summaryrefslogtreecommitdiff
path: root/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp
diff options
context:
space:
mode:
authorAnkit Raj2017-06-21 10:26:59 +0530
committerAnkit Raj2017-06-21 10:26:59 +0530
commita555820564d9f2e95ca8c97871339d3a5a2081c3 (patch)
treeadb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp
downloadScilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2
Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip
Updated Scilab2C
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp')
-rw-r--r--2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp2147
1 files changed, 2147 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp
new file mode 100644
index 00000000..d86ecde4
--- /dev/null
+++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp
@@ -0,0 +1,2147 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+// By downloading, copying, installing or using the software you agree to this license.
+// If you do not agree to this license, do not download, install,
+// copy or use the software.
+//
+//
+// Intel License Agreement
+//
+// Copyright (C) 2000, Intel Corporation, all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+// * Redistribution's of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+//
+// * Redistribution's in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+//
+// * The name of Intel Corporation may not be used to endorse or promote products
+// derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_ML_HPP__
+#define __OPENCV_ML_HPP__
+
+#include "opencv2/core/core.hpp"
+#include <limits.h>
+
+#ifdef __cplusplus
+
+#include <map>
+#include <string>
+#include <iostream>
+
+// Apple defines a check() macro somewhere in the debug headers
+// that interferes with a method definiton in this header
+#undef check
+
+/****************************************************************************************\
+* Main struct definitions *
+\****************************************************************************************/
+
+/* log(2*PI) */
+#define CV_LOG2PI (1.8378770664093454835606594728112)
+
+/* columns of <trainData> matrix are training samples */
+#define CV_COL_SAMPLE 0
+
+/* rows of <trainData> matrix are training samples */
+#define CV_ROW_SAMPLE 1
+
+#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE)
+
+struct CvVectors
+{
+ int type;
+ int dims, count;
+ CvVectors* next;
+ union
+ {
+ uchar** ptr;
+ float** fl;
+ double** db;
+ } data;
+};
+
+#if 0
+/* A structure, representing the lattice range of statmodel parameters.
+ It is used for optimizing statmodel parameters by cross-validation method.
+ The lattice is logarithmic, so <step> must be greater then 1. */
+typedef struct CvParamLattice
+{
+ double min_val;
+ double max_val;
+ double step;
+}
+CvParamLattice;
+
+CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val,
+ double log_step )
+{
+ CvParamLattice pl;
+ pl.min_val = MIN( min_val, max_val );
+ pl.max_val = MAX( min_val, max_val );
+ pl.step = MAX( log_step, 1. );
+ return pl;
+}
+
+CV_INLINE CvParamLattice cvDefaultParamLattice( void )
+{
+ CvParamLattice pl = {0,0,0};
+ return pl;
+}
+#endif
+
+/* Variable type */
+#define CV_VAR_NUMERICAL 0
+#define CV_VAR_ORDERED 0
+#define CV_VAR_CATEGORICAL 1
+
+#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm"
+#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn"
+#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian"
+#define CV_TYPE_NAME_ML_EM "opencv-ml-em"
+#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree"
+#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree"
+#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp"
+#define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn"
+#define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees"
+#define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees"
+#define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees"
+
+#define CV_TRAIN_ERROR 0
+#define CV_TEST_ERROR 1
+
+class CV_EXPORTS_W CvStatModel
+{
+public:
+ CvStatModel();
+ virtual ~CvStatModel();
+
+ virtual void clear();
+
+ CV_WRAP virtual void save( const char* filename, const char* name=0 ) const;
+ CV_WRAP virtual void load( const char* filename, const char* name=0 );
+
+ virtual void write( CvFileStorage* storage, const char* name ) const;
+ virtual void read( CvFileStorage* storage, CvFileNode* node );
+
+protected:
+ const char* default_model_name;
+};
+
+/****************************************************************************************\
+* Normal Bayes Classifier *
+\****************************************************************************************/
+
+/* The structure, representing the grid range of statmodel parameters.
+ It is used for optimizing statmodel accuracy by varying model parameters,
+ the accuracy estimate being computed by cross-validation.
+ The grid is logarithmic, so <step> must be greater then 1. */
+
+class CvMLData;
+
+struct CV_EXPORTS_W_MAP CvParamGrid
+{
+ // SVM params type
+ enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 };
+
+ CvParamGrid()
+ {
+ min_val = max_val = step = 0;
+ }
+
+ CvParamGrid( double min_val, double max_val, double log_step );
+ //CvParamGrid( int param_id );
+ bool check() const;
+
+ CV_PROP_RW double min_val;
+ CV_PROP_RW double max_val;
+ CV_PROP_RW double step;
+};
+
+inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step )
+{
+ min_val = _min_val;
+ max_val = _max_val;
+ step = _log_step;
+}
+
+class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel
+{
+public:
+ CV_WRAP CvNormalBayesClassifier();
+ virtual ~CvNormalBayesClassifier();
+
+ CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses,
+ const CvMat* varIdx=0, const CvMat* sampleIdx=0 );
+
+ virtual bool train( const CvMat* trainData, const CvMat* responses,
+ const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false );
+
+ virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const;
+ CV_WRAP virtual void clear();
+
+ CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() );
+ CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
+ bool update=false );
+ CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const;
+
+ virtual void write( CvFileStorage* storage, const char* name ) const;
+ virtual void read( CvFileStorage* storage, CvFileNode* node );
+
+protected:
+ int var_count, var_all;
+ CvMat* var_idx;
+ CvMat* cls_labels;
+ CvMat** count;
+ CvMat** sum;
+ CvMat** productsum;
+ CvMat** avg;
+ CvMat** inv_eigen_values;
+ CvMat** cov_rotate_mats;
+ CvMat* c;
+};
+
+
+/****************************************************************************************\
+* K-Nearest Neighbour Classifier *
+\****************************************************************************************/
+
+// k Nearest Neighbors
+class CV_EXPORTS_W CvKNearest : public CvStatModel
+{
+public:
+
+ CV_WRAP CvKNearest();
+ virtual ~CvKNearest();
+
+ CvKNearest( const CvMat* trainData, const CvMat* responses,
+ const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 );
+
+ virtual bool train( const CvMat* trainData, const CvMat* responses,
+ const CvMat* sampleIdx=0, bool is_regression=false,
+ int maxK=32, bool updateBase=false );
+
+ virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0,
+ const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const;
+
+ CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 );
+
+ CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false,
+ int maxK=32, bool updateBase=false );
+
+ virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0,
+ const float** neighbors=0, cv::Mat* neighborResponses=0,
+ cv::Mat* dist=0 ) const;
+ CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results,
+ CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const;
+
+ virtual void clear();
+ int get_max_k() const;
+ int get_var_count() const;
