1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
# Implementation of the Levenberg Marquardt Algorithm
levbmqdt <- function(...,obj,theta0,N,opt){
dots <- list(...)
# Optimization Parameters
tol <- opt$tol; maxIter <- opt$maxIter
d <- opt$adv$LMinit; mu <- opt$adv$LMstep
df <- N - dim(theta0)[1]
# Initialize Algorithm
i <- 0
l <- obj(theta=theta0,e=NULL,dots)
e <- l$Y-l$X%*%theta0
sumsq0 <- sum(e^2)/N
# variable to count the number of times objective function is called
countObj <- 0
sumSqDiff <- 9E-3*sumsq0
repeat{
i=i+1
# Update gradient
l <- obj(theta0,e,dots)
g <- 1/N*t(l$grad)%*%e
termPar <- norm(g,"2")
repeat{
# Update Parameters
H <- 1/N*t(l$grad)%*%l$grad + d*diag(dim(theta0)[1])
Hinv <- solve(H);
theta <- theta0 + Hinv%*%g
# Evaulate sum square error
fn <- l$Y-l$X%*%theta
sumsq <- sum(fn^2)/N
sumSqDiff <- sumsq0-sumsq
countObj <- countObj + 1
if(termPar < tol) break
# no major improvement
if(abs(sumSqDiff) < 0.01*sumsq0) break
# If sum square error with the updated parameters is less than the
# previous one, the updated parameters become the current parameters
# and the damping coefficient is reduced by a factor of mu
if(sumSqDiff > 0){
d <- d/mu
theta0 <- theta
sumsq0 <- sumsq
e <- fn
break
} else{ # increase damping coefficient by a factor of mu
d <- d*mu
}
}
if(termPar < tol) {
WhyStop <- "Tolerance"
break
}
if(abs(sumSqDiff) < 0.01*sumsq0){
WhyStop <- "No significant change"
break
}
if(i == maxIter){
WhyStop <- "Maximum Iteration Limit"
break
}
}
theta <- theta0
e <- e[1:N,]
sigma2 <- sum(e^2)/df
vcov <- 1/N*Hinv*sigma2
list(params=theta,residuals=e,vcov=vcov,sigma = sqrt(sigma2),
termination=list(WhyStop=WhyStop,iter=i,FcnCount = countObj,
CostFcn=sumsq0))
}
#' Create optimization options
#'
#' Specify optimization options that are to be passed to the
#' numerical estimation routines
#'
#' @param tol Minimum ratio of the improvement to the current loss
#' function. Iterations stop if this ratio goes below the tolerance
#' limit (Default: \code{1e-5})
#' @param maxIter Maximum number of iterations to be performed
#' @param LMinit Starting value of search-direction length
#' in the Levenberg-Marquardt method.
#' @param LMstep Size of the Levenberg-Marquardt step
#'
#' @export
optimOptions <- function(tol=1e-2,maxIter=20,LMinit=0.01,LMstep=2){
return(list(tol=tol,maxIter= maxIter, adv= list(LMinit=LMinit,
LMstep=LMstep)))
}
#' Parameter covariance of the identified model
#'
#' Obtain the parameter covariance matrix of the linear, identified
#' parametric model
#'
#' @param sys a linear, identified parametric model
#'
#' @export
getcov <- function(sys){
sys$stats$vcov
}
armaxGrad <- function(theta,e,dots){
y <- dots[[1]]; u <- dots[[2]]; order <- dots[[3]];
na <- order[1];nb <- order[2]; nc <- order[3]; nk <- order[4]
nb1 <- nb+nk-1 ; n <- max(na,nb1,nc)
N <- dim(y)[1]-2*n
if(is.null(e)){
eout <- matrix(c(rep(0,n),dots[[4]][,],rep(0,n)))
} else{
eout <- matrix(c(rep(0,n),e[,]))
}
reg <- function(i) {
if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1
matrix(c(-y[i-1:na,],u[v,],eout[i-1:nc,]))
}
X <- t(sapply(n+1:(N+n),reg))
Y <- y[n+1:(N+n),,drop=F]
l <- list(X=X,Y=Y)
if(!is.null(e)){
filt1 <- signal::Arma(b=1,a=c(1,theta[(na+nb+1:nc)]))
grad <- apply(X,2,signal::filter,filt=filt1)
l$grad <- grad
}
return(l)
}
oeGrad <- function(theta,e,dots){
y <- dots[[1]]; uout <- dots[[2]]; order <- dots[[3]];
nb <- order[1];nf <- order[2]; nk <- order[3];
nb1 <- nb+nk-1 ; n <- max(nb1,nf)
N <- dim(y)[1]
if(is.null(e)){
iv <- dots[[4]]
} else{
iv <- y-e
}
eout <- matrix(c(rep(0,n),iv[,]))
reg <- function(i) {
if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1
matrix(c(uout[v,],-eout[i-1:nf,]))
}
X <- t(sapply(n+1:N,reg))
l <- list(X=X,Y=y)
if(!is.null(e)){
filt1 <- signal::Arma(b=1,a=c(1,theta[nb+1:nf,]))
grad <- apply(X,2,signal::filter,filt=filt1)
l$grad <- grad
}
return(l)
}
bjGrad <- function(theta,e,dots){
y <- dots[[1]]; uout <- dots[[2]]; order <- dots[[3]];
nb <- order[1];nc <- order[2]; nd <- order[3];
nf <- order[4]; nk <- order[5];
nb1 <- nb+nk-1 ; n <- max(nb1,nc,nd,nf);
N <- dim(y)[1]
if(is.null(e)){
zeta <- dots[[4]]
w <- y-zeta
e <- dots[[5]]
} else{
filt_ts <- signal::Arma(b=c(1,theta[nb+1:nc]),
a=c(1,theta[nb+nc+1:nd]))
w <- matrix(signal::filter(filt_ts,e))
zeta <- y-w
}
zetaout <- matrix(c(rep(0,n),zeta[,]))
wout <- matrix(c(rep(0,n),w[,]))
eout <- matrix(c(rep(0,n),e[,]))
reg <- function(i) {
if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1
matrix(c(uout[v,],eout[i-1:nc,],wout[i-1:nd,],-zetaout[i-1:nf,]))
}
X <- t(sapply(n+1:N,reg))
l <- list(X=X,Y=y)
if(!is.null(e)){
filt1 <- signal::Arma(b=c(1,theta[nb+nc+1:nd]),
a=c(1,theta[nb+1:nc]))
grad <- apply(X,2,signal::filter,filt=filt1)
l$grad <- grad
}
return(l)
}
inv <- function(H){
chdecomp <- chol(H)
chol2inv(H)
}
|