diff options
author | Ankit Raj | 2017-06-21 10:26:59 +0530 |
---|---|---|
committer | Ankit Raj | 2017-06-21 10:26:59 +0530 |
commit | a555820564d9f2e95ca8c97871339d3a5a2081c3 (patch) | |
tree | adb074b66a8e6750209880e6932305ce0a94c8bf /2.3-1/thirdparty/includes/OpenCV/opencv2/ml | |
download | Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.gz Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.tar.bz2 Scilab2C-a555820564d9f2e95ca8c97871339d3a5a2081c3.zip |
Updated Scilab2C
Diffstat (limited to '2.3-1/thirdparty/includes/OpenCV/opencv2/ml')
-rw-r--r-- | 2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp | 2147 |
1 files changed, 2147 insertions, 0 deletions
diff --git a/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp b/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp new file mode 100644 index 00000000..d86ecde4 --- /dev/null +++ b/2.3-1/thirdparty/includes/OpenCV/opencv2/ml/ml.hpp @@ -0,0 +1,2147 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_ML_HPP__ +#define __OPENCV_ML_HPP__ + +#include "opencv2/core/core.hpp" +#include <limits.h> + +#ifdef __cplusplus + +#include <map> +#include <string> +#include <iostream> + +// Apple defines a check() macro somewhere in the debug headers +// that interferes with a method definiton in this header +#undef check + +/****************************************************************************************\ +* Main struct definitions * +\****************************************************************************************/ + +/* log(2*PI) */ +#define CV_LOG2PI (1.8378770664093454835606594728112) + +/* columns of <trainData> matrix are training samples */ +#define CV_COL_SAMPLE 0 + +/* rows of <trainData> matrix are training samples */ +#define CV_ROW_SAMPLE 1 + +#define CV_IS_ROW_SAMPLE(flags) ((flags) & CV_ROW_SAMPLE) + +struct CvVectors +{ + int type; + int dims, count; + CvVectors* next; + union + { + uchar** ptr; + float** fl; + double** db; + } data; +}; + +#if 0 +/* A structure, representing the lattice range of statmodel parameters. + It is used for optimizing statmodel parameters by cross-validation method. + The lattice is logarithmic, so <step> must be greater then 1. */ +typedef struct CvParamLattice +{ + double min_val; + double max_val; + double step; +} +CvParamLattice; + +CV_INLINE CvParamLattice cvParamLattice( double min_val, double max_val, + double log_step ) +{ + CvParamLattice pl; + pl.min_val = MIN( min_val, max_val ); + pl.max_val = MAX( min_val, max_val ); + pl.step = MAX( log_step, 1. ); + return pl; +} + +CV_INLINE CvParamLattice cvDefaultParamLattice( void ) +{ + CvParamLattice pl = {0,0,0}; + return pl; +} +#endif + +/* Variable type */ +#define CV_VAR_NUMERICAL 0 +#define CV_VAR_ORDERED 0 +#define CV_VAR_CATEGORICAL 1 + +#define CV_TYPE_NAME_ML_SVM "opencv-ml-svm" +#define CV_TYPE_NAME_ML_KNN "opencv-ml-knn" +#define CV_TYPE_NAME_ML_NBAYES "opencv-ml-bayesian" +#define CV_TYPE_NAME_ML_EM "opencv-ml-em" +#define CV_TYPE_NAME_ML_BOOSTING "opencv-ml-boost-tree" +#define CV_TYPE_NAME_ML_TREE "opencv-ml-tree" +#define CV_TYPE_NAME_ML_ANN_MLP "opencv-ml-ann-mlp" +#define CV_TYPE_NAME_ML_CNN "opencv-ml-cnn" +#define CV_TYPE_NAME_ML_RTREES "opencv-ml-random-trees" +#define CV_TYPE_NAME_ML_ERTREES "opencv-ml-extremely-randomized-trees" +#define CV_TYPE_NAME_ML_GBT "opencv-ml-gradient-boosting-trees" + +#define CV_TRAIN_ERROR 0 +#define CV_TEST_ERROR 1 + +class CV_EXPORTS_W CvStatModel +{ +public: + CvStatModel(); + virtual ~CvStatModel(); + + virtual void clear(); + + CV_WRAP virtual void save( const char* filename, const char* name=0 ) const; + CV_WRAP virtual void load( const char* filename, const char* name=0 ); + + virtual void write( CvFileStorage* storage, const char* name ) const; + virtual void read( CvFileStorage* storage, CvFileNode* node ); + +protected: + const char* default_model_name; +}; + +/****************************************************************************************\ +* Normal Bayes Classifier * +\****************************************************************************************/ + +/* The structure, representing the grid range of statmodel parameters. + It is used for optimizing statmodel accuracy by varying model parameters, + the accuracy estimate being computed by cross-validation. + The grid is logarithmic, so <step> must be greater then 1. */ + +class CvMLData; + +struct CV_EXPORTS_W_MAP CvParamGrid +{ + // SVM params type + enum { SVM_C=0, SVM_GAMMA=1, SVM_P=2, SVM_NU=3, SVM_COEF=4, SVM_DEGREE=5 }; + + CvParamGrid() + { + min_val = max_val = step = 0; + } + + CvParamGrid( double min_val, double max_val, double log_step ); + //CvParamGrid( int param_id ); + bool check() const; + + CV_PROP_RW double min_val; + CV_PROP_RW double max_val; + CV_PROP_RW double step; +}; + +inline CvParamGrid::CvParamGrid( double _min_val, double _max_val, double _log_step ) +{ + min_val = _min_val; + max_val = _max_val; + step = _log_step; +} + +class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel +{ +public: + CV_WRAP CvNormalBayesClassifier(); + virtual ~CvNormalBayesClassifier(); + + CvNormalBayesClassifier( const CvMat* trainData, const CvMat* responses, + const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); + + virtual bool train( const CvMat* trainData, const CvMat* responses, + const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); + + virtual float predict( const CvMat* samples, CV_OUT CvMat* results=0 ) const; + CV_WRAP virtual void clear(); + + CV_WRAP CvNormalBayesClassifier( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); + CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), + bool update=false ); + CV_WRAP virtual float predict( const cv::Mat& samples, CV_OUT cv::Mat* results=0 ) const; + + virtual void write( CvFileStorage* storage, const char* name ) const; + virtual void read( CvFileStorage* storage, CvFileNode* node ); + +protected: + int var_count, var_all; + CvMat* var_idx; + CvMat* cls_labels; + CvMat** count; + CvMat** sum; + CvMat** productsum; + CvMat** avg; + CvMat** inv_eigen_values; + CvMat** cov_rotate_mats; + CvMat* c; +}; + + +/****************************************************************************************\ +* K-Nearest Neighbour Classifier * +\****************************************************************************************/ + +// k Nearest Neighbors +class CV_EXPORTS_W CvKNearest : public CvStatModel +{ +public: + + CV_WRAP CvKNearest(); + virtual ~CvKNearest(); + + CvKNearest( const CvMat* trainData, const CvMat* responses, + const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 ); + + virtual bool train( const CvMat* trainData, const CvMat* responses, + const CvMat* sampleIdx=0, bool is_regression=false, + int maxK=32, bool updateBase=false ); + + virtual float find_nearest( const CvMat* samples, int