summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlagv2.f
diff options
context:
space:
mode:
Diffstat (limited to '2.3-1/src/fortran/lapack/dlagv2.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlagv2.f287
1 files changed, 287 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlagv2.f b/2.3-1/src/fortran/lapack/dlagv2.f
new file mode 100644
index 00000000..15bcb0b9
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlagv2.f
@@ -0,0 +1,287 @@
+ SUBROUTINE DLAGV2( A, LDA, B, LDB, ALPHAR, ALPHAI, BETA, CSL, SNL,
+ $ CSR, SNR )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER LDA, LDB
+ DOUBLE PRECISION CSL, CSR, SNL, SNR
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION A( LDA, * ), ALPHAI( 2 ), ALPHAR( 2 ),
+ $ B( LDB, * ), BETA( 2 )
+* ..
+*
+* Purpose
+* =======
+*
+* DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
+* matrix pencil (A,B) where B is upper triangular. This routine
+* computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
+* SNR such that
+*
+* 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
+* types), then
+*
+* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
+* [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
+*
+* [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
+* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
+*
+* 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
+* then
+*
+* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
+* [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
+*
+* [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
+* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
+*
+* where b11 >= b22 > 0.
+*
+*
+* Arguments
+* =========
+*
+* A (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
+* On entry, the 2 x 2 matrix A.
+* On exit, A is overwritten by the ``A-part'' of the
+* generalized Schur form.
+*
+* LDA (input) INTEGER
+* THe leading dimension of the array A. LDA >= 2.
+*
+* B (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
+* On entry, the upper triangular 2 x 2 matrix B.
+* On exit, B is overwritten by the ``B-part'' of the
+* generalized Schur form.
+*
+* LDB (input) INTEGER
+* THe leading dimension of the array B. LDB >= 2.
+*
+* ALPHAR (output) DOUBLE PRECISION array, dimension (2)
+* ALPHAI (output) DOUBLE PRECISION array, dimension (2)
+* BETA (output) DOUBLE PRECISION array, dimension (2)
+* (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
+* pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may
+* be zero.
+*
+* CSL (output) DOUBLE PRECISION
+* The cosine of the left rotation matrix.
+*
+* SNL (output) DOUBLE PRECISION
+* The sine of the left rotation matrix.
+*
+* CSR (output) DOUBLE PRECISION
+* The cosine of the right rotation matrix.
+*
+* SNR (output) DOUBLE PRECISION
+* The sine of the right rotation matrix.
+*
+* Further Details
+* ===============
+*
+* Based on contributions by
+* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ZERO, ONE
+ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
+* ..
+* .. Local Scalars ..
+ DOUBLE PRECISION ANORM, ASCALE, BNORM, BSCALE, H1, H2, H3, QQ,
+ $ R, RR, SAFMIN, SCALE1, SCALE2, T, ULP, WI, WR1,
+ $ WR2
+* ..
+* .. External Subroutines ..
+ EXTERNAL DLAG2, DLARTG, DLASV2, DROT
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DLAPY2
+ EXTERNAL DLAMCH, DLAPY2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, MAX
+* ..
+* .. Executable Statements ..
+*
+ SAFMIN = DLAMCH( 'S' )
+ ULP = DLAMCH( 'P' )
+*
+* Scale A
+*
+ ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
+ $ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
+ ASCALE = ONE / ANORM
+ A( 1, 1 ) = ASCALE*A( 1, 1 )
+ A( 1, 2 ) = ASCALE*A( 1, 2 )
+ A( 2, 1 ) = ASCALE*A( 2, 1 )
+ A( 2, 2 ) = ASCALE*A( 2, 2 )