+ int get_sample_count() const;
+ bool is_regression() const;
+
+ virtual float write_results( int k, int k1, int start, int end,
+ const float* neighbor_responses, const float* dist, CvMat* _results,
+ CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const;
+
+ virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end,
+ float* neighbor_responses, const float** neighbors, float* dist ) const;
+
+protected:
+
+ int max_k, var_count;
+ int total;
+ bool regression;
+ CvVectors* samples;
+};
+
+/****************************************************************************************\
+* Support Vector Machines *
+\****************************************************************************************/
+
+// SVM training parameters
+struct CV_EXPORTS_W_MAP CvSVMParams
+{
+ CvSVMParams();
+ CvSVMParams( int svm_type, int kernel_type,
+ double degree, double gamma, double coef0,
+ double Cvalue, double nu, double p,
+ CvMat* class_weights, CvTermCriteria term_crit );
+
+ CV_PROP_RW int svm_type;
+ CV_PROP_RW int kernel_type;
+ CV_PROP_RW double degree; // for poly
+ CV_PROP_RW double gamma; // for poly/rbf/sigmoid
+ CV_PROP_RW double coef0; // for poly/sigmoid
+
+ CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR
+ CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR
+ CV_PROP_RW double p; // for CV_SVM_EPS_SVR
+ CvMat* class_weights; // for CV_SVM_C_SVC
+ CV_PROP_RW CvTermCriteria term_crit; // termination criteria
+};
+
+
+struct CV_EXPORTS CvSVMKernel
+{
+ typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs,
+ const float* another, float* results );
+ CvSVMKernel();
+ CvSVMKernel( const CvSVMParams* params, Calc _calc_func );
+ virtual bool create( const CvSVMParams* params, Calc _calc_func );
+ virtual ~CvSVMKernel();
+
+ virtual void clear();
+ virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results );
+
+ const CvSVMParams* params;
+ Calc calc_func;
+
+ virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs,
+ const float* another, float* results,
+ double alpha, double beta );
+
+ virtual void calc_linear( int vec_count, int vec_size, const float** vecs,
+ const float* another, float* results );
+ virtual void calc_rbf( int vec_count, int vec_size, const float** vecs,
+ const float* another, float* results );
+ virtual void calc_poly( int vec_count, int vec_size, const float** vecs,
+ const float* another, float* results );
+ virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs,
+ const float* another, float* results );
+};
+
+
+struct CvSVMKernelRow
+{
+ CvSVMKernelRow* prev;
+ CvSVMKernelRow* next;
+ float* data;
+};
+
+
+struct CvSVMSolutionInfo
+{
+ double obj;
+ double rho;
+ double upper_bound_p;
+ double upper_bound_n;
+ double r; // for Solver_NU
+};
+
+class CV_EXPORTS CvSVMSolver
+{
+public:
+ typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j );
+ typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed );
+ typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r );
+
+ CvSVMSolver();
+
+ CvSVMSolver( int count, int var_count, const float** samples, schar* y,
+ int alpha_count, double* alpha, double Cp, double Cn,
+ CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
+ SelectWorkingSet select_working_set, CalcRho calc_rho );
+ virtual bool create( int count, int var_count, const float** samples, schar* y,
+ int alpha_count, double* alpha, double Cp, double Cn,
+ CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row,
+ SelectWorkingSet select_working_set, CalcRho calc_rho );
+ virtual ~CvSVMSolver();
+
+ virtual void clear();
+ virtual bool solve_generic( CvSVMSolutionInfo& si );
+
+ virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y,
+ double Cp, double Cn, CvMemStorage* storage,
+ CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si );
+ virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y,
+ CvMemStorage* storage, CvSVMKernel* kernel,
+ double* alpha, CvSVMSolutionInfo& si );
+ virtual bool solve_one_class( int count, int var_count, const float** samples,
+ CvMemStorage* storage, CvSVMKernel* kernel,
+ double* alpha, CvSVMSolutionInfo& si );
+
+ virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y,
+ CvMemStorage* storage, CvSVMKernel* kernel,
+ double* alpha, CvSVMSolutionInfo& si );
+
+ virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y,
+ CvMemStorage* storage, CvSVMKernel* kernel,
+ double* alpha, CvSVMSolutionInfo& si );
+
+ virtual float* get_row_base( int i, bool* _existed );
+ virtual float* get_row( int i, float* dst );
+
+ int sample_count;
+ int var_count;
+ int cache_size;
+ int cache_line_size;
+ const float** samples;
+ const CvSVMParams* params;
+ CvMemStorage* storage;
+ CvSVMKernelRow lru_list;
+ CvSVMKernelRow* rows;
+
+ int alpha_count;
+
+ double* G;
+ double* alpha;
+
+ // -1 - lower bound, 0 - free, 1 - upper bound
+ schar* alpha_status;
+
+ schar* y;
+ double* b;
+ float* buf[2];
+ double eps;
+ int max_iter;
+ double C[2]; // C[0] == Cn, C[1] == Cp
+ CvSVMKernel* kernel;
+
+ SelectWorkingSet select_working_set_func;
+ CalcRho calc_rho_func;
+ GetRow get_row_func;
+
+ virtual bool select_working_set( int& i, int& j );
+ virtual bool select_working_set_nu_svm( int& i, int& j );
+ virtual void calc_rho( double& rho, double& r );
+ virtual void calc_rho_nu_svm( double& rho, double& r );
+
+ virtual float* get_row_svc( int i, float* row, float* dst, bool existed );
+ virtual float* get_row_one_class( int i, float* row, float* dst, bool existed );
+ virtual float* get_row_svr( int i, float* row, float* dst, bool existed );
+};
+
+
+struct CvSVMDecisionFunc
+{
+ double rho;
+ int sv_count;
+ double* alpha;
+ int* sv_index;
+};
+
+
+// SVM model
+class CV_EXPORTS_W CvSVM : public CvStatModel
+{
+public:
+ // SVM type
+ enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 };
+
+ // SVM kernel type
+ enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 };
+
+ // SVM params type
+ enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 };
+
+ CV_WRAP CvSVM();
+ virtual ~CvSVM();
+
+ CvSVM( const CvMat* trainData, const CvMat* responses,
+ const CvMat* varIdx=0, const CvMat* sampleIdx=0,
+ CvSVMParams params=CvSVMParams() );
+
+ virtual bool train( const CvMat* trainData, const CvMat* responses,
+ const CvMat* varIdx=0, const CvMat* sampleIdx=0,
+ CvSVMParams params=CvSVMParams() );
+
+ virtual bool train_auto( const CvMat* trainData, const CvMat* responses,
+ const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params,
+ int kfold = 10,
+ CvParamGrid Cgrid = get_default_grid(CvSVM::C),
+ CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA),
+ CvParamGrid pGrid = get_default_grid(CvSVM::P),
+ CvParamGrid nuGrid = get_default_grid(CvSVM::NU),
+ CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF),
+ CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE),
+ bool balanced=false );
+
+ virtual float predict( const CvMat* sample, bool returnDFVal=false ) const;
+ virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const;
+
+ CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
+ CvSVMParams params=CvSVMParams() );
+
+ CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(),
+ CvSVMParams params=CvSVMParams() );
+
+ CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses,
+ const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params,
+ int k_fold = 10,
+ CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C),
+ CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA),
+ CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P),
+ CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU),
+ CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF),
+ CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE),
+ bool balanced=false);
+ CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const;
+ CV_WRAP_AS(predict_all) void predict( cv::InputArray samples, cv::OutputArray results ) const;