k, CV_OUT CvMat* results=0, + const float** neighbors=0, CV_OUT CvMat* neighborResponses=0, CV_OUT CvMat* dist=0 ) const; + + CV_WRAP CvKNearest( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 ); + + CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, + int maxK=32, bool updateBase=false ); + + virtual float find_nearest( const cv::Mat& samples, int k, cv::Mat* results=0, + const float** neighbors=0, cv::Mat* neighborResponses=0, + cv::Mat* dist=0 ) const; + CV_WRAP virtual float find_nearest( const cv::Mat& samples, int k, CV_OUT cv::Mat& results, + CV_OUT cv::Mat& neighborResponses, CV_OUT cv::Mat& dists) const; + + virtual void clear(); + int get_max_k() const; + int get_var_count() const; + int get_sample_count() const; + bool is_regression() const; + + virtual float write_results( int k, int k1, int start, int end, + const float* neighbor_responses, const float* dist, CvMat* _results, + CvMat* _neighbor_responses, CvMat* _dist, Cv32suf* sort_buf ) const; + + virtual void find_neighbors_direct( const CvMat* _samples, int k, int start, int end, + float* neighbor_responses, const float** neighbors, float* dist ) const; + +protected: + + int max_k, var_count; + int total; + bool regression; + CvVectors* samples; +}; + +/****************************************************************************************\ +* Support Vector Machines * +\****************************************************************************************/ + +// SVM training parameters +struct CV_EXPORTS_W_MAP CvSVMParams +{ + CvSVMParams(); + CvSVMParams( int svm_type, int kernel_type, + double degree, double gamma, double coef0, + double Cvalue, double nu, double p, + CvMat* class_weights, CvTermCriteria term_crit ); + + CV_PROP_RW int svm_type; + CV_PROP_RW int kernel_type; + CV_PROP_RW double degree; // for poly + CV_PROP_RW double gamma; // for poly/rbf/sigmoid + CV_PROP_RW double coef0; // for poly/sigmoid + + CV_PROP_RW double C; // for CV_SVM_C_SVC, CV_SVM_EPS_SVR and CV_SVM_NU_SVR + CV_PROP_RW double nu; // for CV_SVM_NU_SVC, CV_SVM_ONE_CLASS, and CV_SVM_NU_SVR + CV_PROP_RW double p; // for CV_SVM_EPS_SVR + CvMat* class_weights; // for CV_SVM_C_SVC + CV_PROP_RW CvTermCriteria term_crit; // termination criteria +}; + + +struct CV_EXPORTS CvSVMKernel +{ + typedef void (CvSVMKernel::*Calc)( int vec_count, int vec_size, const float** vecs, + const float* another, float* results ); + CvSVMKernel(); + CvSVMKernel( const CvSVMParams* params, Calc _calc_func ); + virtual bool create( const CvSVMParams* params, Calc _calc_func ); + virtual ~CvSVMKernel(); + + virtual void clear(); + virtual void calc( int vcount, int n, const float** vecs, const float* another, float* results ); + + const CvSVMParams* params; + Calc calc_func; + + virtual void calc_non_rbf_base( int vec_count, int vec_size, const float** vecs, + const float* another, float* results, + double alpha, double beta ); + + virtual void calc_linear( int vec_count, int vec_size, const float** vecs, + const float* another, float* results ); + virtual void calc_rbf( int vec_count, int vec_size, const float** vecs, + const float* another, float* results ); + virtual void calc_poly( int vec_count, int vec_size, const float** vecs, + const float* another, float* results ); + virtual void calc_sigmoid( int vec_count, int vec_size, const float** vecs, + const float* another, float* results ); +}; + + +struct CvSVMKernelRow +{ + CvSVMKernelRow* prev; + CvSVMKernelRow* next; + float* data; +}; + + +struct CvSVMSolutionInfo +{ + double obj; + double rho; + double upper_bound_p; + double upper_bound_n; + double r; // for Solver_NU +}; + +class CV_EXPORTS CvSVMSolver +{ +public: + typedef bool (CvSVMSolver::*SelectWorkingSet)( int& i, int& j ); + typedef float* (CvSVMSolver::*GetRow)( int i, float* row, float* dst, bool existed ); + typedef void (CvSVMSolver::*CalcRho)( double& rho, double& r ); + + CvSVMSolver(); + + CvSVMSolver( int count, int var_count, const float** samples, schar* y, + int alpha_count, double* alpha, double Cp, double Cn, + CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, + SelectWorkingSet select_working_set, CalcRho calc_rho ); + virtual bool create( int count, int var_count, const float** samples, schar* y, + int alpha_count, double* alpha, double Cp, double Cn, + CvMemStorage* storage, CvSVMKernel* kernel, GetRow get_row, + SelectWorkingSet select_working_set, CalcRho calc_rho ); + virtual ~CvSVMSolver(); + + virtual void clear(); + virtual bool solve_generic( CvSVMSolutionInfo& si ); + + virtual bool solve_c_svc( int count, int var_count, const float** samples, schar* y, + double Cp, double Cn, CvMemStorage* storage, + CvSVMKernel* kernel, double* alpha, CvSVMSolutionInfo& si ); + virtual bool solve_nu_svc( int count, int var_count, const float** samples, schar* y, + CvMemStorage* storage, CvSVMKernel* kernel, + double* alpha, CvSVMSolutionInfo& si ); + virtual bool solve_one_class( int count, int var_count, const float** samples, + CvMemStorage* storage, CvSVMKernel* kernel, + double* alpha, CvSVMSolutionInfo& si ); + + virtual bool solve_eps_svr( int count, int var_count, const float** samples, const float* y, + CvMemStorage* storage, CvSVMKernel* kernel, + double* alpha, CvSVMSolutionInfo& si ); + + virtual bool solve_nu_svr( int count, int var_count, const float** samples, const float* y, + CvMemStorage* storage, CvSVMKernel* kernel, + double* alpha, CvSVMSolutionInfo& si ); + + virtual float* get_row_base( int i, bool* _existed ); + virtual float* get_row( int i, float* dst ); + + int sample_count; + int var_count; + int cache_size; + int cache_line_size; + const float** samples; + const CvSVMParams* params; + CvMemStorage* storage; + CvSVMKernelRow lru_list; + CvSVMKernelRow* rows; + + int alpha_count; + + double* G; + double* alpha; + + // -1 - lower bound, 0 - free, 1 - upper bound + schar* alpha_status; + + schar* y; + double* b; + float* buf[2]; + double eps; + int max_iter; + double C[2]; // C[0] == Cn, C[1] == Cp + CvSVMKernel* kernel; + + SelectWorkingSet select_working_set_func; + CalcRho calc_rho_func; + GetRow get_row_func; + + virtual bool select_working_set( int& i, int& j ); + virtual bool select_working_set_nu_svm( int& i, int& j ); + virtual void calc_rho( double& rho, double& r ); + virtual void calc_rho_nu_svm( double& rho, double& r ); + + virtual float* get_row_svc( int i, float* row, float* dst, bool existed ); + virtual float* get_row_one_class( int i, float* row, float* dst, bool existed ); + virtual float* get_row_svr( int i, float* row, float* dst, bool existed ); +}; + + +struct CvSVMDecisionFunc +{ + double rho; + int sv_count; + double* alpha; + int* sv_index; +}; + + +// SVM model +class CV_EXPORTS_W CvSVM : public CvStatModel +{ +public: + // SVM type + enum { C_SVC=100, NU_SVC=101, ONE_CLASS=102, EPS_SVR=103, NU_SVR=104 }; + + // SVM kernel type + enum { LINEAR=0, POLY=1, RBF=2, SIGMOID=3 }; + + // SVM params type + enum { C=0, GAMMA=1, P=2, NU=3, COEF=4, DEGREE=5 }; + + CV_WRAP CvSVM(); + virtual ~CvSVM(); + + CvSVM( const CvMat* trainData, const CvMat* responses, + const CvMat* varIdx=0, const CvMat* sampleIdx=0, + CvSVMParams params=CvSVMParams() ); + + virtual bool train( const CvMat* trainData, const CvMat* responses, + const CvMat* varIdx=0, const CvMat* sampleIdx=0, + CvSVMParams params=CvSVMParams() ); + + virtual bool train_auto( const CvMat* trainData, const CvMat* responses, + const CvMat* varIdx, const CvMat* sampleIdx, CvSVMParams params, + int kfold = 10, + CvParamGrid Cgrid = get_default_grid(CvSVM::C), + CvParamGrid gammaGrid = get_default_grid(CvSVM::GAMMA), + CvParamGrid pGrid = get_default_grid(CvSVM::P), + CvParamGrid nuGrid = get_default_grid(CvSVM::NU), + CvParamGrid coeffGrid = get_default_grid(CvSVM::COEF), + CvParamGrid degreeGrid = get_default_grid(CvSVM::DEGREE), + bool balanced=false ); + + virtual float predict( const CvMat* sample, bool returnDFVal=false ) const; + virtual float predict( const CvMat* samples, CV_OUT CvMat* results ) const; + + CV_WRAP CvSVM( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), + CvSVMParams params=CvSVMParams() ); + + CV_WRAP virtual bool train( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), + CvSVMParams params=CvSVMParams() ); + + CV_WRAP virtual bool train_auto( const cv::Mat& trainData, const cv::Mat& responses, + const cv::Mat& varIdx, const cv::Mat& sampleIdx, CvSVMParams params, + int k_fold = 10, + CvParamGrid Cgrid = CvSVM::get_default_grid(CvSVM::C), + CvParamGrid gammaGrid = CvSVM::get_default_grid(CvSVM::GAMMA), + CvParamGrid pGrid = CvSVM::get_default_grid(CvSVM::P), + CvParamGrid nuGrid = CvSVM::get_default_grid(CvSVM::NU), + CvParamGrid coeffGrid = CvSVM::get_default_grid(CvSVM::COEF), + CvParamGrid degreeGrid = CvSVM::get_default_grid(CvSVM::DEGREE), + bool balanced=false); + CV_WRAP virtual float predict( const cv::Mat& sample, bool returnDFVal=false ) const; + CV_WRAP_AS(predict_all) void predict( cv::InputArray samples, cv::OutputArray results ) const; + + CV_WRAP virtual int get_support_vector_count() const; + virtual const float* get_support_vector(int i) const; + virtual CvSVMParams get_params() const { return params; }; + CV_WRAP virtual void clear(); + + static CvParamGrid get_default_grid( int param_id ); + + virtual void write( CvFileStorage* storage, const char* name ) const; + virtual void read( CvFileStorage* storage, CvFileNode* node ); + CV_WRAP int get_var_count() const { return var_idx ? var_idx->cols : var_all; } + +protected: + + virtual bool set_params( const CvSVMParams& params ); + virtual bool train1( int sample_count, int var_count, const float** samples, + const void* responses, double Cp, double Cn, + CvMemStorage* _storage, double* alpha, double& rho ); + virtual bool do_train( int svm_type, int sample_count, int var_count, const float** samples, + const CvMat* responses, CvMemStorage* _storage, double* alpha ); + virtual void create_kernel(); + virtual void create_solver(); + + virtual float predict( const float* row_sample, int row_len, bool returnDFVal=false ) const; + + virtual void write_params( CvFileStorage* fs ) const; + virtual void read_params( CvFileStorage* fs, CvFileNode* node ); + + void optimize_linear_svm(); + + CvSVMParams params; + CvMat* class_labels; + int var_all; + float** sv; + int sv_total; + CvMat* var_idx; + CvMat* class_weights; + CvSVMDecisionFunc* decision_func; + CvMemStorage* storage; + + CvSVMSolver* solver; + CvSVMKernel* kernel; + +private: + CvSVM(const CvSVM&); + CvSVM& operator = (const CvSVM&); +}; + +/****************************************************************************************\ +* Expectation - Maximization * +\****************************************************************************************/ +namespace cv +{ +class CV_EXPORTS_W EM : public Algorithm +{ +public: + // Type of covariation matrices + enum {COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2, COV_MAT_DEFAULT=COV_MAT_DIAGONAL}; + + // Default parameters + enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; + + // The initial step + enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; + + CV_WRAP EM(int nclusters=EM::DEFAULT_NCLUSTERS, int covMatType=EM::COV_MAT_DIAGONAL, + const TermCriteria& termCrit=TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, + EM::DEFAULT_MAX_ITERS, FLT_EPSILON)); + + virtual ~EM(); + CV_WRAP virtual void clear(); + + CV_WRAP virtual bool train(InputArray samples, + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()); + + CV_WRAP virtual bool trainE(InputArray samples, + InputArray means0, + InputArray covs0=noArray(), + InputArray weights0=noArray(), + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()); + + CV_WRAP virtual bool trainM(InputArray samples, + InputArray probs0, + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()); + + CV_WRAP Vec2d predict(InputArray sample, + OutputArray probs=noArray()) const; + + CV_WRAP bool isTrained() const; + + AlgorithmInfo* info() const; + virtual void read(const FileNode& fn); + +protected: + + virtual void setTrainData(int startStep, const Mat& samples, + const Mat* probs0, + const Mat* means0, + const vector<Mat>* covs0, + const Mat* weights0); + + bool doTrain(int startStep, + OutputArray logLikelihoods, + OutputArray labels, + OutputArray probs); + virtual void eStep(); + virtual void mStep(); + + void clusterTrainSamples(); + void decomposeCovs(); + void computeLogWeightDivDet(); + + Vec2d computeProbabilities(const Mat& sample, Mat* probs) const; + + // all inner matrices have type CV_64FC1 + CV_PROP_RW int nclusters; + CV_PROP_RW int covMatType; + CV_PROP_RW int maxIters; + CV_PROP_RW double epsilon; + + Mat trainSamples; + Mat trainProbs; + Mat trainLogLikelihoods; + Mat trainLabels; + + CV_PROP Mat weights; + CV_PROP Mat means; + CV_PROP vector<Mat> covs; + + vector<Mat> covsEigenValues; + vector<Mat> covsRotateMats; + vector<Mat> invCovsEigenValues; + Mat logWeightDivDet; +}; +} // namespace cv + +/****************************************************************************************\ +* Decision Tree * +\****************************************************************************************/\ +struct CvPair16u32s +{ + unsigned short* u; + int* i; +}; + + +#define CV_DTREE_CAT_DIR(idx,subset) \ + (2*((subset[(idx)>>5]&(1 << ((idx) & 31)))==0)-1) + +struct CvDTreeSplit +{ + int var_idx; + int condensed_idx; + int inversed; + float quality; + CvDTreeSplit* next; + union + { + int subset[2]; + struct + { + float c; + int split_point; + } + ord; + }; +}; + +struct CvDTreeNode +{ + int class_idx; + int Tn; + double