +"n=Nd\n", +"//let EFn-EFi=E\n", +"E=K*log(Nd/ni)\n", +"disp(E,'Position of the fermi energy w.r.t fermi energy in intrinsic Si in eV is')\n", +"//for intrinsic Si\n", +"//ni=Nc*exp(-(Ec-E_Fi)/(k*T))\n", +"//for doped Si\n", +"//Nd=Nc*exp(-(Ec-E_Fn)/(k*T))\n", +"//let x=Nd/ni\n", +"//let K=k*T\n", +"p=Na-Nd\n", +"//let E=EFp-EFi\n", +"//let n=p/ni\n", +"E=-K*log(p/ni)\n", +"disp(E,'Position of the fermi energy w.r.t fermi energy in n-type case in eV is')" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.7: Saturation_and_Intrinsic_temperatures.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_7\n", +"//Given\n", +"Nd=10^15 //in cm^-3\n", +"Nc=2.8*10^19 //in cm^-3\n", +"Ti=556 // in Kelvin\n", +"k=8.62*10^-5 //in eV/K\n", +"delta_E=0.045 //in eV\n", +"T=300 //in kelvin\n", +"//part(a)\n", +"disp('From fig 5.16 the estimated temperature above which the si sample behaves as if intrinsic is 556 Kelvin')\n", +"//part(b)\n", +"Ts=delta_E/(k*log(Nc/(2*Nd)))\n", +"Nc_Ts=Nc*(Ts/T)^(3/2)\n", +"disp(Ts,'Lowest temperature in kelvin is')\n", +"//the improved temperature \n", +"Ts=delta_E/(k*log(Nc_Ts/(2*Nd)))\n", +"printf('Extrinsic range of Si is %f K to 556 K',Ts)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 5.9: Compensation_Doped_Si.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"//Chapter5\n", +"//Ex_9\n", +"//Given\n", +"e=1.6*10^-19 // in coulombs\n", +"Nd=10^17 //in cm^-3\n", +"Na=9*10^16 //in cm^-3\n", +"//part(a)\n", +"ue1=800 // at 300 kelvin ue in cm2/V/s\n", +"sigma1=e*Nd*ue1\n", +"ue2=420 // at 400 kelvin ue in cm2/V/s\n", +"sigma2=e*Nd*ue2\n", +"disp(sigma2,sigma1,'when Si sample is doped with 10^17 arsenic atoms/cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')\n", +"//part(b)\n", +"ue1=600 // at 300 kelvin ue in cm2/V/s\n", +"sigma1=e*(Nd-Na)*ue1\n", +"ue2=400 // at 400 kelvin ue in cm2/V/s\n", +"sigma2=e*(Nd-Na)*ue2\n", +"disp(sigma2,sigma1,'when n-type Si is further doped with 9*10^16 boron atoms /cm3, the conductivity of the sample at 300K and 400K in ohm^-1*cm^-1 is')" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |