diff options
Diffstat (limited to 'thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h')
-rw-r--r-- | thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h | 154 |
1 files changed, 0 insertions, 154 deletions
diff --git a/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h b/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h deleted file mode 100644 index 8366b88..0000000 --- a/thirdparty/includes/GSL/gsl/gsl_sf_hyperg.h +++ /dev/null @@ -1,154 +0,0 @@ -/* specfunc/gsl_sf_hyperg.h - * - * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 3 of the License, or (at - * your option) any later version. - * - * This program is distributed in the hope that it will be useful, but - * WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. - */ - -/* Author: G. Jungman */ - -#ifndef __GSL_SF_HYPERG_H__ -#define __GSL_SF_HYPERG_H__ - -#include <gsl/gsl_sf_result.h> - -#undef __BEGIN_DECLS -#undef __END_DECLS -#ifdef __cplusplus -# define __BEGIN_DECLS extern "C" { -# define __END_DECLS } -#else -# define __BEGIN_DECLS /* empty */ -# define __END_DECLS /* empty */ -#endif - -__BEGIN_DECLS - - -/* Hypergeometric function related to Bessel functions - * 0F1[c,x] = - * Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x]) - * Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x]) - * - * exceptions: GSL_EOVRFLW, GSL_EUNDRFLW - */ -int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result); -double gsl_sf_hyperg_0F1(const double c, const double x); - - -/* Confluent hypergeometric function for integer parameters. - * 1F1[m,n,x] = M(m,n,x) - * - * exceptions: - */ -int gsl_sf_hyperg_1F1_int_e(const int m, const int n, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_1F1_int(const int m, const int n, double x); - - -/* Confluent hypergeometric function. - * 1F1[a,b,x] = M(a,b,x) - * - * exceptions: - */ -int gsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_1F1(double a, double b, double x); - - -/* Confluent hypergeometric function for integer parameters. - * U(m,n,x) - * - * exceptions: - */ -int gsl_sf_hyperg_U_int_e(const int m, const int n, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_U_int(const int m, const int n, const double x); - - -/* Confluent hypergeometric function for integer parameters. - * U(m,n,x) - * - * exceptions: - */ -int gsl_sf_hyperg_U_int_e10_e(const int m, const int n, const double x, gsl_sf_result_e10 * result); - - -/* Confluent hypergeometric function. - * U(a,b,x) - * - * exceptions: - */ -int gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_U(const double a, const double b, const double x); - - -/* Confluent hypergeometric function. - * U(a,b,x) - * - * exceptions: - */ -int gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x, gsl_sf_result_e10 * result); - - -/* Gauss hypergeometric function 2F1[a,b,c,x] - * |x| < 1 - * - * exceptions: - */ -int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_2F1(double a, double b, double c, double x); - - -/* Gauss hypergeometric function - * 2F1[aR + I aI, aR - I aI, c, x] - * |x| < 1 - * - * exceptions: - */ -int gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x); - - -/* Renormalized Gauss hypergeometric function - * 2F1[a,b,c,x] / Gamma[c] - * |x| < 1 - * - * exceptions: - */ -int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x); - - -/* Renormalized Gauss hypergeometric function - * 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c] - * |x| < 1 - * - * exceptions: - */ -int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x); - - -/* Mysterious hypergeometric function. The series representation - * is a divergent hypergeometric series. However, for x < 0 we - * have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x) - * - * exceptions: GSL_EDOM - */ -int gsl_sf_hyperg_2F0_e(const double a, const double b, const double x, gsl_sf_result * result); -double gsl_sf_hyperg_2F0(const double a, const double b, const double x); - - -__END_DECLS - -#endif /* __GSL_SF_HYPERG_H__ */ |