value; + + CvDTreeNode* parent; + CvDTreeNode* left; + CvDTreeNode* right; + + CvDTreeSplit* split; + + int sample_count; + int depth; + int* num_valid; + int offset; + int buf_idx; + double maxlr; + + // global pruning data + int complexity; + double alpha; + double node_risk, tree_risk, tree_error; + + // cross-validation pruning data + int* cv_Tn; + double* cv_node_risk; + double* cv_node_error; + + int get_num_valid(int vi) { return num_valid ? num_valid[vi] : sample_count; } + void set_num_valid(int vi, int n) { if( num_valid ) num_valid[vi] = n; } +}; + + +struct CV_EXPORTS_W_MAP CvDTreeParams +{ + CV_PROP_RW int max_categories; + CV_PROP_RW int max_depth; + CV_PROP_RW int min_sample_count; + CV_PROP_RW int cv_folds; + CV_PROP_RW bool use_surrogates; + CV_PROP_RW bool use_1se_rule; + CV_PROP_RW bool truncate_pruned_tree; + CV_PROP_RW float regression_accuracy; + const float* priors; + + CvDTreeParams(); + CvDTreeParams( int max_depth, int min_sample_count, + float regression_accuracy, bool use_surrogates, + int max_categories, int cv_folds, + bool use_1se_rule, bool truncate_pruned_tree, + const float* priors ); +}; + + +struct CV_EXPORTS CvDTreeTrainData +{ + CvDTreeTrainData(); + CvDTreeTrainData( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + const CvDTreeParams& params=CvDTreeParams(), + bool _shared=false, bool _add_labels=false ); + virtual ~CvDTreeTrainData(); + + virtual void set_data( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + const CvDTreeParams& params=CvDTreeParams(), + bool _shared=false, bool _add_labels=false, + bool _update_data=false ); + virtual void do_responses_copy(); + + virtual void get_vectors( const CvMat* _subsample_idx, + float* values, uchar* missing, float* responses, bool get_class_idx=false ); + + virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); + + virtual void write_params( CvFileStorage* fs ) const; + virtual void read_params( CvFileStorage* fs, CvFileNode* node ); + + // release all the data + virtual void clear(); + + int get_num_classes() const; + int get_var_type(int vi) const; + int get_work_var_count() const {return work_var_count;} + + virtual const float* get_ord_responses( CvDTreeNode* n, float* values_buf, int* sample_indices_buf ); + virtual const int* get_class_labels( CvDTreeNode* n, int* labels_buf ); + virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); + virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); + virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); + virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* sorted_indices_buf, + const float** ord_values, const int** sorted_indices, int* sample_indices_buf ); + virtual int get_child_buf_idx( CvDTreeNode* n ); + + //////////////////////////////////// + + virtual bool set_params( const CvDTreeParams& params ); + virtual CvDTreeNode* new_node( CvDTreeNode* parent, int count, + int storage_idx, int offset ); + + virtual CvDTreeSplit* new_split_ord( int vi, float cmp_val, + int split_point, int inversed, float quality ); + virtual CvDTreeSplit* new_split_cat( int vi, float quality ); + virtual void free_node_data( CvDTreeNode* node ); + virtual void free_train_data(); + virtual void free_node( CvDTreeNode* node ); + + int sample_count, var_all, var_count, max_c_count; + int ord_var_count, cat_var_count, work_var_count; + bool have_labels, have_priors; + bool is_classifier; + int tflag; + + const CvMat* train_data; + const CvMat* responses; + CvMat* responses_copy; // used in Boosting + + int buf_count, buf_size; // buf_size is obsolete, please do not use it, use expression ((int64)buf->rows * (int64)buf->cols / buf_count) instead + bool shared; + int is_buf_16u; + + CvMat* cat_count; + CvMat* cat_ofs; + CvMat* cat_map; + + CvMat* counts; + CvMat* buf; + inline size_t get_length_subbuf() const + { + size_t res = (size_t)(work_var_count + 1) * (size_t)sample_count; + return res; + } + + CvMat* direction; + CvMat* split_buf; + + CvMat* var_idx; + CvMat* var_type; // i-th element = + // k<0 - ordered + // k>=0 - categorical, see k-th element of cat_* arrays + CvMat* priors; + CvMat* priors_mult; + + CvDTreeParams params; + + CvMemStorage* tree_storage; + CvMemStorage* temp_storage; + + CvDTreeNode* data_root; + + CvSet* node_heap; + CvSet* split_heap; + CvSet* cv_heap; + CvSet* nv_heap; + + cv::RNG* rng; +}; + +class CvDTree; +class CvForestTree; + +namespace cv +{ + struct DTreeBestSplitFinder; + struct ForestTreeBestSplitFinder; +} + +class CV_EXPORTS_W CvDTree : public CvStatModel +{ +public: + CV_WRAP CvDTree(); + virtual ~CvDTree(); + + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvDTreeParams params=CvDTreeParams() ); + + virtual bool train( CvMLData* trainData, CvDTreeParams params=CvDTreeParams() ); + + // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} + virtual float calc_error( CvMLData* trainData, int type, std::vector<float> *resp = 0 ); + + virtual bool train( CvDTreeTrainData* trainData, const CvMat* subsampleIdx ); + + virtual CvDTreeNode* predict( const CvMat* sample, const CvMat* missingDataMask=0, + bool preprocessedInput=false ) const; + + CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvDTreeParams params=CvDTreeParams() ); + + CV_WRAP virtual CvDTreeNode* predict( const cv::Mat& sample, const cv::Mat& missingDataMask=cv::Mat(), + bool preprocessedInput=false ) const; + CV_WRAP virtual cv::Mat getVarImportance(); + + virtual const CvMat* get_var_importance(); + CV_WRAP virtual void clear(); + + virtual void read( CvFileStorage* fs, CvFileNode* node ); + virtual void write( CvFileStorage* fs, const char* name ) const; + + // special read & write methods for trees in the tree ensembles + virtual void read( CvFileStorage* fs, CvFileNode* node, + CvDTreeTrainData* data ); + virtual void write( CvFileStorage* fs ) const; + + const CvDTreeNode* get_root() const; + int get_pruned_tree_idx() const; + CvDTreeTrainData* get_data(); + +protected: + friend struct cv::DTreeBestSplitFinder; + + virtual bool do_train( const CvMat* _subsample_idx ); + + virtual void try_split_node( CvDTreeNode* n ); + virtual void split_node_data( CvDTreeNode* n ); + virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); + virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); + virtual double calc_node_dir( CvDTreeNode* node ); + virtual void complete_node_dir( CvDTreeNode* node ); + virtual void cluster_categories( const int* vectors, int vector_count, + int var_count, int* sums, int k, int* cluster_labels ); + + virtual void calc_node_value( CvDTreeNode* node ); + + virtual void prune_cv(); + virtual double update_tree_rnc( int T, int fold ); + virtual int cut_tree( int T, int fold, double min_alpha ); + virtual void free_prune_data(bool cut_tree); + virtual void free_tree(); + + virtual void write_node( CvFileStorage* fs, CvDTreeNode* node ) const; + virtual void