+
+ CV_WRAP virtual int get_support_vector_count() const;
+ virtual const float* get_support_vector(int i) const;
+ virtual CvSVMParams get_params() const { return params; };
+ CV_WRAP virtual void clear();
+
+ static CvParamGrid get_default_grid( int param_id );
+
+ virtual void write( CvFileStorage* storage, const char* name ) const;
+ virtual void read( CvFileStorage* storage, CvFileNode* node );
+ CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; }
+
+protected:
+
+ virtual bool set_params( const CvSVMParams& params );
+ virtual bool train1( int sample_count, int var_count, const float** samples,
+ const void* responses, double Cp, double Cn,
+ CvMemStorage* _storage, double* alpha, double& rho );
+ virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples,
+ const CvMat* responses, CvMemStorage* _storage, double* alpha );
+ virtual void create_kernel();
+ virtual void create_solver();
+
+ virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const;
+
+ virtual void write_params( CvFileStorage* fs ) const;
+ virtual void read_params( CvFileStorage* fs, CvFileNode* node );
+
+ void optimize_linear_svm();
+
+ CvSVMParams params;
+ CvMat* class_labels;
+ int var_all;
+ float** sv;
+ int sv_total;
+ CvMat* var_idx;
+ CvMat* class_weights;
+ CvSVMDecisionFunc* decision_func;
+ CvMemStorage* storage;
+
+ CvSVMSolver* solver;
+ CvSVMKernel* kernel;
+
+private:
+ CvSVM(const CvSVM&);
+ CvSVM& operator = (const CvSVM&);
+};
+
+/****************************************************************************************\
+* Expectation - Maximization *
+\****************************************************************************************/
+namespace cv
+{
+class CV_EXPORTS_W EM : public Algorithm
+{
+public:
+ // Type of covariation matrices
+ enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL};
+
+ // Default parameters
+ enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
+
+ // The initial step
+ enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
+
+ CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL,
+ const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS,
+ EM::DEFAULT_MAX_ITERS, FLT_EPSILON));
+
+ virtual ~EM();
+ CV_WRAP virtual void clear();
+
+ CV_WRAP virtual bool train(InputArray samples,
+ OutputArray logLikelihoods=noArray(),
+ OutputArray labels=noArray(),
+ OutputArray probs=noArray());
+
+ CV_WRAP virtual bool trainE(InputArray samples,
+ InputArray means0,
+ InputArray covs0=noArray(),
+ InputArray weights0=noArray(),
+ OutputArray logLikelihoods=noArray(),
+ OutputArray labels=noArray(),
+ OutputArray probs=noArray());
+
+ CV_WRAP virtual bool trainM(InputArray samples,
+ InputArray probs0,
+ OutputArray logLikelihoods=noArray(),
+ OutputArray labels=noArray(),
+ OutputArray probs=noArray());
+
+ CV_WRAP Vec2d predict(InputArray sample,
+ OutputArray probs=noArray()) const;
+
+ CV_WRAP bool isTrained() const;
+
+ AlgorithmInfo* info() const;
+ virtual void read(const FileNode& fn);
+
+protected:
+
+ virtual void setTrainData(int startStep, const Mat& samples,
+ const Mat* probs0,
+ const Mat* means0,
+ const vector<Mat>* covs0,
+ const Mat* weights0);
+
+ bool doTrain(int startStep,
+ OutputArray logLikelihoods,
+ OutputArray labels,
+ OutputArray probs);
+ virtual void eStep();
+ virtual void mStep();
+
+ void clusterTrainSamples();
+ void decomposeCovs();
+ void computeLogWeightDivDet();
+
+ Vec2d computeProbabilities(const Mat& sample, Mat* probs) const;
+
+ // all inner matrices have type CV_64FC1
+ CV_PROP_RW int nclusters;
+ CV_PROP_RW int covMatType;
+ CV_PROP_RW int maxIters;
+ CV_PROP_RW double epsilon;
+
+ Mat trainSamples;
+ Mat trainProbs;
+ Mat trainLogLikelihoods;
+ Mat trainLabels;
+
+ CV_PROP Mat weights;
+ CV_PROP Mat means;
+ CV_PROP vector<Mat> covs;
+
+ vector<Mat> covsEigenValues;
+ vector<Mat> covsRotateMats;
+ vector<Mat> invCovsEigenValues;
+ Mat logWeightDivDet;
+};
+} // namespace cv
+
+/****************************************************************************************\
+* Decision Tree *
+\****************************************************************************************/\
+struct CvPair16u32s
+{
+ unsigned short* u;
+ int* i;
+};
+
+
+#define CV_DTREE_CAT_DIR(idx,subset) \
+ (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1)
+
+struct CvDTreeSplit
+{
+ int var_idx;
+ int condensed_idx;
+ int inversed;
+ float quality;
+ CvDTreeSplit* next;
+ union
+ {
+ int subset[2];
+ struct
+ {
+ float c;
+ int split_point;
+ }
+ ord;
+ };
+};
+
+struct CvDTreeNode
+{
+ int class_idx;
+ int Tn;
+ double value;
+
+ CvDTreeNode* parent;
+ CvDTreeNode* left;
+ CvDTreeNode* right;
+
+ CvDTreeSplit* split;
+
+ int sample_count;
+ int depth;
+ int* num_valid;
+ int offset;
+ int buf_idx;
+ double maxlr;
+
+ // global pruning data
+ int complexity;
+ double alpha;
+ double node_risk, tree_risk, tree_error;
+
+ // cross-validation pruning data
+ int* cv_Tn;
+ double* cv_node_risk;
+ double* cv_node_error;
+
+ int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; }
+ void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; }
+};
+
+
+struct CV_EXPORTS_W_MAP CvDTreeParams
+{
+ CV_PROP_RW int max_categories;
+ CV_PROP_RW int max_depth;
+ CV_PROP_RW int min_sample_count;
+ CV_PROP_RW int cv_folds;
+ CV_PROP_RW bool use_surrogates;
+ CV_PROP_RW bool use_1se_rule;
+ CV_PROP_RW bool truncate_pruned_tree;
+ CV_PROP_RW float regression_accuracy;
+ const float* priors;
+
+ CvDTreeParams();
+ CvDTreeParams( int max_depth, int min_sample_count,
+ float regression_accuracy, bool use_surrogates,
+ int max_categories, int cv_folds,
+ bool use_1se_rule, bool truncate_pruned_tree,
+ const float* priors );
+};
+
+
+struct CV_EXPORTS CvDTreeTrainData
+{
+ CvDTreeTrainData();
+ CvDTreeTrainData( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ const CvDTreeParams& params=CvDTreeParams(),
+ bool _shared=false, bool _add_labels=false );
+ virtual ~CvDTreeTrainData();
+
+ virtual void set_data( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ const CvDTreeParams& params=CvDTreeParams(),
+ bool _shared=false, bool _add_labels=false,
+ bool _update_data=false );
+ virtual void do_responses_copy();
+
+ virtual void get_vectors( const CvMat* _subsample_idx,
+ float* values, uchar* missing, float* responses, bool get_class_idx=false );
+
+ virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
+
+ virtual void write_params( CvFileStorage* fs ) const;
+ virtual void read_params( CvFileStorage* fs, CvFileNode* node );
+
+ // release all the data
+ virtual void clear();
+
+ int get_num_classes() const;
+ int get_var_type(int vi) const;
+ int get_work_var_count() const {return work_var_count;}
+
+ virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf );
+ virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf );
+ virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
+ virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
+ virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
+ virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf,
+ const float** ord_values, const int** sorted_indices, int* sample_indices_buf );
+ virtual int get_child_buf_idx( CvDTreeNode* n );
+
+ ////////////////////////////////////
+
+ virtual bool set_params( const CvDTreeParams& params );
+ virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count,
+ int storage_idx, int offset );
+
+ virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val,
+ int split_point, int inversed, float quality );
+ virtual CvDTreeSplit* new_split_cat( int vi, float quality );
+ virtual void free_node_data( CvDTreeNode* node );
+ virtual void free_train_data();
+ virtual void free_node( CvDTreeNode* node );
+
+ int sample_count, var_all, var_count, max_c_count;
+ int ord_var_count, cat_var_count, work_var_count;
+ bool have_labels, have_priors;
