// ELECTRICAL MACHINES // R.K.Srivastava // First Impression 2011 // CENGAGE LEARNING INDIA PVT. LTD // CHAPTER : 3 : TRANSFORMERS // EXAMPLE : 3.5 clear ; clc ; close ; // Clear the work space and console // GIVEN DATA Ai = 2.3 * 10 ^ -3; // Cross-Sectional area of the core in Meter-Square mue_0 = 4*%pi*10^ -7; // Permeability of the air in Henry/Meter Fe_loss = 2.6; // Iron loss at the working Flux density Watts/kg Fe_den = 7.8 * 10 ^ 3; // Density of the Iron in kg/Meter-Cube N1 = 800; // Number of Turns of the Primary winding L = 2.5; // Length of the Flux path in Meter mue_r = 1000; // Relative Permeability E = 400; // Primary Volatge of the Transformer in Volts f = 50; // Frequency in Hertz // CALCULATIONS Bm = E/(4.44*f*Ai*800); // Flux Density in Weber/Meter-Square phi_m = (Bm*Ai)*10^3; // Maximum Flux in the core in milli-Weber F = (L*Bm)/(mue_r*mue_0); // Magnetizing MMF in Amphere-turns Im = F/(N1*sqrt(2)); // Magnetizing Current in Amphere Vol = L*Ai; // Volume of the Core in Meter-Cube W = Vol * Fe_den; // Weight of the Core in kg Total_Fe_loss = Fe_loss * W; // Total Iron loss in Watt Ic = Total_Fe_loss/E; // Loss component of Current in Amphere Io= sqrt((Ic ^ 2)+(Im ^ 2)); // No load Current in Amphere pf_angle = atand(Io/Ic); // No load Power factor angle in degree pf = cosd(pf_angle); // No load Power factor // DISPLAY RESULTS disp("EXAMPLE : 3.5 : SOLUTION :-") ; printf("\n (a) Maximum Flux in the core , phi_m = %.6f mWb \n ",phi_m); printf("\n (b) No load Current , I0 = %.3f A \n",Io); printf("\n (c) No load Power factor angle = %.3f degree \n ",pf_angle); printf("\n (d) No load Power factor = %.4f \n ",pf);