write_split( CvFileStorage* fs, CvDTreeSplit* split ) const; + virtual CvDTreeNode* read_node( CvFileStorage* fs, CvFileNode* node, CvDTreeNode* parent ); + virtual CvDTreeSplit* read_split( CvFileStorage* fs, CvFileNode* node ); + virtual void write_tree_nodes( CvFileStorage* fs ) const; + virtual void read_tree_nodes( CvFileStorage* fs, CvFileNode* node ); + + CvDTreeNode* root; + CvMat* var_importance; + CvDTreeTrainData* data; + +public: + int pruned_tree_idx; +}; + + +/****************************************************************************************\ +* Random Trees Classifier * +\****************************************************************************************/ + +class CvRTrees; + +class CV_EXPORTS CvForestTree: public CvDTree +{ +public: + CvForestTree(); + virtual ~CvForestTree(); + + virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx, CvRTrees* forest ); + + virtual int get_var_count() const {return data ? data->var_count : 0;} + virtual void read( CvFileStorage* fs, CvFileNode* node, CvRTrees* forest, CvDTreeTrainData* _data ); + + /* dummy methods to avoid warnings: BEGIN */ + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvDTreeParams params=CvDTreeParams() ); + + virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); + virtual void read( CvFileStorage* fs, CvFileNode* node ); + virtual void read( CvFileStorage* fs, CvFileNode* node, + CvDTreeTrainData* data ); + /* dummy methods to avoid warnings: END */ + +protected: + friend struct cv::ForestTreeBestSplitFinder; + + virtual CvDTreeSplit* find_best_split( CvDTreeNode* n ); + CvRTrees* forest; +}; + + +struct CV_EXPORTS_W_MAP CvRTParams : public CvDTreeParams +{ + //Parameters for the forest + CV_PROP_RW bool calc_var_importance; // true <=> RF processes variable importance + CV_PROP_RW int nactive_vars; + CV_PROP_RW CvTermCriteria term_crit; + + CvRTParams(); + CvRTParams( int max_depth, int min_sample_count, + float regression_accuracy, bool use_surrogates, + int max_categories, const float* priors, bool calc_var_importance, + int nactive_vars, int max_num_of_trees_in_the_forest, + float forest_accuracy, int termcrit_type ); +}; + + +class CV_EXPORTS_W CvRTrees : public CvStatModel +{ +public: + CV_WRAP CvRTrees(); + virtual ~CvRTrees(); + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvRTParams params=CvRTParams() ); + + virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); + virtual float predict( const CvMat* sample, const CvMat* missing = 0 ) const; + virtual float predict_prob( const CvMat* sample, const CvMat* missing = 0 ) const; + + CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvRTParams params=CvRTParams() ); + CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; + CV_WRAP virtual float predict_prob( const cv::Mat& sample, const cv::Mat& missing = cv::Mat() ) const; + CV_WRAP virtual cv::Mat getVarImportance(); + + CV_WRAP virtual void clear(); + + virtual const CvMat* get_var_importance(); + virtual float get_proximity( const CvMat* sample1, const CvMat* sample2, + const CvMat* missing1 = 0, const CvMat* missing2 = 0 ) const; + + virtual float calc_error( CvMLData* data, int type , std::vector<float>* resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} + + virtual float get_train_error(); + + virtual void read( CvFileStorage* fs, CvFileNode* node ); + virtual void write( CvFileStorage* fs, const char* name ) const; + + CvMat* get_active_var_mask(); + CvRNG* get_rng(); + + int get_tree_count() const; + CvForestTree* get_tree(int i) const; + +protected: + virtual std::string getName() const; + + virtual bool grow_forest( const CvTermCriteria term_crit ); + + // array of the trees of the forest + CvForestTree** trees; + CvDTreeTrainData* data; + int ntrees; + int nclasses; + double oob_error; + CvMat* var_importance; + int nsamples; + + cv::RNG* rng; + CvMat* active_var_mask; +}; + +/****************************************************************************************\ +* Extremely randomized trees Classifier * +\****************************************************************************************/ +struct CV_EXPORTS CvERTreeTrainData : public CvDTreeTrainData +{ + virtual void set_data( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + const CvDTreeParams& params=CvDTreeParams(), + bool _shared=false, bool _add_labels=false, + bool _update_data=false ); + virtual void get_ord_var_data( CvDTreeNode* n, int vi, float* ord_values_buf, int* missing_buf, + const float** ord_values, const int** missing, int* sample_buf = 0 ); + virtual const int* get_sample_indices( CvDTreeNode* n, int* indices_buf ); + virtual const int* get_cv_labels( CvDTreeNode* n, int* labels_buf ); + virtual const int* get_cat_var_data( CvDTreeNode* n, int vi, int* cat_values_buf ); + virtual void get_vectors( const CvMat* _subsample_idx, float* values, uchar* missing, + float* responses, bool get_class_idx=false ); + virtual CvDTreeNode* subsample_data( const CvMat* _subsample_idx ); + const CvMat* missing_mask; +}; + +class CV_EXPORTS CvForestERTree : public CvForestTree +{ +protected: + virtual double calc_node_dir( CvDTreeNode* node ); + virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual void split_node_data( CvDTreeNode* n ); +}; + +class CV_EXPORTS_W CvERTrees : public CvRTrees +{ +public: + CV_WRAP CvERTrees(); + virtual ~CvERTrees(); + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvRTParams params=CvRTParams()); + CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvRTParams params=CvRTParams()); + virtual bool train( CvMLData* data, CvRTParams params=CvRTParams() ); +protected: + virtual std::string getName() const; + virtual bool grow_forest( const CvTermCriteria term_crit ); +}; + + +/****************************************************************************************\ +* Boosted tree classifier * +\****************************************************************************************/ + +struct CV_EXPORTS_W_MAP CvBoostParams : public CvDTreeParams +{ + CV_PROP_RW int boost_type; + CV_PROP_RW int weak_count; + CV_PROP_RW int split_criteria; + CV_PROP_RW double weight_trim_rate; + + CvBoostParams(); + CvBoostParams( int boost_type, int weak_count, double weight_trim_rate, + int max_depth, bool use_surrogates, const float* priors ); +}; + + +class CvBoost; + +class CV_EXPORTS CvBoostTree: public CvDTree +{ +public: + CvBoostTree(); + virtual ~CvBoostTree(); + + virtual bool train( CvDTreeTrainData* trainData, + const CvMat* subsample_idx, CvBoost* ensemble ); + + virtual void scale( double s ); + virtual void read( CvFileStorage* fs, CvFileNode* node, + CvBoost* ensemble, CvDTreeTrainData* _data ); + virtual void clear(); + + /* dummy methods to avoid warnings: BEGIN */ + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvDTreeParams params=CvDTreeParams() ); + virtual