+ bool is_classifier;
+ int tflag;
+
+ const CvMat* train_data;
+ const CvMat* responses;
+ CvMat* responses_copy; // used in Boosting
+
+ int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead
+ bool shared;
+ int is_buf_16u;
+
+ CvMat* cat_count;
+ CvMat* cat_ofs;
+ CvMat* cat_map;
+
+ CvMat* counts;
+ CvMat* buf;
+ inline size_t get_length_subbuf() const
+ {
+ size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count;
+ return res;
+ }
+
+ CvMat* direction;
+ CvMat* split_buf;
+
+ CvMat* var_idx;
+ CvMat* var_type; // i-th element =
+ // k<0 - ordered
+ // k>=0 - categorical, see k-th element of cat_* arrays
+ CvMat* priors;
+ CvMat* priors_mult;
+
+ CvDTreeParams params;
+
+ CvMemStorage* tree_storage;
+ CvMemStorage* temp_storage;
+
+ CvDTreeNode* data_root;
+
+ CvSet* node_heap;
+ CvSet* split_heap;
+ CvSet* cv_heap;
+ CvSet* nv_heap;
+
+ cv::RNG* rng;
+};
+
+class CvDTree;
+class CvForestTree;
+
+namespace cv
+{
+ struct DTreeBestSplitFinder;
+ struct ForestTreeBestSplitFinder;
+}
+
+class CV_EXPORTS_W CvDTree : public CvStatModel
+{
+public:
+ CV_WRAP CvDTree();
+ virtual ~CvDTree();
+
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvDTreeParams params=CvDTreeParams() );
+
+ virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() );
+
+ // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
+ virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 );
+
+ virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx );
+
+ virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0,
+ bool preprocessedInput=false ) const;
+
+ CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvDTreeParams params=CvDTreeParams() );
+
+ CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(),
+ bool preprocessedInput=false ) const;
+ CV_WRAP virtual cv::Mat getVarImportance();
+
+ virtual const CvMat* get_var_importance();
+ CV_WRAP virtual void clear();
+
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+ virtual void write( CvFileStorage* fs, const char* name ) const;
+
+ // special read & write methods for trees in the tree ensembles
+ virtual void read( CvFileStorage* fs, CvFileNode* node,
+ CvDTreeTrainData* data );
+ virtual void write( CvFileStorage* fs ) const;
+
+ const CvDTreeNode* get_root() const;
+ int get_pruned_tree_idx() const;
+ CvDTreeTrainData* get_data();
+
+protected:
+ friend struct cv::DTreeBestSplitFinder;
+
+ virtual bool do_train( const CvMat* _subsample_idx );
+
+ virtual void try_split_node( CvDTreeNode* n );
+ virtual void split_node_data( CvDTreeNode* n );
+ virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
+ virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
+ virtual double calc_node_dir( CvDTreeNode* node );
+ virtual void complete_node_dir( CvDTreeNode* node );
+ virtual void cluster_categories( const int* vectors, int vector_count,
+ int var_count, int* sums, int k, int* cluster_labels );
+
+ virtual void calc_node_value( CvDTreeNode* node );
+
+ virtual void prune_cv();
+ virtual double update_tree_rnc( int T, int fold );
+ virtual int cut_tree( int T, int fold, double min_alpha );
+ virtual void free_prune_data(bool cut_tree);
+ virtual void free_tree();
+
+ virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const;
+ virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const;
+ virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent );
+ virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node );
+ virtual void write_tree_nodes( CvFileStorage* fs ) const;
+ virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node );
+
+ CvDTreeNode* root;
+ CvMat* var_importance;
+ CvDTreeTrainData* data;
+
+public:
+ int pruned_tree_idx;
+};
+
+
+/****************************************************************************************\
+* Random Trees Classifier *
+\****************************************************************************************/
+
+class CvRTrees;
+
+class CV_EXPORTS CvForestTree: public CvDTree
+{
+public:
+ CvForestTree();
+ virtual ~CvForestTree();
+
+ virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest );
+
+ virtual int get_var_count() const {return data ? data->var_count : 0;}
+ virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data );
+
+ /* dummy methods to avoid warnings: BEGIN */
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvDTreeParams params=CvDTreeParams() );
+
+ virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+ virtual void read( CvFileStorage* fs, CvFileNode* node,
+ CvDTreeTrainData* data );
+ /* dummy methods to avoid warnings: END */
+
+protected:
+ friend struct cv::ForestTreeBestSplitFinder;
+
+ virtual CvDTreeSplit* find_best_split( CvDTreeNode* n );
+ CvRTrees* forest;
+};
+
+
+struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams
+{
+ //Parameters for the forest
+ CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance
+ CV_PROP_RW int nactive_vars;
+ CV_PROP_RW CvTermCriteria term_crit;
+
+ CvRTParams();
+ CvRTParams( int max_depth, int min_sample_count,
+ float regression_accuracy, bool use_surrogates,
+ int max_categories, const float* priors, bool calc_var_importance,
+ int nactive_vars, int max_num_of_trees_in_the_forest,
+ float forest_accuracy, int termcrit_type );
+};
+
+
+class CV_EXPORTS_W CvRTrees : public CvStatModel
+{
+public:
+ CV_WRAP CvRTrees();
+ virtual ~CvRTrees();
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvRTParams params=CvRTParams() );
+
+ virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
+ virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const;
+ virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const;
+
+ CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvRTParams params=CvRTParams() );
+ CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
+ CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const;
+ CV_WRAP virtual cv::Mat getVarImportance();
+
+ CV_WRAP virtual void clear();
+
+ virtual const CvMat* get_var_importance();
+ virtual float get_proximity( const CvMat* sample1, const CvMat* sample2,
+ const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const;
+
+ virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
+
+ virtual float get_train_error();
+
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+ virtual void write( CvFileStorage* fs, const char* name ) const;
+
+ CvMat* get_active_var_mask();
+ CvRNG* get_rng();
+
+ int get_tree_count() const;
+ CvForestTree* get_tree(int i) const;
+
+protected:
+ virtual std::string getName() const;
+
+ virtual bool grow_forest( const CvTermCriteria term_crit );
+
+ // array of the trees of the forest
+ CvForestTree** trees;
+ CvDTreeTrainData* data;
+ int ntrees;
+ int nclasses;
+ double oob_error;
+ CvMat* var_importance;
+ int nsamples;
+
+ cv::RNG* rng;
+ CvMat* active_var_mask;
+};
+
+/****************************************************************************************\
+* Extremely randomized trees Classifier *
+\****************************************************************************************/
+struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData
+{
+ virtual void set_data( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ const CvDTreeParams& params=CvDTreeParams(),
+ bool _shared=false, bool _add_labels=false,
+ bool _update_data=false );
+ virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf,
+ const float** ord_values, const int** missing, int* sample_buf = 0 );
+ virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf );
+ virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf );
+ virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf );
+ virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing,
+ float* responses, bool get_class_idx=false );
+ virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx );
+ const CvMat* missing_mask;
+};
+