+*
+* Scale B
+*
+ BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
+ $ SAFMIN )
+ BSCALE = ONE / BNORM
+ B( 1, 1 ) = BSCALE*B( 1, 1 )
+ B( 1, 2 ) = BSCALE*B( 1, 2 )
+ B( 2, 2 ) = BSCALE*B( 2, 2 )
+*
+* Check if A can be deflated
+*
+ IF( ABS( A( 2, 1 ) ).LE.ULP ) THEN
+ CSL = ONE
+ SNL = ZERO
+ CSR = ONE
+ SNR = ZERO
+ A( 2, 1 ) = ZERO
+ B( 2, 1 ) = ZERO
+*
+* Check if B is singular
+*
+ ELSE IF( ABS( B( 1, 1 ) ).LE.ULP ) THEN
+ CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
+ CSR = ONE
+ SNR = ZERO
+ CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
+ CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
+ A( 2, 1 ) = ZERO
+ B( 1, 1 ) = ZERO
+ B( 2, 1 ) = ZERO
+*
+ ELSE IF( ABS( B( 2, 2 ) ).LE.ULP ) THEN
+ CALL DLARTG( A( 2, 2 ), A( 2, 1 ), CSR, SNR, T )
+ SNR = -SNR
+ CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
+ CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
+ CSL = ONE
+ SNL = ZERO
+ A( 2, 1 ) = ZERO
+ B( 2, 1 ) = ZERO
+ B( 2, 2 ) = ZERO
+*
+ ELSE
+*
+* B is nonsingular, first compute the eigenvalues of (A,B)
+*
+ CALL DLAG2( A, LDA, B, LDB, SAFMIN, SCALE1, SCALE2, WR1, WR2,
+ $ WI )
+*
+ IF( WI.EQ.ZERO ) THEN
+*
+* two real eigenvalues, compute s*A-w*B
+*
+ H1 = SCALE1*A( 1, 1 ) - WR1*B( 1, 1 )
+ H2 = SCALE1*A( 1, 2 ) - WR1*B( 1, 2 )
+ H3 = SCALE1*A( 2, 2 ) - WR1*B( 2, 2 )
+*
+ RR = DLAPY2( H1, H2 )
+ QQ = DLAPY2( SCALE1*A( 2, 1 ), H3 )
+*
+ IF( RR.GT.QQ ) THEN
+*
+* find right rotation matrix to zero 1,1 element of
+* (sA - wB)
+*
+ CALL DLARTG( H2, H1, CSR, SNR, T )
+*
+ ELSE
+*
+* find right rotation matrix to zero 2,1 element of
+* (sA - wB)
+*
+ CALL DLARTG( H3, SCALE1*A( 2, 1 ), CSR, SNR, T )
+*
+ END IF
+*
+ SNR = -SNR
+ CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
+ CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
+*
+* compute inf norms of A and B
+*
+ H1 = MAX( ABS( A( 1, 1 ) )+ABS( A( 1, 2 ) ),
+ $ ABS( A( 2, 1 ) )+ABS( A( 2, 2 ) ) )
+ H2 = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ),
+ $ ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) )
+*
+ IF( ( SCALE1*H1 ).GE.ABS( WR1 )*H2 ) THEN
+*
+* find left rotation matrix Q to zero out B(2,1)
+*
+ CALL DLARTG( B( 1, 1 ), B( 2, 1 ), CSL, SNL, R )
+*
+ ELSE
+*
+* find left rotation matrix Q to zero out A(2,1)
+*
+ CALL DLARTG( A( 1, 1 ), A( 2, 1 ), CSL, SNL, R )
+*
+ END IF
+*
+ CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
+ CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
+*
+ A( 2, 1 ) = ZERO
+ B( 2, 1 ) = ZERO
+*
+ ELSE
+*
+* a pair of complex conjugate eigenvalues
+* first compute the SVD of the matrix B
+*
+ CALL DLASV2( B( 1, 1 ), B( 1, 2 ), B( 2, 2 ), R, T, SNR,
+ $ CSR, SNL, CSL )
+*
+* Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and
+* Z is right rotation matrix computed from DLASV2
+*
+ CALL DROT( 2, A( 1, 1 ), LDA, A( 2, 1 ), LDA, CSL, SNL )
+ CALL DROT( 2, B( 1, 1 ), LDB, B( 2, 1 ), LDB, CSL, SNL )
+ CALL DROT( 2, A( 1, 1 ), 1, A( 1, 2 ), 1, CSR, SNR )
+ CALL DROT( 2, B( 1, 1 ), 1, B( 1, 2 ), 1, CSR, SNR )
+*
+ B( 2, 1 ) = ZERO
+ B( 1, 2 ) = ZERO
+*
+ END IF
+*
+ END IF
+*
+* Unscaling
+*
+ A( 1, 1 ) = ANORM*A( 1, 1 )
+ A( 2, 1 ) = ANORM*A( 2, 1 )
+ A( 1, 2 ) = ANORM*A( 1, 2 )
+ A( 2, 2 ) = ANORM*A( 2, 2 )
+ B( 1, 1 ) = BNORM*B( 1, 1 )
+ B( 2, 1 ) = BNORM*B( 2, 1 )
+ B( 1, 2 ) = BNORM*B( 1, 2 )
+ B( 2, 2 ) = BNORM*B( 2, 2 )
+*
+ IF( WI.EQ.ZERO ) THEN
+ ALPHAR( 1 ) = A( 1, 1 )
+ ALPHAR( 2 ) = A( 2, 2 )
+ ALPHAI( 1 ) = ZERO
+ ALPHAI( 2 ) = ZERO
+ BETA( 1 ) = B( 1, 1 )
+ BETA( 2 ) = B( 2, 2 )
+ ELSE
+ ALPHAR( 1 ) = ANORM*WR1 / SCALE1 / BNORM
+ ALPHAI( 1 ) = ANORM*WI / SCALE1 / BNORM
+ ALPHAR( 2 ) = ALPHAR( 1 )
+ ALPHAI( 2 ) = -ALPHAI( 1 )
+ BETA( 1 ) = ONE
+ BETA( 2 ) = ONE
+ END IF
+*
+ RETURN
+*
+* End of DLAGV2
+*
+ END