diff options
author | Prashant S | 2020-04-14 10:25:32 +0530 |
---|---|---|
committer | GitHub | 2020-04-14 10:25:32 +0530 |
commit | 06b09e7d29d252fb2f5a056eeb8bd1264ff6a333 (patch) | |
tree | 2b1df110e24ff0174830d7f825f43ff1c134d1af /Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb | |
parent | abb52650288b08a680335531742a7126ad0fb846 (diff) | |
parent | 476705d693c7122d34f9b049fa79b935405c9b49 (diff) | |
download | all-scilab-tbc-books-ipynb-master.tar.gz all-scilab-tbc-books-ipynb-master.tar.bz2 all-scilab-tbc-books-ipynb-master.zip |
Initial commit
Diffstat (limited to 'Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb')
-rw-r--r-- | Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb | 471 |
1 files changed, 471 insertions, 0 deletions
diff --git a/Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb b/Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb new file mode 100644 index 0000000..a925f49 --- /dev/null +++ b/Basic_Electronics_by_D_De/8-Special_Semiconductor_Devices.ipynb @@ -0,0 +1,471 @@ +{ +"cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 8: Special Semiconductor Devices" + ] + }, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.10: Design_of_Triggering_Circuit_for_a_UJT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Design of Triggering Circuit for a UJT\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-10 in page 390\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"Vs=30; // DC source voltage in V\n", +"eta=0.51; // Intrinsic stand off ratio\n", +"Ip=10*10^-6; // Peak Emitter current of UJT in mu-A\n", +"Vv=3.5; // Valley voltage in V\n", +"Iv=10*10^-3; // Valley current in A\n", +"f=60; // Source frequency in Hz\n", +"tg=50*10^-6; // width of triggering pulse in seconds\n", +"C=0.5*10^-6; // Assumption for circuit Capacitance in mu-F\n", +"Vd=0.5; // Fixed value of Vb in V\n", +"\n", +"// Calculations\n", +"Vp=(eta*Vs)+Vd;\n", +"Rlow=(Vs-Vp)/Ip; \n", +"Rup=(Vs-Vv)/Iv;\n", +"tou=1/f;\n", +"R=(tou/C)*(1/log(1/(1-eta))); \n", +"Rb1=tg/C; \n", +"Rb2=10^4/(eta*Vs); \n", +"\n", +"printf('(a)The value of Base-1 Resistance of UJT is %0.2f ohm \n',Rb1);\n", +"printf('(b)The value of Base-2 Resistance of UJT is %0.2f ohm \n',Rb2);\n", +"printf('(c)Circuit resistance of the arrangement is %0.2e ohm \n',R);\n", +"\n", +"// Results\n", +"// (a) The value of Base-1 Resistance of UJT is 100 ohm\n", +"// (b) The value of Base-2 Resistance of UJT is 654 ohm\n", +"// (c) Circuit resistance of the arrangement is 46.7 K-ohm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.11: To_determine_Emitter_source_voltage_of_UJT.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// To determine Emitter source voltage of UJT\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-11 in page 391\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"Re=1*10^3; // Emitter Resistance of UJT in ohm\n", +"Iv=5*10^-3; // Valley current of UJT in A\n", +"Vv=2; // Valley voltage of UJT in V\n", +"\n", +"// Calculations\n", +"Ve=Vv;\n", +"Ie=Iv; \n", +"Vee=(Ie*Re)+Ve;\n", +"\n", +"printf('The value of Emitter source voltage of UJT for turn-off is %0.2f V',Vee);\n", +"\n", +"// Results\n", +"// The value of Emitter source voltage of UJT for turn-off is 7 V" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.1: Calculate_the_Gate_Source_Resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate the Gate Source Resistance\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-1 in page 376\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"P=0.5; // Value of Allowable Gate Power Dissipation in watt\n", +"Es=14; // Trigger Source Voltage in V\n", +"slope=130; // Slope of Gate-Cathode Characteristic line\n", +"\n", +"// Calculations\n", +"Ig=sqrt(P/slope); \n", +"Vg=slope*Ig;\n", +"Rs=(Es-Vg)/Ig; \n", +"\n", +"printf('(a)The value of Gate Resistance for the Circuit is %0.2e ohm \n',Rs);\n", +"printf('(b)The value of the Gate Voltage is %0.2e V \n',Vg);\n", +"printf('(c)The value of the Gate Current is %0.2e A \n',Ig);\n", +"\n", +"// Results\n", +"// (a) The value of Gate Resistance for the Circuit is 95.3 ohm\n", +"// (b) The value of the Gate Voltage is 8.06 V\n", +"// (c) The value of the Gate Current is 62 mA" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.2: Firing_angle_of_Thyristor.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Firing angle of Thyristor\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-2 in page 377\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"Il=50^10*-3; // Latching current of the Thyristor in mA\n", +"t=50^10*-6; // Duration of firing pulse in second\n", +"Es=50; // DC voltage of the circuit in V\n", +"R=10; // Resistance of the circuit in ohm\n", +"L=0.25; // Inductance of the circuit in H\n", +"e=2.718282; // Constant of calculation\n", +"\n", +"// Calculations\n", +"tou=0.025; \n", +"i=(Es/R)*(1-exp((-(50*10^-6))/tou));\n", +"printf('(a) i = %0.3e A\n',i); \n", +"\n", +"if(i<Il)\n", +" printf('Since the Gate current is less than Latching Current, SCR will not get fired \n');\n", +"else\n", +" printf('Since the Gate current is more than Latching Current, SCR will get fired \n');\n", +"end\n", +"\n", +"// Results\n", +"// SCR will not get fired in the Circuit" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.3: Calculate_width_of_Gating_pulse.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate width of Gating pulse\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-3 in page 377\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"Il=4*10^-3; // Latching current of SCR in A\n", +"V=100; // DC voltage of the circuit in V\n", +"L=0.1; // Inductance of the circuit in H\n", +"\n", +"// Calculations\n", +"t=(L/V)*Il;\n", +"\n", +"printf('Required width of the gating pulse is %0.2e s',t);\n", +"\n", +"// Results\n", +"// Required width of the gating pulse is 4 mu-s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.4: To_calculate_required_Gate_source_Resistance.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// To calculate required Gate source Resistance\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-4 in page 378\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"P=0.012; // Value of Allowable Gate Power Dissipation in watt\n", +"Es=10; // Trigger Source Voltage in V\n", +"slope=3*10^3; // Slope of Gate-Cathode Characteristic line\n", +"\n", +"// Calculations\n", +"Ig=sqrt(P/slope); \n", +"Vg=slope*Ig; \n", +"Rs=(Es-Vg)/Ig; \n", +"\n", +"printf('(a)The value of Gate Resistance for the Circuit is %0.0f ohm \n',Rs);\n", +"printf('(b)The value of the Gate Voltage is %0.2e V \n',Vg);\n", +"printf('(c)The value of the Gate Current is %0.2e A \n',Ig);\n", +"\n", +"\n", +"// Results\n", +"// (a) The value of Gate Resistance for the Circuit is 2 K-ohm\n", +"// (b) The value of the Gate Voltage is 6 V\n", +"// (c) The value of the Gate Current is 2 mA" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.5: To_calculate_series_Resistance_across_SCR.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// To calculate series Resistance across SCR\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010 \n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-5 in page 378\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"Ig_min=0.5; // Minimum gate current for quick ON, in A\n", +"Vs=15; // Gate source voltage in V\n", +"slope=16; // Slope of Gate-Cathode Characteristic line\n", +"\n", +"// Calculations\n", +"Vg=slope*Ig_min; \n", +"Rg=(Vs-Vg)/Ig_min; \n", +"\n", +"printf('The value of Gate Resistance is %0.2f ohm \n',Rg);\n", +"\n", +"// Results\n", +"// The value of Gate Resistance is 14 ohm" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.6: To_determine_critical_value_of_dv_by_dt.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// To determine critical value of dv/dt\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-6 in page 379\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"ij2=32*10^-3; // Limiting value of the charging current in A\n", +"Cj2=40*10^-12; // Capacitance of reverse biased junction J2 in F\n", +"\n", +"// Calculations\n", +"dv_dt=ij2/Cj2; \n", +"\n", +"printf('The value of dv/dt of the given SCR is %0.2e volt/second \n',dv_dt);\n", +"\n", +"// Results\n", +"// The value of dv/dt of the given SCR is 800 V/mu-s" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.7: Calculate_surge_current_and_I2t_ratings.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Calculate surge current & I2t ratings\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-7 in page 379\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"ish=3000; // half cycle surge current rating of SCR in A\n", +"f=50; // Frequency of operation of supply in Hz\n", +"\n", +"// Calculations\n", +"I=ish*sqrt(2*f)/sqrt(4*f); \n", +"I2t_rate=(I*I)/(2*f); \n", +"\n", +"printf('(a)The surge current rating of one cycle for the SCR is %0.2f A \n',I);\n", +"printf('(b)The I2t rating of one cycle for the SCR is %0.2f A^2-second \n',I2t_rate);\n", +"\n", +"// Results\n", +"// (a) The surge current rating of one cycle for the SCR is 2121.32 A\n", +"// (b) The I2t rating of one cycle for the SCR is 45000 A^2-second" + ] + } +, +{ + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example 8.8: Max_and_Min_firing_delays.sce" + ] + }, + { +"cell_type": "code", + "execution_count": null, + "metadata": { + "collapsed": true + }, + "outputs": [], +"source": [ +"// Max and Min firing delays\n", +"// Basic Electronics\n", +"// By Debashis De\n", +"// First Edition, 2010\n", +"// Dorling Kindersley Pvt. Ltd. India\n", +"// Example 8-8 in page 386\n", +"\n", +"clear; clc; close;\n", +"\n", +"// Given Data\n", +"Vc=40; // Breakdown voltage of DIAC in V\n", +"C=470*10^-9; // Capacitance in nF\n", +"E=240; // Rms voltage at 50 Hz in V\n", +"omga=2*%pi*50; // Angular frequency\n", +"\n", +"// Calculation\n", +"printf('When DIAC is not conducting:\n')\n", +"A=asind(40/335.8)+8.4;\n", +"Z=1/(omga*C);\n", +"R1=atand(1/(omga*1000*C));\n", +"Zd=sqrt(R1^(2+(1/omga^2*C^2)));\n", +"printf('Minimum delay = %0.2f degrees\n\n',A);\n", +"printf('When DIAC conducts:\n');\n", +"A1=asind(40/88.6)+74.84;\n", +"printf('Maximum delay = %0.2f degrees',A1);\n", +"\n", +"// Result\n", +"// Minimum delay = 15.24 degrees\n", +"// Maximum delay = 101.6 degrees" + ] + } +], +"metadata": { + "kernelspec": { + "display_name": "Scilab", + "language": "scilab", + "name": "scilab" + }, + "language_info": { + "file_extension": ".sce", + "help_links": [ + { + "text": "MetaKernel Magics", + "url": "https://github.com/calysto/metakernel/blob/master/metakernel/magics/README.md" + } + ], + "mimetype": "text/x-octave", + "name": "scilab", + "version": "0.7.1" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |