summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/zlartg.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/zlartg.f')
-rw-r--r--2.3-1/src/fortran/lapack/zlartg.f195
1 files changed, 195 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/zlartg.f b/2.3-1/src/fortran/lapack/zlartg.f
new file mode 100644
index 00000000..6d3a850e
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/zlartg.f
@@ -0,0 +1,195 @@
+ SUBROUTINE ZLARTG( F, G, CS, SN, R )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ DOUBLE PRECISION CS
+ COMPLEX*16 F, G, R, SN
+* ..
+*
+* Purpose
+* =======
+*
+* ZLARTG generates a plane rotation so that
+*
+* [ CS SN ] [ F ] [ R ]
+* [ __ ] . [ ] = [ ] where CS**2 + |SN|**2 = 1.
+* [ -SN CS ] [ G ] [ 0 ]
+*
+* This is a faster version of the BLAS1 routine ZROTG, except for
+* the following differences:
+* F and G are unchanged on return.
+* If G=0, then CS=1 and SN=0.
+* If F=0, then CS=0 and SN is chosen so that R is real.
+*
+* Arguments
+* =========
+*
+* F (input) COMPLEX*16
+* The first component of vector to be rotated.
+*
+* G (input) COMPLEX*16
+* The second component of vector to be rotated.
+*
+* CS (output) DOUBLE PRECISION
+* The cosine of the rotation.
+*
+* SN (output) COMPLEX*16
+* The sine of the rotation.
+*
+* R (output) COMPLEX*16
+* The nonzero component of the rotated vector.
+*
+* Further Details
+* ======= =======
+*
+* 3-5-96 - Modified with a new algorithm by W. Kahan and J. Demmel
+*
+* This version has a few statements commented out for thread safety
+* (machine parameters are computed on each entry). 10 feb 03, SJH.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION TWO, ONE, ZERO
+ PARAMETER ( TWO = 2.0D+0, ONE = 1.0D+0, ZERO = 0.0D+0 )
+ COMPLEX*16 CZERO
+ PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
+* ..
+* .. Local Scalars ..
+* LOGICAL FIRST
+ INTEGER COUNT, I
+ DOUBLE PRECISION D, DI, DR, EPS, F2, F2S, G2, G2S, SAFMIN,
+ $ SAFMN2, SAFMX2, SCALE
+ COMPLEX*16 FF, FS, GS
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DLAPY2
+ EXTERNAL DLAMCH, DLAPY2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, INT, LOG,
+ $ MAX, SQRT
+* ..
+* .. Statement Functions ..
+ DOUBLE PRECISION ABS1, ABSSQ
+* ..
+* .. Save statement ..
+* SAVE FIRST, SAFMX2, SAFMIN, SAFMN2
+* ..
+* .. Data statements ..
+* DATA FIRST / .TRUE. /
+* ..
+* .. Statement Function definitions ..
+ ABS1( FF ) = MAX( ABS( DBLE( FF ) ), ABS( DIMAG( FF ) ) )
+ ABSSQ( FF ) = DBLE( FF )**2 + DIMAG( FF )**2
+* ..
+* .. Executable Statements ..
+*
+* IF( FIRST ) THEN
+ SAFMIN = DLAMCH( 'S' )
+ EPS = DLAMCH( 'E' )
+ SAFMN2 = DLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /
+ $ LOG( DLAMCH( 'B' ) ) / TWO )
+ SAFMX2 = ONE / SAFMN2
+* FIRST = .FALSE.