+class CV_EXPORTS CvForestERTree : public CvForestTree
+{
+protected:
+ virtual double calc_node_dir( CvDTreeNode* node );
+ virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual void split_node_data( CvDTreeNode* n );
+};
+
+class CV_EXPORTS_W CvERTrees : public CvRTrees
+{
+public:
+ CV_WRAP CvERTrees();
+ virtual ~CvERTrees();
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvRTParams params=CvRTParams());
+ CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvRTParams params=CvRTParams());
+ virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() );
+protected:
+ virtual std::string getName() const;
+ virtual bool grow_forest( const CvTermCriteria term_crit );
+};
+
+
+/****************************************************************************************\
+* Boosted tree classifier *
+\****************************************************************************************/
+
+struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams
+{
+ CV_PROP_RW int boost_type;
+ CV_PROP_RW int weak_count;
+ CV_PROP_RW int split_criteria;
+ CV_PROP_RW double weight_trim_rate;
+
+ CvBoostParams();
+ CvBoostParams( int boost_type, int weak_count, double weight_trim_rate,
+ int max_depth, bool use_surrogates, const float* priors );
+};
+
+
+class CvBoost;
+
+class CV_EXPORTS CvBoostTree: public CvDTree
+{
+public:
+ CvBoostTree();
+ virtual ~CvBoostTree();
+
+ virtual bool train( CvDTreeTrainData* trainData,
+ const CvMat* subsample_idx, CvBoost* ensemble );
+
+ virtual void scale( double s );
+ virtual void read( CvFileStorage* fs, CvFileNode* node,
+ CvBoost* ensemble, CvDTreeTrainData* _data );
+ virtual void clear();
+
+ /* dummy methods to avoid warnings: BEGIN */
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvDTreeParams params=CvDTreeParams() );
+ virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx );
+
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+ virtual void read( CvFileStorage* fs, CvFileNode* node,
+ CvDTreeTrainData* data );
+ /* dummy methods to avoid warnings: END */
+
+protected:
+
+ virtual void try_split_node( CvDTreeNode* n );
+ virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi,
+ float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 );
+ virtual void calc_node_value( CvDTreeNode* n );
+ virtual double calc_node_dir( CvDTreeNode* n );
+
+ CvBoost* ensemble;
+};
+
+
+class CV_EXPORTS_W CvBoost : public CvStatModel
+{
+public:
+ // Boosting type
+ enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 };
+
+ // Splitting criteria
+ enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 };
+
+ CV_WRAP CvBoost();
+ virtual ~CvBoost();
+
+ CvBoost( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvBoostParams params=CvBoostParams() );
+
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvBoostParams params=CvBoostParams(),
+ bool update=false );
+
+ virtual bool train( CvMLData* data,
+ CvBoostParams params=CvBoostParams(),
+ bool update=false );
+
+ virtual float predict( const CvMat* sample, const CvMat* missing=0,
+ CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ,
+ bool raw_mode=false, bool return_sum=false ) const;
+
+ CV_WRAP CvBoost( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvBoostParams params=CvBoostParams() );
+
+ CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvBoostParams params=CvBoostParams(),
+ bool update=false );
+
+ CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
+ const cv::Range& slice=cv::Range::all(), bool rawMode=false,
+ bool returnSum=false ) const;
+
+ virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR}
+
+ CV_WRAP virtual void prune( CvSlice slice );
+
+ CV_WRAP virtual void clear();
+
+ virtual void write( CvFileStorage* storage, const char* name ) const;
+ virtual void read( CvFileStorage* storage, CvFileNode* node );
+ virtual const CvMat* get_active_vars(bool absolute_idx=true);
+
+ CvSeq* get_weak_predictors();
+
+ CvMat* get_weights();
+ CvMat* get_subtree_weights();
+ CvMat* get_weak_response();
+ const CvBoostParams& get_params() const;
+ const CvDTreeTrainData* get_data() const;
+
+protected:
+
+ void update_weights_impl( CvBoostTree* tree, double initial_weights[2] );
+
+ virtual bool set_params( const CvBoostParams& params );
+ virtual void update_weights( CvBoostTree* tree );
+ virtual void trim_weights();
+ virtual void write_params( CvFileStorage* fs ) const;
+ virtual void read_params( CvFileStorage* fs, CvFileNode* node );
+
+ CvDTreeTrainData* data;
+ CvBoostParams params;
+ CvSeq* weak;
+
+ CvMat* active_vars;
+ CvMat* active_vars_abs;
+ bool have_active_cat_vars;
+
+ CvMat* orig_response;
+ CvMat* sum_response;
+ CvMat* weak_eval;
+ CvMat* subsample_mask;
+ CvMat* weights;
+ CvMat* subtree_weights;
+ bool have_subsample;
+};
+
+
+/****************************************************************************************\
+* Gradient Boosted Trees *
+\****************************************************************************************/
+
+// DataType: STRUCT CvGBTreesParams
+// Parameters of GBT (Gradient Boosted trees model), including single
+// tree settings and ensemble parameters.
+//
+// weak_count - count of trees in the ensemble
+// loss_function_type - loss function used for ensemble training
+// subsample_portion - portion of whole training set used for
+// every single tree training.
+// subsample_portion value is in (0.0, 1.0].
+// subsample_portion == 1.0 when whole dataset is
+// used on each step. Count of sample used on each
+// step is computed as
+// int(total_samples_count * subsample_portion).
+// shrinkage - regularization parameter.
+// Each tree prediction is multiplied on shrinkage value.
+
+
+struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams
+{
+ CV_PROP_RW int weak_count;
+ CV_PROP_RW int loss_function_type;
+ CV_PROP_RW float subsample_portion;
+ CV_PROP_RW float shrinkage;
+
+ CvGBTreesParams();
+ CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage,
+ float subsample_portion, int max_depth, bool use_surrogates );
+};
+
+// DataType: CLASS CvGBTrees
+// Gradient Boosting Trees (GBT) algorithm implementation.
+//
+// data - training dataset
+// params - parameters of the CvGBTrees
+// weak - array[0..(class_count-1)] of CvSeq
+// for storing tree ensembles
+// orig_response - original responses of the training set samples
+// sum_response - predicitons of the current model on the training dataset.
+// this matrix is updated on every iteration.
+// sum_response_tmp - predicitons of the model on the training set on the next
+// step. On every iteration values of sum_responses_tmp are
+// computed via sum_responses values. When the current
+// step is complete sum_response values become equal to
+// sum_responses_tmp.
+// sampleIdx - indices of samples used for training the ensemble.
+// CvGBTrees training procedure takes a set of samples
+// (train_data) and a set of responses (responses).
+// Only pairs (train_data[i], responses[i]), where i is
+// in sample_idx are used for training the ensemble.
+// subsample_train - indices of samples used for training a single decision
+// tree on the current step. This indices are countered
+// relatively to the sample_idx, so that pairs
+// (train_data[sample_idx[i]], responses[sample_idx[i]])
+// are used for training a decision tree.
+// Training set is randomly splited
+// in two parts (subsample_train and subsample_test)
+// on every iteration accordingly to the portion parameter.
+// subsample_test - relative indices of samples from the training set,
+// which are not used for training a tree on the current
+// step.
+// missing - mask of the missing values in the training set. This
+// matrix has the same size as train_data. 1 - missing
+// value, 0 - not a missing value.
+// class_labels - output class labels map.
+// rng - random number generator. Used for spliting the
+// training set.
