diff options
Diffstat (limited to '2.3-1/thirdparty/raspberrypi/includes/opencv2/gpu/device/vec_distance.hpp')
-rw-r--r-- | 2.3-1/thirdparty/raspberrypi/includes/opencv2/gpu/device/vec_distance.hpp | 224 |
1 files changed, 0 insertions, 224 deletions
diff --git a/2.3-1/thirdparty/raspberrypi/includes/opencv2/gpu/device/vec_distance.hpp b/2.3-1/thirdparty/raspberrypi/includes/opencv2/gpu/device/vec_distance.hpp deleted file mode 100644 index d5b4bb20..00000000 --- a/2.3-1/thirdparty/raspberrypi/includes/opencv2/gpu/device/vec_distance.hpp +++ /dev/null @@ -1,224 +0,0 @@ -/*M/////////////////////////////////////////////////////////////////////////////////////// -// -// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. -// -// By downloading, copying, installing or using the software you agree to this license. -// If you do not agree to this license, do not download, install, -// copy or use the software. -// -// -// License Agreement -// For Open Source Computer Vision Library -// -// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. -// Copyright (C) 2009, Willow Garage Inc., all rights reserved. -// Third party copyrights are property of their respective owners. -// -// Redistribution and use in source and binary forms, with or without modification, -// are permitted provided that the following conditions are met: -// -// * Redistribution's of source code must retain the above copyright notice, -// this list of conditions and the following disclaimer. -// -// * Redistribution's in binary form must reproduce the above copyright notice, -// this list of conditions and the following disclaimer in the documentation -// and/or other materials provided with the distribution. -// -// * The name of the copyright holders may not be used to endorse or promote products -// derived from this software without specific prior written permission. -// -// This software is provided by the copyright holders and contributors "as is" and -// any express or implied warranties, including, but not limited to, the implied -// warranties of merchantability and fitness for a particular purpose are disclaimed. -// In no event shall the Intel Corporation or contributors be liable for any direct, -// indirect, incidental, special, exemplary, or consequential damages -// (including, but not limited to, procurement of substitute goods or services; -// loss of use, data, or profits; or business interruption) however caused -// and on any theory of liability, whether in contract, strict liability, -// or tort (including negligence or otherwise) arising in any way out of -// the use of this software, even if advised of the possibility of such damage. -// -//M*/ - -#ifndef __OPENCV_GPU_VEC_DISTANCE_HPP__ -#define __OPENCV_GPU_VEC_DISTANCE_HPP__ - -#include "reduce.hpp" -#include "functional.hpp" -#include "detail/vec_distance_detail.hpp" - -namespace cv { namespace gpu { namespace device -{ - template <typename T> struct L1Dist - { - typedef int value_type; - typedef int result_type; - - __device__ __forceinline__ L1Dist() : mySum(0) {} - - __device__ __forceinline__ void reduceIter(int val1, int val2) - { - mySum = __sad(val1, val2, mySum); - } - - template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid) - { - reduce<THREAD_DIM>(smem, mySum, tid, plus<int>()); - } - - __device__ __forceinline__ operator int() const - { - return mySum; - } - - int mySum; - }; - template <> struct L1Dist<float> - { - typedef float value_type; - typedef float result_type; - - __device__ __forceinline__ L1Dist() : mySum(0.0f) {} - - __device__ __forceinline__ void reduceIter(float val1, float val2) - { - mySum += ::fabs(val1 - val2); - } - - template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid) - { - reduce<THREAD_DIM>(smem, mySum, tid, plus<float>()); - } - - __device__ __forceinline__ operator float() const - { - return mySum; - } - - float mySum; - }; - - struct L2Dist - { - typedef float value_type; - typedef float result_type; - - __device__ __forceinline__ L2Dist() : mySum(0.0f) {} - - __device__ __forceinline__ void reduceIter(float val1, float val2) - { - float reg = val1 - val2; - mySum += reg * reg; - } - - template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid) - { - reduce<THREAD_DIM>(smem, mySum, tid, plus<float>()); - } - - __device__ __forceinline__ operator float() const - { - return sqrtf(mySum); - } - - float mySum; - }; - - struct HammingDist - { - typedef int value_type; - typedef int result_type; - - __device__ __forceinline__ HammingDist() : mySum(0) {} - - __device__ __forceinline__ void reduceIter(int val1, int val2) - { - mySum += __popc(val1 ^ val2); - } - - template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid) - { - reduce<THREAD_DIM>(smem, mySum, tid, plus<int>()); - } - - __device__ __forceinline__ operator int() const - { - return mySum; - } - - int mySum; - }; - - // calc distance between two vectors in global memory - template <int THREAD_DIM, typename Dist, typename T1, typename T2> - __device__ void calcVecDiffGlobal(const T1* vec1, const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) - { - for (int i = tid; i < len; i += THREAD_DIM) - { - T1 val1; - ForceGlob<T1>::Load(vec1, i, val1); - - T2 val2; - ForceGlob<T2>::Load(vec2, i, val2); - - dist.reduceIter(val1, val2); - } - - dist.reduceAll<THREAD_DIM>(smem, tid); - } - - // calc distance between two vectors, first vector is cached in register or shared memory, second vector is in global memory - template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T1, typename T2> - __device__ __forceinline__ void calcVecDiffCached(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, typename Dist::result_type* smem, int tid) - { - vec_distance_detail::VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>::calc(vecCached, vecGlob, len, dist, tid); - - dist.reduceAll<THREAD_DIM>(smem, tid); - } - - // calc distance between two vectors in global memory - template <int THREAD_DIM, typename T1> struct VecDiffGlobal - { - explicit __device__ __forceinline__ VecDiffGlobal(const T1* vec1_, int = 0, void* = 0, int = 0, int = 0) - { - vec1 = vec1_; - } - - template <typename T2, typename Dist> - __device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const - { - calcVecDiffGlobal<THREAD_DIM>(vec1, vec2, len, dist, smem, tid); - } - - const T1* vec1; - }; - - // calc distance between two vectors, first vector is cached in register memory, second vector is in global memory - template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename U> struct VecDiffCachedRegister - { - template <typename T1> __device__ __forceinline__ VecDiffCachedRegister(const T1* vec1, int len, U* smem, int glob_tid, int tid) - { - if (glob_tid < len) - smem[glob_tid] = vec1[glob_tid]; - __syncthreads(); - - U* vec1ValsPtr = vec1Vals; - - #pragma unroll - for (int i = tid; i < MAX_LEN; i += THREAD_DIM) - *vec1ValsPtr++ = smem[i]; - - __syncthreads(); - } - - template <typename T2, typename Dist> - __device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const - { - calcVecDiffCached<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>(vec1Vals, vec2, len, dist, smem, tid); - } - - U vec1Vals[MAX_LEN / THREAD_DIM]; - }; -}}} // namespace cv { namespace gpu { namespace device - -#endif // __OPENCV_GPU_VEC_DISTANCE_HPP__ |