blob: a12f972217ab50f104f54949f5c0f12585ea9517 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
|
// ELECTRICAL MACHINES
// R.K.Srivastava
// First Impression 2011
// CENGAGE LEARNING INDIA PVT. LTD
// CHAPTER : 3 : TRANSFORMERS
// EXAMPLE : 3.5
clear ; clc ; close ; // Clear the work space and console
// GIVEN DATA
Ai = 2.3 * 10 ^ -3; // Cross-Sectional area of the core in Meter-Square
mue_0 = 4*%pi*10^ -7; // Permeability of the air in Henry/Meter
Fe_loss = 2.6; // Iron loss at the working Flux density Watts/kg
Fe_den = 7.8 * 10 ^ 3; // Density of the Iron in kg/Meter-Cube
N1 = 800; // Number of Turns of the Primary winding
L = 2.5; // Length of the Flux path in Meter
mue_r = 1000; // Relative Permeability
E = 400; // Primary Volatge of the Transformer in Volts
f = 50; // Frequency in Hertz
// CALCULATIONS
Bm = E/(4.44*f*Ai*800); // Flux Density in Weber/Meter-Square
phi_m = (Bm*Ai)*10^3; // Maximum Flux in the core in milli-Weber
F = (L*Bm)/(mue_r*mue_0); // Magnetizing MMF in Amphere-turns
Im = F/(N1*sqrt(2)); // Magnetizing Current in Amphere
Vol = L*Ai; // Volume of the Core in Meter-Cube
W = Vol * Fe_den; // Weight of the Core in kg
Total_Fe_loss = Fe_loss * W; // Total Iron loss in Watt
Ic = Total_Fe_loss/E; // Loss component of Current in Amphere
Io= sqrt((Ic ^ 2)+(Im ^ 2)); // No load Current in Amphere
pf_angle = atand(Io/Ic); // No load Power factor angle in degree
pf = cosd(pf_angle); // No load Power factor
// DISPLAY RESULTS
disp("EXAMPLE : 3.5 : SOLUTION :-") ;
printf("\n (a) Maximum Flux in the core , phi_m = %.6f mWb \n ",phi_m);
printf("\n (b) No load Current , I0 = %.3f A \n",Io);
printf("\n (c) No load Power factor angle = %.3f degree \n ",pf_angle);
printf("\n (d) No load Power factor = %.4f \n ",pf);
|