summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlagv2.f
blob: 15bcb0b93bfa1e7156bfc737ac718b0492d3bdc1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
      SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
     $                   CSR, SNR )
*
*  -- LAPACK auxiliary routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDB
      DOUBLE PRECISION   CSL, CSR, SNL, SNR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
     $                   B( LDB, * ), BETA( 2 )
*     ..
*
*  Purpose
*  =======
*
*  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
*  matrix pencil (A,B) where B is upper triangular. This routine
*  computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
*  SNR such that
*
*  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
*     types), then
*
*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
*     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
*
*     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
*
*  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
*     then
*
*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
*     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
*
*     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
*
*     where b11 >= b22 > 0.
*
*
*  Arguments
*  =========
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
*          On entry, the 2 x 2 matrix A.
*          On exit, A is overwritten by the ``A-part'' of the
*          generalized Schur form.
*
*  LDA     (input) INTEGER
*          THe leading dimension of the array A.  LDA >= 2.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
*          On entry, the upper triangular 2 x 2 matrix B.
*          On exit, B is overwritten by the ``B-part'' of the
*          generalized Schur form.
*
*  LDB     (input) INTEGER
*          THe leading dimension of the array B.  LDB >= 2.
*
*  ALPHAR  (output) DOUBLE PRECISION array, dimension (2)
*  ALPHAI  (output) DOUBLE PRECISION array, dimension (2)
*  BETA    (output) DOUBLE PRECISION array, dimension (2)
*          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
*          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
*          be zero.
*
*  CSL     (output) DOUBLE PRECISION
*          The cosine of the left rotation matrix.
*
*  SNL     (output) DOUBLE PRECISION
*          The sine of the left rotation matrix.
*
*  CSR     (output) DOUBLE PRECISION
*          The cosine of the right rotation matrix.
*
*  SNR     (output) DOUBLE PRECISION
*          The sine of the right rotation matrix.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
     $                   R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
     $                   WR2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAG2, DLARTG, DLASV2, DROT
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLAPY2
      EXTERNAL           DLAMCH, DLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
      SAFMIN = DLAMCH( 'S' )
      ULP = DLAMCH( 'P' )
*
*     Scale A
*
      ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
     $        ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
      ASCALE = ONE / ANORM
      A( 1, 1 ) = ASCALE*A( 1, 1 )
      A( 1, 2 ) = ASCALE*A( 1, 2 )
      A( 2, 1 ) = ASCALE*A( 2, 1 )
      A( 2, 2 ) = ASCALE*A( 2, 2 )
*
*     Scale B
*
      BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
     $        SAFMIN )
      BSCALE = ONE / BNORM
      B( 1, 1 ) = BSCALE*B( 1, 1 )
      B( 1, 2 ) = BSCALE*B( 1, 2 )
      B( 2, 2 ) = BSCALE*B( 2, 2 )
*
*     Check if A can be deflated
*
      IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
         CSL = ONE
         SNL = ZERO
         CSR = ONE
         SNR = ZERO
         A( 2, 1 ) = ZERO
         B( 2, 1 ) = ZERO
*
*     Check if B is singular
*
      ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
         CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
         CSR = ONE
         SNR = ZERO
         CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
         CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
         A( 2, 1 ) = ZERO
         B( 1, 1 ) = ZERO
         B( 2, 1 ) = ZERO
*
      ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
         CALL DLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
         SNR = -SNR
         CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
         CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
         CSL = ONE
         SNL = ZERO
         A( 2, 1 ) = ZERO
         B( 2, 1 ) = ZERO
         B( 2, 2 ) = ZERO
*
      ELSE
*
*        B is nonsingular, first compute the eigenvalues of (A,B)
*
         CALL DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
     $               WI )
*
         IF( WI.EQ.ZERO ) THEN
*
*           two real eigenvalues, compute s*A-w*B
*
            H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
            H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
            H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
*
            RR = DLAPY2( H1, H2 )
            QQ = DLAPY2( SCALE1*A( 2, 1 ), H3 )
*
            IF( RR.GT.QQ ) THEN
*
*              find right rotation matrix to zero 1,1 element of
*              (sA - wB)
*
               CALL DLARTG( H2, H1, CSR, SNR, T )
*
            ELSE
*
*              find right rotation matrix to zero 2,1 element of
*              (sA - wB)
*
               CALL DLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
*
            END IF
*
            SNR = -SNR
            CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
            CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
*
*           compute inf norms of A and B
*
            H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
     $           ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
            H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
     $           ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
*
            IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
*
*              find left rotation matrix Q to zero out B(2,1)
*
               CALL DLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
*
            ELSE
*
*              find left rotation matrix Q to zero out A(2,1)
*
               CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
*
            END IF
*
            CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
            CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
*
            A( 2, 1 ) = ZERO
            B( 2, 1 ) = ZERO
*
         ELSE
*
*           a pair of complex conjugate eigenvalues
*           first compute the SVD of the matrix B
*
            CALL DLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
     $                   CSR, SNL, CSL )
*
*           Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and
*           Z is right rotation matrix computed from DLASV2
*
            CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
            CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
            CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
            CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
*
            B( 2, 1 ) = ZERO
            B( 1, 2 ) = ZERO
*
         END IF
*
      END IF
*
*     Unscaling
*
      A( 1, 1 ) = ANORM*A( 1, 1 )
      A( 2, 1 ) = ANORM*A( 2, 1 )
      A( 1, 2 ) = ANORM*A( 1, 2 )
      A( 2, 2 ) = ANORM*A( 2, 2 )
      B( 1, 1 ) = BNORM*B( 1, 1 )
      B( 2, 1 ) = BNORM*B( 2, 1 )
      B( 1, 2 ) = BNORM*B( 1, 2 )
      B( 2, 2 ) = BNORM*B( 2, 2 )
*
      IF( WI.EQ.ZERO ) THEN
         ALPHAR( 1 ) = A( 1, 1 )
         ALPHAR( 2 ) = A( 2, 2 )
         ALPHAI( 1 ) = ZERO
         ALPHAI( 2 ) = ZERO
         BETA( 1 ) = B( 1, 1 )
         BETA( 2 ) = B( 2, 2 )
      ELSE
         ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
         ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
         ALPHAR( 2 ) = ALPHAR( 1 )
         ALPHAI( 2 ) = -ALPHAI( 1 )
         BETA( 1 ) = ONE
         BETA( 2 ) = ONE
      END IF
*
      RETURN
*
*     End of DLAGV2
*
      END