bool train( CvDTreeTrainData* trainData, const CvMat* _subsample_idx ); + + virtual void read( CvFileStorage* fs, CvFileNode* node ); + virtual void read( CvFileStorage* fs, CvFileNode* node, + CvDTreeTrainData* data ); + /* dummy methods to avoid warnings: END */ + +protected: + + virtual void try_split_node( CvDTreeNode* n ); + virtual CvDTreeSplit* find_surrogate_split_ord( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_surrogate_split_cat( CvDTreeNode* n, int vi, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_ord_class( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_cat_class( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_ord_reg( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual CvDTreeSplit* find_split_cat_reg( CvDTreeNode* n, int vi, + float init_quality = 0, CvDTreeSplit* _split = 0, uchar* ext_buf = 0 ); + virtual void calc_node_value( CvDTreeNode* n ); + virtual double calc_node_dir( CvDTreeNode* n ); + + CvBoost* ensemble; +}; + + +class CV_EXPORTS_W CvBoost : public CvStatModel +{ +public: + // Boosting type + enum { DISCRETE=0, REAL=1, LOGIT=2, GENTLE=3 }; + + // Splitting criteria + enum { DEFAULT=0, GINI=1, MISCLASS=3, SQERR=4 }; + + CV_WRAP CvBoost(); + virtual ~CvBoost(); + + CvBoost( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvBoostParams params=CvBoostParams() ); + + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvBoostParams params=CvBoostParams(), + bool update=false ); + + virtual bool train( CvMLData* data, + CvBoostParams params=CvBoostParams(), + bool update=false ); + + virtual float predict( const CvMat* sample, const CvMat* missing=0, + CvMat* weak_responses=0, CvSlice slice=CV_WHOLE_SEQ, + bool raw_mode=false, bool return_sum=false ) const; + + CV_WRAP CvBoost( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvBoostParams params=CvBoostParams() ); + + CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvBoostParams params=CvBoostParams(), + bool update=false ); + + CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), + const cv::Range& slice=cv::Range::all(), bool rawMode=false, + bool returnSum=false ) const; + + virtual float calc_error( CvMLData* _data, int type , std::vector<float> *resp = 0 ); // type in {CV_TRAIN_ERROR, CV_TEST_ERROR} + + CV_WRAP virtual void prune( CvSlice slice ); + + CV_WRAP virtual void clear(); + + virtual void write( CvFileStorage* storage, const char* name ) const; + virtual void read( CvFileStorage* storage, CvFileNode* node ); + virtual const CvMat* get_active_vars(bool absolute_idx=true); + + CvSeq* get_weak_predictors(); + + CvMat* get_weights(); + CvMat* get_subtree_weights(); + CvMat* get_weak_response(); + const CvBoostParams& get_params() const; + const CvDTreeTrainData* get_data() const; + +protected: + + void update_weights_impl( CvBoostTree* tree, double initial_weights[2] ); + + virtual bool set_params( const CvBoostParams& params ); + virtual void update_weights( CvBoostTree* tree ); + virtual void trim_weights(); + virtual void write_params( CvFileStorage* fs ) const; + virtual void read_params( CvFileStorage* fs, CvFileNode* node ); + + CvDTreeTrainData* data; + CvBoostParams params; + CvSeq* weak; + + CvMat* active_vars; + CvMat* active_vars_abs; + bool have_active_cat_vars; + + CvMat* orig_response; + CvMat* sum_response; + CvMat* weak_eval; + CvMat* subsample_mask; + CvMat* weights; + CvMat* subtree_weights; + bool have_subsample; +}; + + +/****************************************************************************************\ +* Gradient Boosted Trees * +\****************************************************************************************/ + +// DataType: STRUCT CvGBTreesParams +// Parameters of GBT (Gradient Boosted trees model), including single +// tree settings and ensemble parameters. +// +// weak_count - count of trees in the ensemble +// loss_function_type - loss function used for ensemble training +// subsample_portion - portion of whole training set used for +// every single tree training. +// subsample_portion value is in (0.0, 1.0]. +// subsample_portion == 1.0 when whole dataset is +// used on each step. Count of sample used on each +// step is computed as +// int(total_samples_count * subsample_portion). +// shrinkage - regularization parameter. +// Each tree prediction is multiplied on shrinkage value. + + +struct CV_EXPORTS_W_MAP CvGBTreesParams : public CvDTreeParams +{ + CV_PROP_RW int weak_count; + CV_PROP_RW int loss_function_type; + CV_PROP_RW float subsample_portion; + CV_PROP_RW float shrinkage; + + CvGBTreesParams(); + CvGBTreesParams( int loss_function_type, int weak_count, float shrinkage, + float subsample_portion, int max_depth, bool use_surrogates ); +}; + +// DataType: CLASS CvGBTrees +// Gradient Boosting Trees (GBT) algorithm implementation. +// +// data - training dataset +// params - parameters of the CvGBTrees +// weak - array[0..(class_count-1)] of CvSeq +// for storing tree ensembles +// orig_response - original responses of the training set samples +// sum_response - predicitons of the current model on the training dataset. +// this matrix is updated on every iteration. +// sum_response_tmp - predicitons of the model on the training set on the next +// step. On every iteration values of sum_responses_tmp are +// computed via sum_responses values. When the current +// step is complete sum_response values become equal to +// sum_responses_tmp. +// sampleIdx - indices of samples used for training the ensemble. +// CvGBTrees training procedure takes a set of samples +// (train_data) and a set of responses (responses). +// Only pairs (train_data[i], responses[i]), where i is +// in sample_idx are used for training the ensemble. +// subsample_train - indices of samples used for training a single decision +// tree on the current step. This indices are countered +// relatively to the sample_idx, so that pairs +// (train_data[sample_idx[i]], responses[sample_idx[i]]) +// are used for training a decision tree. +// Training set is randomly splited +// in two parts (subsample_train and subsample_test) +// on every iteration accordingly to the portion parameter. +// subsample_test - relative indices of samples from the training set, +// which are not used for training a tree on the current +// step. +// missing - mask of the missing values in the training set. This +// matrix has the same size as train_data. 1 - missing +// value, 0 - not a missing value. +// class_labels - output class labels map. +// rng - random number generator. Used for spliting the +// training set. +// class_count - count of output classes. +// class_count == 1 in the case of regression, +// and > 1 in the case of classification. +// delta - Huber loss function parameter. +// base_value - start point of the gradient descent procedure. +// model prediction is +// f(x) = f_0 + sum_{i=1..weak_count-1}(f_i(x)), where +// f_0 is the base value. + + + +class CV_EXPORTS_W CvGBTrees : public CvStatModel +{ +public: + + /* + // DataType: ENUM + // Loss functions implemented in CvGBTrees. + // + // SQUARED_LOSS + // problem: regression + // loss = (x - x')^2 + // + // ABSOLUTE_LOSS + // problem: regression + // loss = abs(x - x') + // + // HUBER_LOSS + // problem: regression + // loss = delta*( abs(x - x') - delta/2), if abs(x - x') > delta + // 1/2*(x - x')^2, if abs(x - x') <= delta, + // where delta is the alpha-quantile of pseudo responses from + // the training set. + // + // DEVIANCE_LOSS + // problem: classification + // + */ + enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; + + + /* + // Default constructor. Creates a model only (without training). + // Should be followed by one form of the train(...) function. + // + // API + // CvGBTrees(); + + // INPUT + // OUTPUT + // RESULT + */ + CV_WRAP CvGBTrees(); + + + /* + // Full form constructor. Creates a gradient boosting model and does the + // train. + // + // API + // CvGBTrees( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvGBTreesParams params=CvGBTreesParams() ); + + // INPUT + // trainData - a set of input feature vectors. + // size of matrix is + // <count of samples> x <variables count> + // or <variables count> x <count of samples> + // depending on the tflag parameter. + // matrix values are float. + // tflag - a flag showing how do samples stored in the + // trainData matrix row by row (tflag=CV_ROW_SAMPLE) + // or column by column (tflag=CV_COL_SAMPLE). + // responses - a vector of responses corresponding to the samples + // in trainData. + // varIdx - indices of used variables. zero value means that all + // variables are active. + // sampleIdx - indices of used samples. zero value means that all + // samples from trainData are in the training set. + // varType - vector of <variables count> length. gives every + // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. + // varType = 0 means all variables are numerical. + // missingDataMask - a mask of misiing values in trainData. + // missingDataMask = 0 means that there are no missing + // values. + // params - parameters of GTB algorithm. + // OUTPUT + // RESULT + */ + CvGBTrees( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvGBTreesParams params=CvGBTreesParams() ); + + + /* + // Destructor. + */ + virtual ~CvGBTrees(); + + + /* + // Gradient tree boosting model training + // + // API + // virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvGBTreesParams params=CvGBTreesParams(), + bool update=false ); + + // INPUT + // trainData - a set of input feature vectors. + // size of matrix is + // <count of samples> x <variables count> + // or <variables count> x <count of samples> + // depending on the tflag parameter. + // matrix values are float. + // tflag - a flag showing how do samples stored in the + // trainData matrix row by row (tflag=CV_ROW_SAMPLE) + // or column by column (tflag=CV_COL_SAMPLE). + // responses - a vector of responses corresponding to the samples + // in trainData. + // varIdx - indices of used variables. zero value means that all + // variables are active. + // sampleIdx - indices of used samples. zero value means that all + // samples from trainData are in the training set. + // varType - vector of <variables count> length. gives every + // variable type CV_VAR_CATEGORICAL or CV_VAR_ORDERED. + // varType = 0 means all variables are numerical. + // missingDataMask - a mask of misiing values in trainData. + // missingDataMask = 0 means that there are no missing + // values. + // params - parameters of GTB algorithm. + // update - is not supported now. (!) + // OUTPUT + // RESULT + // Error state. + */ + virtual bool train( const CvMat* trainData, int tflag, + const CvMat* responses, const CvMat* varIdx=0, + const CvMat* sampleIdx=0, const CvMat* varType=0, + const CvMat* missingDataMask=0, + CvGBTreesParams params=CvGBTreesParams(), + bool update=false ); + + + /* + // Gradient tree boosting model training + // + // API + // virtual bool train( CvMLData* data, + CvGBTreesParams params=CvGBTreesParams(), + bool update=false ) {return false;}; + + // INPUT + // data - training set. + // params - parameters of GTB algorithm. + // update - is not supported now. (!) + // OUTPUT + // RESULT + // Error state. + */ + virtual bool train( CvMLData* data, + CvGBTreesParams params=CvGBTreesParams(), + bool update=false ); + + + /* + // Response value prediction + // + // API + // virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, + CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, + int k=-1 ) const; + + // INPUT + // sample - input sample of the same type as in the training set. + // missing - missing values mask. missing=0 if there are no + // missing values in sample vector. + // weak_responses - predictions of all of the trees. + // not implemented (!) + // slice - part of the ensemble used for prediction. + // slice = CV_WHOLE_SEQ when all trees are used. + // k - number of ensemble used. + // k is in {-1,0,1,..,<count of output classes-1>}. + // in the case of classification problem + // <count of output classes-1> ensembles are built. + // If k = -1 ordinary prediction is the result, + // otherwise function gives the prediction of the + // k-th ensemble only. + // OUTPUT + // RESULT + // Predicted value. + */ + virtual float predict_serial( const CvMat* sample, const CvMat* missing=0, + CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, + int k=-1 ) const; + + /* + // Response value prediction. + // Parallel version (in the case of TBB existence) + // + // API + // virtual float predict( const CvMat* sample, const CvMat* missing=0, + CvMat* weak_responses=0, CvSlice slice = CV_WHOLE_SEQ, + int k=-1 ) const; + + // INPUT + // sample - input sample of the same type as in the training set. + // missing - missing values mask. missing=0 if there are no + // missing values in sample vector. + // weak_responses - predictions of all of the trees. + // not implemented (!) + // slice - part of the ensemble used for prediction. + // slice = CV_WHOLE_SEQ when all trees are used. + // k - number of ensemble used. + // k is in {-1,0,1,..,<count of output classes-1>}. + // in the case of classification problem + // <count of output classes-1> ensembles are built. + // If k = -1 ordinary prediction is the result, + // otherwise function gives the prediction of the + // k-th ensemble only. + // OUTPUT + // RESULT + // Predicted value. + */ + virtual float predict( const CvMat* sample, const CvMat* missing=0, + CvMat* weakResponses=0, CvSlice slice = CV_WHOLE_SEQ, + int k=-1 ) const; + + /* + // Deletes all the data. + // + // API + // virtual void clear(); + + // INPUT + // OUTPUT + // delete