# Implementation of the Levenberg Marquardt Algorithm levbmqdt <- function(...,obj,theta0,N,opt){ dots <- list(...) # Optimization Parameters tol <- opt$tol; maxIter <- opt$maxIter d <- opt$adv$LMinit; mu <- opt$adv$LMstep df <- N - dim(theta0)[1] # Initialize Algorithm i <- 0 l <- obj(theta=theta0,e=NULL,dots) e <- l$Y-l$X%*%theta0 sumsq0 <- sum(e^2)/N # variable to count the number of times objective function is called countObj <- 0 sumSqDiff <- 9E-3*sumsq0 repeat{ i=i+1 # Update gradient l <- obj(theta0,e,dots) g <- 1/N*t(l$grad)%*%e termPar <- norm(g,"2") repeat{ # Update Parameters H <- 1/N*t(l$grad)%*%l$grad + d*diag(dim(theta0)[1]) Hinv <- solve(H); theta <- theta0 + Hinv%*%g # Evaulate sum square error fn <- l$Y-l$X%*%theta sumsq <- sum(fn^2)/N sumSqDiff <- sumsq0-sumsq countObj <- countObj + 1 if(termPar < tol) break # no major improvement if(abs(sumSqDiff) < 0.01*sumsq0) break # If sum square error with the updated parameters is less than the # previous one, the updated parameters become the current parameters # and the damping coefficient is reduced by a factor of mu if(sumSqDiff > 0){ d <- d/mu theta0 <- theta sumsq0 <- sumsq e <- fn break } else{ # increase damping coefficient by a factor of mu d <- d*mu } } if(termPar < tol) { WhyStop <- "Tolerance" break } if(abs(sumSqDiff) < 0.01*sumsq0){ WhyStop <- "No significant change" break } if(i == maxIter){ WhyStop <- "Maximum Iteration Limit" break } } theta <- theta0 e <- e[1:N,] sigma2 <- sum(e^2)/df vcov <- 1/N*Hinv*sigma2 list(params=theta,residuals=e,vcov=vcov,sigma = sqrt(sigma2), termination=list(WhyStop=WhyStop,iter=i,FcnCount = countObj, CostFcn=sumsq0)) } #' Create optimization options #' #' Specify optimization options that are to be passed to the #' numerical estimation routines #' #' @param tol Minimum ratio of the improvement to the current loss #' function. Iterations stop if this ratio goes below the tolerance #' limit (Default: \code{1e-5}) #' @param maxIter Maximum number of iterations to be performed #' @param LMinit Starting value of search-direction length #' in the Levenberg-Marquardt method. #' @param LMstep Size of the Levenberg-Marquardt step #' #' @export optimOptions <- function(tol=1e-2,maxIter=20,LMinit=0.01,LMstep=2){ return(list(tol=tol,maxIter= maxIter, adv= list(LMinit=LMinit, LMstep=LMstep))) } #' Parameter covariance of the identified model #' #' Obtain the parameter covariance matrix of the linear, identified #' parametric model #' #' @param sys a linear, identified parametric model #' #' @export getcov <- function(sys){ sys$stats$vcov } armaxGrad <- function(theta,e,dots){ y <- dots[[1]]; u <- dots[[2]]; order <- dots[[3]]; na <- order[1];nb <- order[2]; nc <- order[3]; nk <- order[4] nb1 <- nb+nk-1 ; n <- max(na,nb1,nc) N <- dim(y)[1]-2*n if(is.null(e)){ eout <- matrix(c(rep(0,n),dots[[4]][,],rep(0,n))) } else{ eout <- matrix(c(rep(0,n),e[,])) } reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(-y[i-1:na,],u[v,],eout[i-1:nc,])) } X <- t(sapply(n+1:(N+n),reg)) Y <- y[n+1:(N+n),,drop=F] l <- list(X=X,Y=Y) if(!is.null(e)){ filt1 <- signal::Arma(b=1,a=c(1,theta[(na+nb+1:nc)])) grad <- apply(X,2,signal::filter,filt=filt1) l$grad <- grad } return(l) } oeGrad <- function(theta,e,dots){ y <- dots[[1]]; uout <- dots[[2]]; order <- dots[[3]]; nb <- order[1];nf <- order[2]; nk <- order[3]; nb1 <- nb+nk-1 ; n <- max(nb1,nf) N <- dim(y)[1] if(is.null(e)){ iv <- dots[[4]] } else{ iv <- y-e } eout <- matrix(c(rep(0,n),iv[,])) reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(uout[v,],-eout[i-1:nf,])) } X <- t(sapply(n+1:N,reg)) l <- list(X=X,Y=y) if(!is.null(e)){ filt1 <- signal::Arma(b=1,a=c(1,theta[nb+1:nf,])) grad <- apply(X,2,signal::filter,filt=filt1) l$grad <- grad } return(l) } bjGrad <- function(theta,e,dots){ y <- dots[[1]]; uout <- dots[[2]]; order <- dots[[3]]; nb <- order[1];nc <- order[2]; nd <- order[3]; nf <- order[4]; nk <- order[5]; nb1 <- nb+nk-1 ; n <- max(nb1,nc,nd,nf); N <- dim(y)[1] if(is.null(e)){ zeta <- dots[[4]] w <- y-zeta e <- dots[[5]] } else{ filt_ts <- signal::Arma(b=c(1,theta[nb+1:nc]), a=c(1,theta[nb+nc+1:nd])) w <- matrix(signal::filter(filt_ts,e)) zeta <- y-w } zetaout <- matrix(c(rep(0,n),zeta[,])) wout <- matrix(c(rep(0,n),w[,])) eout <- matrix(c(rep(0,n),e[,])) reg <- function(i) { if(nk==0) v <- i-0:(nb-1) else v <- i-nk:nb1 matrix(c(uout[v,],eout[i-1:nc,],wout[i-1:nd,],-zetaout[i-1:nf,])) } X <- t(sapply(n+1:N,reg)) l <- list(X=X,Y=y) if(!is.null(e)){ filt1 <- signal::Arma(b=c(1,theta[nb+nc+1:nd]), a=c(1,theta[nb+1:nc])) grad <- apply(X,2,signal::filter,filt=filt1) l$grad <- grad } return(l) } inv <- function(H){ chdecomp <- chol(H) chol2inv(H) }