+// class_count - count of output classes.
+// class_count == 1 in the case of regression,
+// and > 1 in the case of classification.
+// delta - Huber loss function parameter.
+// base_value - start point of the gradient descent procedure.
+// model prediction is
+// f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where
+// f_0 is the base value.
+
+
+
+class CV_EXPORTS_W CvGBTrees : public CvStatModel
+{
+public:
+
+ /*
+ // DataType: ENUM
+ // Loss functions implemented in CvGBTrees.
+ //
+ // SQUARED_LOSS
+ // problem: regression
+ // loss = (x - x')^2
+ //
+ // ABSOLUTE_LOSS
+ // problem: regression
+ // loss = abs(x - x')
+ //
+ // HUBER_LOSS
+ // problem: regression
+ // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta
+ // 1/2*(x - x')^2, if abs(x - x') <= delta,
+ // where delta is the alpha-quantile of pseudo responses from
+ // the training set.
+ //
+ // DEVIANCE_LOSS
+ // problem: classification
+ //
+ */
+ enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS};
+
+
+ /*
+ // Default constructor. Creates a model only (without training).
+ // Should be followed by one form of the train(...) function.
+ //
+ // API
+ // CvGBTrees();
+
+ // INPUT
+ // OUTPUT
+ // RESULT
+ */
+ CV_WRAP CvGBTrees();
+
+
+ /*
+ // Full form constructor. Creates a gradient boosting model and does the
+ // train.
+ //
+ // API
+ // CvGBTrees( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvGBTreesParams params=CvGBTreesParams() );
+
+ // INPUT
+ // trainData - a set of input feature vectors.
+ // size of matrix is
+ // <count of samples> x <variables count>
+ // or <variables count> x <count of samples>
+ // depending on the tflag parameter.
+ // matrix values are float.
+ // tflag - a flag showing how do samples stored in the
+ // trainData matrix row by row (tflag=CV_ROW_SAMPLE)
+ // or column by column (tflag=CV_COL_SAMPLE).
+ // responses - a vector of responses corresponding to the samples
+ // in trainData.
+ // varIdx - indices of used variables. zero value means that all
+ // variables are active.
+ // sampleIdx - indices of used samples. zero value means that all
+ // samples from trainData are in the training set.
+ // varType - vector of <variables count> length. gives every
+ // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
+ // varType = 0 means all variables are numerical.
+ // missingDataMask - a mask of misiing values in trainData.
+ // missingDataMask = 0 means that there are no missing
+ // values.
+ // params - parameters of GTB algorithm.
+ // OUTPUT
+ // RESULT
+ */
+ CvGBTrees( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvGBTreesParams params=CvGBTreesParams() );
+
+
+ /*
+ // Destructor.
+ */
+ virtual ~CvGBTrees();
+
+
+ /*
+ // Gradient tree boosting model training
+ //
+ // API
+ // virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvGBTreesParams params=CvGBTreesParams(),
+ bool update=false );
+
+ // INPUT
+ // trainData - a set of input feature vectors.
+ // size of matrix is
+ // <count of samples> x <variables count>
+ // or <variables count> x <count of samples>
+ // depending on the tflag parameter.
+ // matrix values are float.
+ // tflag - a flag showing how do samples stored in the
+ // trainData matrix row by row (tflag=CV_ROW_SAMPLE)
+ // or column by column (tflag=CV_COL_SAMPLE).
+ // responses - a vector of responses corresponding to the samples
+ // in trainData.
+ // varIdx - indices of used variables. zero value means that all
+ // variables are active.
+ // sampleIdx - indices of used samples. zero value means that all
+ // samples from trainData are in the training set.
+ // varType - vector of <variables count> length. gives every
+ // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED.
+ // varType = 0 means all variables are numerical.
+ // missingDataMask - a mask of misiing values in trainData.
+ // missingDataMask = 0 means that there are no missing
+ // values.
+ // params - parameters of GTB algorithm.
+ // update - is not supported now. (!)
+ // OUTPUT
+ // RESULT
+ // Error state.
+ */
+ virtual bool train( const CvMat* trainData, int tflag,
+ const CvMat* responses, const CvMat* varIdx=0,
+ const CvMat* sampleIdx=0, const CvMat* varType=0,
+ const CvMat* missingDataMask=0,
+ CvGBTreesParams params=CvGBTreesParams(),
+ bool update=false );
+
+
+ /*
+ // Gradient tree boosting model training
+ //
+ // API
+ // virtual bool train( CvMLData* data,
+ CvGBTreesParams params=CvGBTreesParams(),
+ bool update=false ) {return false;};
+
+ // INPUT
+ // data - training set.
+ // params - parameters of GTB algorithm.
+ // update - is not supported now. (!)
+ // OUTPUT
+ // RESULT
+ // Error state.
+ */
+ virtual bool train( CvMLData* data,
+ CvGBTreesParams params=CvGBTreesParams(),
+ bool update=false );
+
+
+ /*
+ // Response value prediction
+ //
+ // API
+ // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
+ CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
+ int k=-1 ) const;
+
+ // INPUT
+ // sample - input sample of the same type as in the training set.
+ // missing - missing values mask. missing=0 if there are no
+ // missing values in sample vector.
+ // weak_responses - predictions of all of the trees.
+ // not implemented (!)
+ // slice - part of the ensemble used for prediction.
+ // slice = CV_WHOLE_SEQ when all trees are used.
+ // k - number of ensemble used.
+ // k is in {-1,0,1,..,<count of output classes-1>}.
+ // in the case of classification problem
+ // <count of output classes-1> ensembles are built.
+ // If k = -1 ordinary prediction is the result,
+ // otherwise function gives the prediction of the
+ // k-th ensemble only.
+ // OUTPUT
+ // RESULT
+ // Predicted value.
+ */
+ virtual float predict_serial( const CvMat* sample, const CvMat* missing=0,
+ CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
+ int k=-1 ) const;
+
+ /*
+ // Response value prediction.
+ // Parallel version (in the case of TBB existence)
+ //
+ // API
+ // virtual float predict( const CvMat* sample, const CvMat* missing=0,
+ CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ,
+ int k=-1 ) const;
+
+ // INPUT
+ // sample - input sample of the same type as in the training set.
+ // missing - missing values mask. missing=0 if there are no
+ // missing values in sample vector.
+ // weak_responses - predictions of all of the trees.
+ // not implemented (!)
+ // slice - part of the ensemble used for prediction.
+ // slice = CV_WHOLE_SEQ when all trees are used.
+ // k - number of ensemble used.
+ // k is in {-1,0,1,..,<count of output classes-1>}.
+ // in the case of classification problem
+ // <count of output classes-1> ensembles are built.
+ // If k = -1 ordinary prediction is the result,
+ // otherwise function gives the prediction of the
+ // k-th ensemble only.
+ // OUTPUT
+ // RESULT
+ // Predicted value.
+ */
+ virtual float predict( const CvMat* sample, const CvMat* missing=0,
+ CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ,
+ int k=-1 ) const;
+
+ /*
+ // Deletes all the data.
+ //
+ // API
+ // virtual void clear();
+
+ // INPUT
+ // OUTPUT
+ // delete data, weak, orig_response, sum_response,
+ // weak_eval, subsample_train, subsample_test,
+ // sample_idx, missing, lass_labels
+ // delta = 0.0
+ // RESULT
+ */
+ CV_WRAP virtual void clear();
+
+ /*
+ // Compute error on the train/test set.
