1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_GPU_VEC_DISTANCE_HPP__
#define __OPENCV_GPU_VEC_DISTANCE_HPP__
#include "reduce.hpp"
#include "functional.hpp"
#include "detail/vec_distance_detail.hpp"
namespace cv { namespace gpu { namespace device
{
template <typename T> struct L1Dist
{
typedef int value_type;
typedef int result_type;
__device__ __forceinline__ L1Dist() : mySum(0) {}
__device__ __forceinline__ void reduceIter(int val1, int val2)
{
mySum = __sad(val1, val2, mySum);
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<int>());
}
__device__ __forceinline__ operator int() const
{
return mySum;
}
int mySum;
};
template <> struct L1Dist<float>
{
typedef float value_type;
typedef float result_type;
__device__ __forceinline__ L1Dist() : mySum(0.0f) {}
__device__ __forceinline__ void reduceIter(float val1, float val2)
{
mySum += ::fabs(val1 - val2);
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<float>());
}
__device__ __forceinline__ operator float() const
{
return mySum;
}
float mySum;
};
struct L2Dist
{
typedef float value_type;
typedef float result_type;
__device__ __forceinline__ L2Dist() : mySum(0.0f) {}
__device__ __forceinline__ void reduceIter(float val1, float val2)
{
float reg = val1 - val2;
mySum += reg * reg;
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(float* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<float>());
}
__device__ __forceinline__ operator float() const
{
return sqrtf(mySum);
}
float mySum;
};
struct HammingDist
{
typedef int value_type;
typedef int result_type;
__device__ __forceinline__ HammingDist() : mySum(0) {}
__device__ __forceinline__ void reduceIter(int val1, int val2)
{
mySum += __popc(val1 ^ val2);
}
template <int THREAD_DIM> __device__ __forceinline__ void reduceAll(int* smem, int tid)
{
reduce<THREAD_DIM>(smem, mySum, tid, plus<int>());
}
__device__ __forceinline__ operator int() const
{
return mySum;
}
int mySum;
};
// calc distance between two vectors in global memory
template <int THREAD_DIM, typename Dist, typename T1, typename T2>
__device__ void calcVecDiffGlobal(const T1* vec1, const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid)
{
for (int i = tid; i < len; i += THREAD_DIM)
{
T1 val1;
ForceGlob<T1>::Load(vec1, i, val1);
T2 val2;
ForceGlob<T2>::Load(vec2, i, val2);
dist.reduceIter(val1, val2);
}
dist.reduceAll<THREAD_DIM>(smem, tid);
}
// calc distance between two vectors, first vector is cached in register or shared memory, second vector is in global memory
template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename Dist, typename T1, typename T2>
__device__ __forceinline__ void calcVecDiffCached(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, typename Dist::result_type* smem, int tid)
{
vec_distance_detail::VecDiffCachedCalculator<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>::calc(vecCached, vecGlob, len, dist, tid);
dist.reduceAll<THREAD_DIM>(smem, tid);
}
// calc distance between two vectors in global memory
template <int THREAD_DIM, typename T1> struct VecDiffGlobal
{
explicit __device__ __forceinline__ VecDiffGlobal(const T1* vec1_, int = 0, void* = 0, int = 0, int = 0)
{
vec1 = vec1_;
}
template <typename T2, typename Dist>
__device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const
{
calcVecDiffGlobal<THREAD_DIM>(vec1, vec2, len, dist, smem, tid);
}
const T1* vec1;
};
// calc distance between two vectors, first vector is cached in register memory, second vector is in global memory
template <int THREAD_DIM, int MAX_LEN, bool LEN_EQ_MAX_LEN, typename U> struct VecDiffCachedRegister
{
template <typename T1> __device__ __forceinline__ VecDiffCachedRegister(const T1* vec1, int len, U* smem, int glob_tid, int tid)
{
if (glob_tid < len)
smem[glob_tid] = vec1[glob_tid];
__syncthreads();
U* vec1ValsPtr = vec1Vals;
#pragma unroll
for (int i = tid; i < MAX_LEN; i += THREAD_DIM)
*vec1ValsPtr++ = smem[i];
__syncthreads();
}
template <typename T2, typename Dist>
__device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const
{
calcVecDiffCached<THREAD_DIM, MAX_LEN, LEN_EQ_MAX_LEN>(vec1Vals, vec2, len, dist, smem, tid);
}
U vec1Vals[MAX_LEN / THREAD_DIM];
};
}}} // namespace cv { namespace gpu { namespace device
#endif // __OPENCV_GPU_VEC_DISTANCE_HPP__
|