+* END IF
+ SCALE = MAX( ABS1( F ), ABS1( G ) )
+ FS = F
+ GS = G
+ COUNT = 0
+ IF( SCALE.GE.SAFMX2 ) THEN
+ 10 CONTINUE
+ COUNT = COUNT + 1
+ FS = FS*SAFMN2
+ GS = GS*SAFMN2
+ SCALE = SCALE*SAFMN2
+ IF( SCALE.GE.SAFMX2 )
+ $ GO TO 10
+ ELSE IF( SCALE.LE.SAFMN2 ) THEN
+ IF( G.EQ.CZERO ) THEN
+ CS = ONE
+ SN = CZERO
+ R = F
+ RETURN
+ END IF
+ 20 CONTINUE
+ COUNT = COUNT - 1
+ FS = FS*SAFMX2
+ GS = GS*SAFMX2
+ SCALE = SCALE*SAFMX2
+ IF( SCALE.LE.SAFMN2 )
+ $ GO TO 20
+ END IF
+ F2 = ABSSQ( FS )
+ G2 = ABSSQ( GS )
+ IF( F2.LE.MAX( G2, ONE )*SAFMIN ) THEN
+*
+* This is a rare case: F is very small.
+*
+ IF( F.EQ.CZERO ) THEN
+ CS = ZERO
+ R = DLAPY2( DBLE( G ), DIMAG( G ) )
+* Do complex/real division explicitly with two real divisions
+ D = DLAPY2( DBLE( GS ), DIMAG( GS ) )
+ SN = DCMPLX( DBLE( GS ) / D, -DIMAG( GS ) / D )
+ RETURN
+ END IF
+ F2S = DLAPY2( DBLE( FS ), DIMAG( FS ) )
+* G2 and G2S are accurate
+* G2 is at least SAFMIN, and G2S is at least SAFMN2
+ G2S = SQRT( G2 )
+* Error in CS from underflow in F2S is at most
+* UNFL / SAFMN2 .lt. sqrt(UNFL*EPS) .lt. EPS
+* If MAX(G2,ONE)=G2, then F2 .lt. G2*SAFMIN,
+* and so CS .lt. sqrt(SAFMIN)
+* If MAX(G2,ONE)=ONE, then F2 .lt. SAFMIN
+* and so CS .lt. sqrt(SAFMIN)/SAFMN2 = sqrt(EPS)
+* Therefore, CS = F2S/G2S / sqrt( 1 + (F2S/G2S)**2 ) = F2S/G2S
+ CS = F2S / G2S
+* Make sure abs(FF) = 1
+* Do complex/real division explicitly with 2 real divisions
+ IF( ABS1( F ).GT.ONE ) THEN
+ D = DLAPY2( DBLE( F ), DIMAG( F ) )
+ FF = DCMPLX( DBLE( F ) / D, DIMAG( F ) / D )
+ ELSE
+ DR = SAFMX2*DBLE( F )
+ DI = SAFMX2*DIMAG( F )
+ D = DLAPY2( DR, DI )
+ FF = DCMPLX( DR / D, DI / D )
+ END IF
+ SN = FF*DCMPLX( DBLE( GS ) / G2S, -DIMAG( GS ) / G2S )
+ R = CS*F + SN*G
+ ELSE
+*
+* This is the most common case.
+* Neither F2 nor F2/G2 are less than SAFMIN
+* F2S cannot overflow, and it is accurate
+*
+ F2S = SQRT( ONE+G2 / F2 )
+* Do the F2S(real)*FS(complex) multiply with two real multiplies
+ R = DCMPLX( F2S*DBLE( FS ), F2S*DIMAG( FS ) )
+ CS = ONE / F2S
+ D = F2 + G2
+* Do complex/real division explicitly with two real divisions
+ SN = DCMPLX( DBLE( R ) / D, DIMAG( R ) / D )
+ SN = SN*DCONJG( GS )
+ IF( COUNT.NE.0 ) THEN
+ IF( COUNT.GT.0 ) THEN
+ DO 30 I = 1, COUNT
+ R = R*SAFMX2
+ 30 CONTINUE
+ ELSE
+ DO 40 I = 1, -COUNT
+ R = R*SAFMN2
+ 40 CONTINUE
+ END IF
+ END IF
+ END IF
+ RETURN
+*
+* End of ZLARTG
+*
+ END