diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb')
-rw-r--r-- | Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb | 325 |
1 files changed, 325 insertions, 0 deletions
diff --git a/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb b/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb new file mode 100644 index 0000000..5f91908 --- /dev/null +++ b/Heat_And_Thermodynamics_by_A_Manna/12-Radiation.ipynb @@ -0,0 +1,325 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 12: Radiation" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.1: The_ratio_of_rates_at_which_heat_lost.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"t1=300;//temperature of the surroundings in K\n", +"t2=900;//temperature of the hot body p in K\n", +"t3=500;//temperature of the hot body q in K\n", +"a=5.67*10^-8;//stefan boltzmann constant in W/m^2.K^4\n", +"\n", +"//CALCULATIONS\n", +"q1=a*(t2^4-t1^4);//heat lost from hot body p in w/m^2\n", +"q2=a*(t3^4-t1^4);//heat lost from hot body q in w/m^2\n", +"q=q1/q2;//ratio of heat lost from two substances\n", +"\n", +"//OUTPUT\n", +"mprintf('ratio of heat lost from two substances is %3.2f',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.2: The_stefan_constant.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"t1=573;//temperature of the hot side in K\n", +"t2=273;//temperature of the coll side in K\n", +"m=82;//mass of the black body in gm\n", +"cp=0.1;//specific heat of the black body kj/kg.K\n", +"dt=0.35;//ice melting at a rate of temperature in deg.C/sec\n", +"a=8;//area of black body in sq.cm\n", +"\n", +"//CALCULATIONS\n", +"s=m*cp*dt/(a*(t1^4-t2^4));//boltzmann constant in cal/sq.cm/sec/deg^4\n", +"\n", +"//OUTPUT\n", +"mprintf('boltzmann constant is %3.13f cal/sq.cm/sec/deg^4',s)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.3: The_ratio_of_intensities.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"r1=60;//distance of first black body in cm\n", +"r2=30;//distance of second black body in cm\n", +"t1=873;//temperature of first black body in K\n", +"t2=573;//temperature of the second black body in K\n", +"\n", +"//CALCULATIONS\n", +"i=(t2^4/t1^4)*(r1^2/r2^2);//ratio of intensity of radition\n", +"\n", +"//OUTPUT\n", +"mprintf('ratio of intensity of radition is %3.2f',i)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.4: The_heat_radiated_per_second.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"t1=1373;//temperature of the sphere in K\n", +"t2=283;//temperature of the black body in K\n", +"r=4.17*10^5;//rate of heat radiate in ergs/sq.cm/sec\n", +"a=4*3.14*(6^2);//surface area of the sphere in sq.cm\n", +"\n", +"//CALCULATIONS\n", +"tr=r*a*(t1^4/t2^4)*(2.39005736*10^(-8));//total heat radiated in cal/sec\n", +"\n", +"//OUTPUT\n", +"mprintf('total heat radiated is %3.2f cal/sec',tr)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.5: The_time_for_sun_rays_to_fall.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"h=2*3.14*100;//heat received by the lens per min in cal\n", +"m=25;//mass of the ice in gm\n", +"l=80;//latent heat of ice in cal/gm\n", +"\n", +"//CALCULATIONS\n", +"t=m*l/h;//time for which the sun rays falls in min\n", +"\n", +"//OUTPUT\n", +"mprintf('time for which the sun rays falls is %3.2f min',t)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.6: The_amount_of_heat_reeived.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"d=0.35;//diameter of the mirror in m\n", +"t=5;//time in min\n", +"T=16;//temperature of water found to be in deg.C\n", +"m=60;//mass of water in gm\n", +"mc=30;//mass of calorimeter in gm\n", +"cp=0.1;//specific heat of copper in cal/gm/deg.C\n", +"\n", +"//CALCULATIONS\n", +"q=(m+cp*mc)*T*4/(5*3.14*d^2);//amount of heat received by earth in cal\n", +"\n", +"//OUTPUT\n", +"mprintf('amount of heat received by earth is %3.2f cal',q)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.7: Rate_of_heat_lost.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"r1=5;//radius of first sphere in cm\n", +"r2=10;//radius of second sphere in cm\n", +"t1=700;//temperature of the first sphere in K\n", +"t2=500;//temperature of the second sphere in K\n", +"t=300;//temperature of the enclousure in K\n", +"\n", +"//CALCULATIONS1\n", +"dc=(r2/r1)*(t1^4-t^4)/(t2^4-t^4);//ratio of c1/c2\n", +"r=r1^3*dc/r2^3;//rate of heat loss\n", +"\n", +"//OUTPUT\n", +"mprintf('rate of loss of heat is %3.2f',r)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.8: The_temperature.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"t1=600;//temperature of the black body in K\n", +"t0=300;//temperature of the surroundings in K\n", +"d=6;//deflections in galvanometer\n", +"d1=400;//deflection in divisions\n", +"\n", +"//CALCULATIONS\n", +"dt=(d1/d)*(t1^4-t0^4);//change of temperature\n", +"t2=(dt+t0^4)^(1/4);//end temperature in K\n", +"\n", +"//OUTPUT\n", +"mprintf('end temperature of the temperature is %3.2f K',t2)" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 12.9: The_temperature_of_the_regel.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"clc\n", +"clear\n", +"\n", +"//INPUT\n", +"n=17000;//luminosity of star compared to sun\n", +"t=6000;//temperature of the sun in K\n", +"\n", +"//CALCULATIONS\n", +"t1=(n*t^4)^(1/4);//temperature of the star in K\n", +"\n", +"//OUTPUT\n", +"mprintf('the temperature of the star is %3.2f K',t1)" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |