1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
/* specfunc/gsl_sf_hyperg.h
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* Author: G. Jungman */
#ifndef __GSL_SF_HYPERG_H__
#define __GSL_SF_HYPERG_H__
#include <gsl/gsl_sf_result.h>
#undef __BEGIN_DECLS
#undef __END_DECLS
#ifdef __cplusplus
# define __BEGIN_DECLS extern "C" {
# define __END_DECLS }
#else
# define __BEGIN_DECLS /* empty */
# define __END_DECLS /* empty */
#endif
__BEGIN_DECLS
/* Hypergeometric function related to Bessel functions
* 0F1[c,x] =
* Gamma[c] x^(1/2(1-c)) I_{c-1}(2 Sqrt[x])
* Gamma[c] (-x)^(1/2(1-c)) J_{c-1}(2 Sqrt[-x])
*
* exceptions: GSL_EOVRFLW, GSL_EUNDRFLW
*/
int gsl_sf_hyperg_0F1_e(double c, double x, gsl_sf_result * result);
double gsl_sf_hyperg_0F1(const double c, const double x);
/* Confluent hypergeometric function for integer parameters.
* 1F1[m,n,x] = M(m,n,x)
*
* exceptions:
*/
int gsl_sf_hyperg_1F1_int_e(const int m, const int n, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_1F1_int(const int m, const int n, double x);
/* Confluent hypergeometric function.
* 1F1[a,b,x] = M(a,b,x)
*
* exceptions:
*/
int gsl_sf_hyperg_1F1_e(const double a, const double b, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_1F1(double a, double b, double x);
/* Confluent hypergeometric function for integer parameters.
* U(m,n,x)
*
* exceptions:
*/
int gsl_sf_hyperg_U_int_e(const int m, const int n, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_U_int(const int m, const int n, const double x);
/* Confluent hypergeometric function for integer parameters.
* U(m,n,x)
*
* exceptions:
*/
int gsl_sf_hyperg_U_int_e10_e(const int m, const int n, const double x, gsl_sf_result_e10 * result);
/* Confluent hypergeometric function.
* U(a,b,x)
*
* exceptions:
*/
int gsl_sf_hyperg_U_e(const double a, const double b, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_U(const double a, const double b, const double x);
/* Confluent hypergeometric function.
* U(a,b,x)
*
* exceptions:
*/
int gsl_sf_hyperg_U_e10_e(const double a, const double b, const double x, gsl_sf_result_e10 * result);
/* Gauss hypergeometric function 2F1[a,b,c,x]
* |x| < 1
*
* exceptions:
*/
int gsl_sf_hyperg_2F1_e(double a, double b, const double c, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_2F1(double a, double b, double c, double x);
/* Gauss hypergeometric function
* 2F1[aR + I aI, aR - I aI, c, x]
* |x| < 1
*
* exceptions:
*/
int gsl_sf_hyperg_2F1_conj_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_2F1_conj(double aR, double aI, double c, double x);
/* Renormalized Gauss hypergeometric function
* 2F1[a,b,c,x] / Gamma[c]
* |x| < 1
*
* exceptions:
*/
int gsl_sf_hyperg_2F1_renorm_e(const double a, const double b, const double c, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_2F1_renorm(double a, double b, double c, double x);
/* Renormalized Gauss hypergeometric function
* 2F1[aR + I aI, aR - I aI, c, x] / Gamma[c]
* |x| < 1
*
* exceptions:
*/
int gsl_sf_hyperg_2F1_conj_renorm_e(const double aR, const double aI, const double c, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_2F1_conj_renorm(double aR, double aI, double c, double x);
/* Mysterious hypergeometric function. The series representation
* is a divergent hypergeometric series. However, for x < 0 we
* have 2F0(a,b,x) = (-1/x)^a U(a,1+a-b,-1/x)
*
* exceptions: GSL_EDOM
*/
int gsl_sf_hyperg_2F0_e(const double a, const double b, const double x, gsl_sf_result * result);
double gsl_sf_hyperg_2F0(const double a, const double b, const double x);
__END_DECLS
#endif /* __GSL_SF_HYPERG_H__ */
|