summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlartg.f
blob: 6d3a850e4bdb56e535ddb195d6edecc2bd111c7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
      SUBROUTINE ZLARTG( F, G, CS, SN, R )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   CS
      COMPLEX*16         F, G, R, SN
*     ..
*
*  Purpose
*  =======
*
*  ZLARTG generates a plane rotation so that
*
*     [  CS  SN  ]     [ F ]     [ R ]
*     [  __      ]  .  [   ]  =  [   ]   where CS**2 + |SN|**2 = 1.
*     [ -SN  CS  ]     [ G ]     [ 0 ]
*
*  This is a faster version of the BLAS1 routine ZROTG, except for
*  the following differences:
*     F and G are unchanged on return.
*     If G=0, then CS=1 and SN=0.
*     If F=0, then CS=0 and SN is chosen so that R is real.
*
*  Arguments
*  =========
*
*  F       (input) COMPLEX*16
*          The first component of vector to be rotated.
*
*  G       (input) COMPLEX*16
*          The second component of vector to be rotated.
*
*  CS      (output) DOUBLE PRECISION
*          The cosine of the rotation.
*
*  SN      (output) COMPLEX*16
*          The sine of the rotation.
*
*  R       (output) COMPLEX*16
*          The nonzero component of the rotated vector.
*
*  Further Details
*  ======= =======
*
*  3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
*
*  This version has a few statements commented out for thread safety
*  (machine parameters are computed on each entry). 10 feb 03, SJH.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   TWO, ONE, ZERO
      PARAMETER          ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
      COMPLEX*16         CZERO
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
*     LOGICAL            FIRST
      INTEGER            COUNT, I
      DOUBLE PRECISION   D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
     $                   SAFMN2, SAFMX2, SCALE
      COMPLEX*16         FF, FS, GS
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           DLAMCH, DLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG,
     $                   MAX, SQRT
*     ..
*     .. Statement Functions ..
      DOUBLE PRECISION   ABS1, ABSSQ
*     ..
*     .. Save statement ..
*     SAVE               FIRST, SAFMX2, SAFMIN, SAFMN2
*     ..
*     .. Data statements ..
*     DATA               FIRST / .TRUE. /
*     ..
*     .. Statement Function definitions ..
      ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) )
      ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2
*     ..
*     .. Executable Statements ..
*
*     IF( FIRST ) THEN
         SAFMIN = DLAMCH( 'S' )
         EPS = DLAMCH( 'E' )
         SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
     $            LOG( DLAMCH( 'B' ) ) / TWO )
         SAFMX2 = ONE / SAFMN2
*        FIRST = .FALSE.
*     END IF
      SCALE = MAX( ABS1( F ), ABS1( G ) )
      FS = F
      GS = G
      COUNT = 0
      IF( SCALE.GE.SAFMX2 ) THEN
   10    CONTINUE
         COUNT = COUNT + 1
         FS = FS*SAFMN2
         GS = GS*SAFMN2
         SCALE = SCALE*SAFMN2
         IF( SCALE.GE.SAFMX2 )
     $      GO TO 10
      ELSE IF( SCALE.LE.SAFMN2 ) THEN
         IF( G.EQ.CZERO ) THEN
            CS = ONE
            SN = CZERO
            R = F
            RETURN
         END IF
   20    CONTINUE
         COUNT = COUNT - 1
         FS = FS*SAFMX2
         GS = GS*SAFMX2
         SCALE = SCALE*SAFMX2
         IF( SCALE.LE.SAFMN2 )
     $      GO TO 20
      END IF
      F2 = ABSSQ( FS )
      G2 = ABSSQ( GS )
      IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
*
*        This is a rare case: F is very small.
*
         IF( F.EQ.CZERO ) THEN
            CS = ZERO
            R = DLAPY2( DBLE( G ), DIMAG( G ) )
*           Do complex/real division explicitly with two real divisions
            D = DLAPY2( DBLE( GS ), DIMAG( GS ) )
            SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D )
            RETURN
         END IF
         F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) )
*        G2 and G2S are accurate
*        G2 is at least SAFMIN, and G2S is at least SAFMN2
         G2S = SQRT( G2 )
*        Error in CS from underflow in F2S is at most
*        UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
*        If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
*        and so CS .lt. sqrt(SAFMIN)
*        If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
*        and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
*        Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
         CS = F2S / G2S
*        Make sure abs(FF) = 1
*        Do complex/real division explicitly with 2 real divisions
         IF( ABS1( F ).GT.ONE ) THEN
            D = DLAPY2( DBLE( F ), DIMAG( F ) )
            FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D )
         ELSE
            DR = SAFMX2*DBLE( F )
            DI = SAFMX2*DIMAG( F )
            D = DLAPY2( DR, DI )
            FF = DCMPLX( DR / D, DI / D )
         END IF
         SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S )
         R = CS*F + SN*G
      ELSE
*
*        This is the most common case.
*        Neither F2 nor F2/G2 are less than SAFMIN
*        F2S cannot overflow, and it is accurate
*
         F2S = SQRT( ONE+G2 / F2 )
*        Do the F2S(real)*FS(complex) multiply with two real multiplies
         R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) )
         CS = ONE / F2S
         D = F2 + G2
*        Do complex/real division explicitly with two real divisions
         SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D )
         SN = SN*DCONJG( GS )
         IF( COUNT.NE.0 ) THEN
            IF( COUNT.GT.0 ) THEN
               DO 30 I = 1, COUNT
                  R = R*SAFMX2
   30          CONTINUE
            ELSE
               DO 40 I = 1, -COUNT
                  R = R*SAFMN2
   40          CONTINUE
            END IF
         END IF
      END IF
      RETURN
*
*     End of ZLARTG
*
      END