+ //
+ // API
+ // virtual float calc_error( CvMLData* _data, int type,
+ // std::vector<float> *resp = 0 );
+ //
+ // INPUT
+ // data - dataset
+ // type - defines which error is to compute: train (CV_TRAIN_ERROR) or
+ // test (CV_TEST_ERROR).
+ // OUTPUT
+ // resp - vector of predicitons
+ // RESULT
+ // Error value.
+ */
+ virtual float calc_error( CvMLData* _data, int type,
+ std::vector<float> *resp = 0 );
+
+ /*
+ //
+ // Write parameters of the gtb model and data. Write learned model.
+ //
+ // API
+ // virtual void write( CvFileStorage* fs, const char* name ) const;
+ //
+ // INPUT
+ // fs - file storage to read parameters from.
+ // name - model name.
+ // OUTPUT
+ // RESULT
+ */
+ virtual void write( CvFileStorage* fs, const char* name ) const;
+
+
+ /*
+ //
+ // Read parameters of the gtb model and data. Read learned model.
+ //
+ // API
+ // virtual void read( CvFileStorage* fs, CvFileNode* node );
+ //
+ // INPUT
+ // fs - file storage to read parameters from.
+ // node - file node.
+ // OUTPUT
+ // RESULT
+ */
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+
+
+ // new-style C++ interface
+ CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvGBTreesParams params=CvGBTreesParams() );
+
+ CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag,
+ const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(),
+ const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(),
+ const cv::Mat& missingDataMask=cv::Mat(),
+ CvGBTreesParams params=CvGBTreesParams(),
+ bool update=false );
+
+ CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(),
+ const cv::Range& slice = cv::Range::all(),
+ int k=-1 ) const;
+
+protected:
+
+ /*
+ // Compute the gradient vector components.
+ //
+ // API
+ // virtual void find_gradient( const int k = 0);
+
+ // INPUT
+ // k - used for classification problem, determining current
+ // tree ensemble.
+ // OUTPUT
+ // changes components of data->responses
+ // which correspond to samples used for training
+ // on the current step.
+ // RESULT
+ */
+ virtual void find_gradient( const int k = 0);
+
+
+ /*
+ //
+ // Change values in tree leaves according to the used loss function.
+ //
+ // API
+ // virtual void change_values(CvDTree* tree, const int k = 0);
+ //
+ // INPUT
+ // tree - decision tree to change.
+ // k - used for classification problem, determining current
+ // tree ensemble.
+ // OUTPUT
+ // changes 'value' fields of the trees' leaves.
+ // changes sum_response_tmp.
+ // RESULT
+ */
+ virtual void change_values(CvDTree* tree, const int k = 0);
+
+
+ /*
+ //
+ // Find optimal constant prediction value according to the used loss
+ // function.
+ // The goal is to find a constant which gives the minimal summary loss
+ // on the _Idx samples.
+ //
+ // API
+ // virtual float find_optimal_value( const CvMat* _Idx );
+ //
+ // INPUT
+ // _Idx - indices of the samples from the training set.
+ // OUTPUT
+ // RESULT
+ // optimal constant value.
+ */
+ virtual float find_optimal_value( const CvMat* _Idx );
+
+
+ /*
+ //
+ // Randomly split the whole training set in two parts according
+ // to params.portion.
+ //
+ // API
+ // virtual void do_subsample();
+ //
+ // INPUT
+ // OUTPUT
+ // subsample_train - indices of samples used for training
+ // subsample_test - indices of samples used for test
+ // RESULT
+ */
+ virtual void do_subsample();
+
+
+ /*
+ //
+ // Internal recursive function giving an array of subtree tree leaves.
+ //
+ // API
+ // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
+ //
+ // INPUT
+ // node - current leaf.
+ // OUTPUT
+ // count - count of leaves in the subtree.
+ // leaves - array of pointers to leaves.
+ // RESULT
+ */
+ void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node );
+
+
+ /*
+ //
+ // Get leaves of the tree.
+ //
+ // API
+ // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
+ //
+ // INPUT
+ // dtree - decision tree.
+ // OUTPUT
+ // len - count of the leaves.
+ // RESULT
+ // CvDTreeNode** - array of pointers to leaves.
+ */
+ CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len );
+
+
+ /*
+ //
+ // Is it a regression or a classification.
+ //
+ // API
+ // bool problem_type();
+ //
+ // INPUT
+ // OUTPUT
+ // RESULT
+ // false if it is a classification problem,
+ // true - if regression.
+ */
+ virtual bool problem_type() const;
+
+
+ /*
+ //
+ // Write parameters of the gtb model.
+ //
+ // API
+ // virtual void write_params( CvFileStorage* fs ) const;
+ //
+ // INPUT
+ // fs - file storage to write parameters to.
+ // OUTPUT
+ // RESULT
+ */
+ virtual void write_params( CvFileStorage* fs ) const;
+
+
+ /*
+ //
+ // Read parameters of the gtb model and data.
+ //
+ // API
+ // virtual void read_params( CvFileStorage* fs );
+ //
+ // INPUT
+ // fs - file storage to read parameters from.
+ // OUTPUT
+ // params - parameters of the gtb model.
+ // data - contains information about the structure
+ // of the data set (count of variables,
+ // their types, etc.).
+ // class_labels - output class labels map.
+ // RESULT
+ */
+ virtual void read_params( CvFileStorage* fs, CvFileNode* fnode );
+ int get_len(const CvMat* mat) const;
+
+
+ CvDTreeTrainData* data;
+ CvGBTreesParams params;
+
+ CvSeq** weak;
+ CvMat* orig_response;
+ CvMat* sum_response;
+ CvMat* sum_response_tmp;
+ CvMat* sample_idx;
+ CvMat* subsample_train;
+ CvMat* subsample_test;
+ CvMat* missing;
+ CvMat* class_labels;
+
+ cv::RNG* rng;
+
+ int class_count;
+ float delta;
+ float base_value;
+
+};
+
+
+
+/****************************************************************************************\
+* Artificial Neural Networks (ANN) *
+\****************************************************************************************/
+
+/////////////////////////////////// Multi-Layer Perceptrons //////////////////////////////
+
+struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams
+{
+ CvANN_MLP_TrainParams();
+ CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method,
+ double param1, double param2=0 );
+ ~CvANN_MLP_TrainParams();
+
+ enum { BACKPROP=0, RPROP=1 };
+
+ CV_PROP_RW CvTermCriteria term_crit;
+ CV_PROP_RW int train_method;
+
+ // backpropagation parameters
+ CV_PROP_RW double bp_dw_scale, bp_moment_scale;
+
+ // rprop parameters
+ CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max;
+};
+
+
+class CV_EXPORTS_W CvANN_MLP : public CvStatModel
+{
+public:
+ CV_WRAP CvANN_MLP();
+ CvANN_MLP( const CvMat* layerSizes,
+ int activateFunc=CvANN_MLP::SIGMOID_SYM,
+ double fparam1=0, double fparam2=0 );
+
+ virtual ~CvANN_MLP();
+
+ virtual void create( const CvMat* layerSizes,
+ int activateFunc=CvANN_MLP::SIGMOID_SYM,
+ double fparam1=0, double fparam2=0 );
+
+ virtual int train( const CvMat* inputs, const CvMat* outputs,
+ const CvMat* sampleWeights, const CvMat* sampleIdx=0,
+ CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
+ int flags=0 );
+ virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const;
+
+ CV_WRAP CvANN_MLP( const cv::Mat& layerSizes,
+ int activateFunc=CvANN_MLP::SIGMOID_SYM,
+ double fparam1=0, double fparam2=0 );
+
+ CV_WRAP virtual void create( const cv::Mat& layerSizes,
+ int activateFunc=CvANN_MLP::SIGMOID_SYM,
+ double fparam1=0, double fparam2=0 );
+
+ CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs,
+ const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(),
+ CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(),
+ int flags=0 );
+
+ CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const;
+
+ CV_WRAP virtual void clear();
+
+ // possible activation functions
+ enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 };
+
+ // available training flags
+ enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 };
+
+ virtual void read( CvFileStorage* fs, CvFileNode* node );
+ virtual void write( CvFileStorage* storage, const char* name ) const;
+
+ int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; }
+ const CvMat* get_layer_sizes() { return layer_sizes; }
+ double* get_weights(int layer)
+ {
+ return layer_sizes && weights &&
+ (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0;
+ }
+
+ virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const;
+
+protected:
+
+ virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs,
+ const CvMat* _sample_weights, const CvMat* sampleIdx,
+ CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags );
+
+ // sequential random backpropagation
+ virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
+
+ // RPROP algorithm
+ virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw );
+
+ virtual void calc_activ_func( CvMat* xf, const double* bias ) const;
+ virtual void set_activ_func( int _activ_func=SIGMOID_SYM,
+ double _f_param1=0, double _f_param2=0 );
+ virtual void init_weights();
+ virtual void scale_input( const CvMat* _src, CvMat* _dst ) const;
+ virtual void scale_output( const CvMat* _src, CvMat* _dst ) const;
+ virtual void calc_input_scale( const CvVectors* vecs, int flags );
+ virtual void calc_output_scale( const CvVectors* vecs, int flags );
+
+ virtual void write_params( CvFileStorage* fs ) const;
+ virtual void read_params( CvFileStorage* fs, CvFileNode* node );
+
+ CvMat* layer_sizes;
+ CvMat* wbuf;
+ CvMat* sample_weights;
+ double** weights;
+ double f_param1, f_param2;
+ double min_val, max_val, min_val1, max_val1;
+ int activ_func;
+ int max_count, max_buf_sz;
+ CvANN_MLP_TrainParams params;
+ cv::RNG* rng;
+};
+
+/****************************************************************************************\
+* Auxilary functions declarations *
+\****************************************************************************************/
+
+/* Generates <sample> from multivariate normal distribution, where <mean> - is an
+ average row vector, <cov> - symmetric covariation matrix */
+CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample,
+ CvRNG* rng CV_DEFAULT(0) );
+
+/* Generates sample from gaussian mixture distribution */
+CVAPI(void) cvRandGaussMixture( CvMat* means[],
+ CvMat* covs[],
+ float weights[],
+ int clsnum,
+ CvMat* sample,
+ CvMat* sampClasses CV_DEFAULT(0) );
+
+#define CV_TS_CONCENTRIC_SPHERES 0
+
+/* creates test set */
+CVAPI(void) cvCreateTestSet( int type, CvMat** samples,
+ int num_samples,
+ int num_features,
+ CvMat** responses,
+ int num_classes, ... );
+
+/****************************************************************************************\
+* Data *
+\****************************************************************************************/
+
+#define CV_COUNT 0
+#define CV_PORTION 1
+
+struct CV_EXPORTS CvTrainTestSplit
+{
+ CvTrainTestSplit();
+ CvTrainTestSplit( int train_sample_count, bool mix = true);
+ CvTrainTestSplit( float train_sample_portion, bool mix = true);
+
+ union
+ {
+ int count;
+ float portion;
+ } train_sample_part;
+ int train_sample_part_mode;
+
+ bool mix;
+};
+
+class CV_EXPORTS CvMLData
+{
+public:
+ CvMLData();
+ virtual ~CvMLData();
+
+ // returns:
+ // 0 - OK
+ // -1 - file can not be opened or is not correct
+ int read_csv( const char* filename );
+
+ const CvMat* get_values() const;
+ const CvMat* get_responses();
+ const CvMat* get_missing() const;
+
+ void set_response_idx( int idx ); // old response become predictors, new response_idx = idx
+ // if idx < 0 there will be no response
+ int get_response_idx() const;
+
+ void set_train_test_split( const CvTrainTestSplit * spl );
+ const CvMat* get_train_sample_idx() const;
+ const CvMat* get_test_sample_idx() const;
+ void mix_train_and_test_idx();
+
+ const CvMat* get_var_idx();
+ void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability),
+ // use change_var_idx
+ void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor
+
+ const CvMat* get_var_types();
+ int get_var_type( int var_idx ) const;
+ // following 2 methods enable to change vars type
+ // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable
+ // with numerical labels; in the other cases var types are correctly determined automatically
+ void set_var_types( const char* str ); // str examples:
+ // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]",
+ // "cat", "ord" (all vars are categorical/ordered)
+ void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL }
+
+ void set_delimiter( char ch );
+ char get_delimiter() const;
+
+ void set_miss_ch( char ch );
+ char get_miss_ch() const;
+
+ const std::map<std::string, int>& get_class_labels_map() const;
+
+protected:
+ virtual void clear();
+
+ void str_to_flt_elem( const char* token, float& flt_elem, int& type);
+ void free_train_test_idx();
+
+ char delimiter;
+ char miss_ch;
+ //char flt_separator;
+
+ CvMat* values;
+ CvMat* missing;
+ CvMat* var_types;
+ CvMat* var_idx_mask;
+
+ CvMat* response_out; // header
+ CvMat* var_idx_out; // mat
+ CvMat* var_types_out; // mat
+
+ int response_idx;
+
+ int train_sample_count;
+ bool mix;
+
+ int total_class_count;
+ std::map<std::string, int> class_map;
+
+ CvMat* train_sample_idx;
+ CvMat* test_sample_idx;
+ int* sample_idx; // data of train_sample_idx and test_sample_idx
+
+ cv::RNG* rng;
+};
+
+
+namespace cv
+{
+
+typedef CvStatModel StatModel;
+typedef CvParamGrid ParamGrid;
+typedef CvNormalBayesClassifier NormalBayesClassifier;
+typedef CvKNearest KNearest;
+typedef CvSVMParams SVMParams;
+typedef CvSVMKernel SVMKernel;
+typedef CvSVMSolver SVMSolver;
+typedef CvSVM SVM;
+typedef CvDTreeParams DTreeParams;
+typedef CvMLData TrainData;
+typedef CvDTree DecisionTree;
+typedef CvForestTree ForestTree;
+typedef CvRTParams RandomTreeParams;
+typedef CvRTrees RandomTrees;
+typedef CvERTreeTrainData ERTreeTRainData;
+typedef CvForestERTree ERTree;
+typedef CvERTrees ERTrees;
+typedef CvBoostParams BoostParams;
+typedef CvBoostTree BoostTree;
+typedef CvBoost Boost;
+typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams;
+typedef CvANN_MLP NeuralNet_MLP;
+typedef CvGBTreesParams GradientBoostingTreeParams;
+typedef CvGBTrees GradientBoostingTrees;
+
+template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj();
+
+CV_EXPORTS bool initModule_ml(void);
+
+}
+
+#endif // __cplusplus
+#endif // __OPENCV_ML_HPP__
+
+/* End of file. */