data, weak, orig_response, sum_response, + // weak_eval, subsample_train, subsample_test, + // sample_idx, missing, lass_labels + // delta = 0.0 + // RESULT + */ + CV_WRAP virtual void clear(); + + /* + // Compute error on the train/test set. + // + // API + // virtual float calc_error( CvMLData* _data, int type, + // std::vector<float> *resp = 0 ); + // + // INPUT + // data - dataset + // type - defines which error is to compute: train (CV_TRAIN_ERROR) or + // test (CV_TEST_ERROR). + // OUTPUT + // resp - vector of predicitons + // RESULT + // Error value. + */ + virtual float calc_error( CvMLData* _data, int type, + std::vector<float> *resp = 0 ); + + /* + // + // Write parameters of the gtb model and data. Write learned model. + // + // API + // virtual void write( CvFileStorage* fs, const char* name ) const; + // + // INPUT + // fs - file storage to read parameters from. + // name - model name. + // OUTPUT + // RESULT + */ + virtual void write( CvFileStorage* fs, const char* name ) const; + + + /* + // + // Read parameters of the gtb model and data. Read learned model. + // + // API + // virtual void read( CvFileStorage* fs, CvFileNode* node ); + // + // INPUT + // fs - file storage to read parameters from. + // node - file node. + // OUTPUT + // RESULT + */ + virtual void read( CvFileStorage* fs, CvFileNode* node ); + + + // new-style C++ interface + CV_WRAP CvGBTrees( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvGBTreesParams params=CvGBTreesParams() ); + + CV_WRAP virtual bool train( const cv::Mat& trainData, int tflag, + const cv::Mat& responses, const cv::Mat& varIdx=cv::Mat(), + const cv::Mat& sampleIdx=cv::Mat(), const cv::Mat& varType=cv::Mat(), + const cv::Mat& missingDataMask=cv::Mat(), + CvGBTreesParams params=CvGBTreesParams(), + bool update=false ); + + CV_WRAP virtual float predict( const cv::Mat& sample, const cv::Mat& missing=cv::Mat(), + const cv::Range& slice = cv::Range::all(), + int k=-1 ) const; + +protected: + + /* + // Compute the gradient vector components. + // + // API + // virtual void find_gradient( const int k = 0); + + // INPUT + // k - used for classification problem, determining current + // tree ensemble. + // OUTPUT + // changes components of data->responses + // which correspond to samples used for training + // on the current step. + // RESULT + */ + virtual void find_gradient( const int k = 0); + + + /* + // + // Change values in tree leaves according to the used loss function. + // + // API + // virtual void change_values(CvDTree* tree, const int k = 0); + // + // INPUT + // tree - decision tree to change. + // k - used for classification problem, determining current + // tree ensemble. + // OUTPUT + // changes 'value' fields of the trees' leaves. + // changes sum_response_tmp. + // RESULT + */ + virtual void change_values(CvDTree* tree, const int k = 0); + + + /* + // + // Find optimal constant prediction value according to the used loss + // function. + // The goal is to find a constant which gives the minimal summary loss + // on the _Idx samples. + // + // API + // virtual float find_optimal_value( const CvMat* _Idx ); + // + // INPUT + // _Idx - indices of the samples from the training set. + // OUTPUT + // RESULT + // optimal constant value. + */ + virtual float find_optimal_value( const CvMat* _Idx ); + + + /* + // + // Randomly split the whole training set in two parts according + // to params.portion. + // + // API + // virtual void do_subsample(); + // + // INPUT + // OUTPUT + // subsample_train - indices of samples used for training + // subsample_test - indices of samples used for test + // RESULT + */ + virtual void do_subsample(); + + + /* + // + // Internal recursive function giving an array of subtree tree leaves. + // + // API + // void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); + // + // INPUT + // node - current leaf. + // OUTPUT + // count - count of leaves in the subtree. + // leaves - array of pointers to leaves. + // RESULT + */ + void leaves_get( CvDTreeNode** leaves, int& count, CvDTreeNode* node ); + + + /* + // + // Get leaves of the tree. + // + // API + // CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); + // + // INPUT + // dtree - decision tree. + // OUTPUT + // len - count of the leaves. + // RESULT + // CvDTreeNode** - array of pointers to leaves. + */ + CvDTreeNode** GetLeaves( const CvDTree* dtree, int& len ); + + + /* + // + // Is it a regression or a classification. + // + // API + // bool problem_type(); + // + // INPUT + // OUTPUT + // RESULT + // false if it is a classification problem, + // true - if regression. + */ + virtual bool problem_type() const; + + + /* + // + // Write parameters of the gtb model. + // + // API + // virtual void write_params( CvFileStorage* fs ) const; + // + // INPUT + // fs - file storage to write parameters to. + // OUTPUT + // RESULT + */ + virtual void write_params( CvFileStorage* fs ) const; + + + /* + // + // Read parameters of the gtb model and data. + // + // API + // virtual void read_params( CvFileStorage* fs ); + // + // INPUT + // fs - file storage to read parameters from. + // OUTPUT + // params - parameters of the gtb model. + // data - contains information about the structure + // of the data set (count of variables, + // their types, etc.). + // class_labels - output class labels map. + // RESULT + */ + virtual void read_params( CvFileStorage* fs, CvFileNode* fnode ); + int get_len(const CvMat* mat) const; + + + CvDTreeTrainData* data; + CvGBTreesParams params; + + CvSeq** weak; + CvMat* orig_response; + CvMat* sum_response; + CvMat* sum_response_tmp; + CvMat* sample_idx; + CvMat* subsample_train; + CvMat* subsample_test; + CvMat* missing; + CvMat* class_labels; + + cv::RNG* rng; + + int class_count; + float delta; + float base_value; + +}; + + + +/****************************************************************************************\ +* Artificial Neural Networks (ANN) * +\****************************************************************************************/ + +/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// + +struct CV_EXPORTS_W_MAP CvANN_MLP_TrainParams +{ + CvANN_MLP_TrainParams(); + CvANN_MLP_TrainParams( CvTermCriteria term_crit, int train_method, + double param1, double param2=0 ); + ~CvANN_MLP_TrainParams(); + + enum { BACKPROP=0, RPROP=1 }; + + CV_PROP_RW CvTermCriteria term_crit; + CV_PROP_RW int train_method; + + // backpropagation parameters + CV_PROP_RW double bp_dw_scale, bp_moment_scale; + + // rprop parameters + CV_PROP_RW double rp_dw0, rp_dw_plus, rp_dw_minus, rp_dw_min, rp_dw_max; +}; + + +class CV_EXPORTS_W CvANN_MLP : public CvStatModel +{ +public: + CV_WRAP CvANN_MLP(); + CvANN_MLP( const CvMat* layerSizes, + int activateFunc=CvANN_MLP::SIGMOID_SYM, + double fparam1=0, double fparam2=0 ); + + virtual ~CvANN_MLP(); + + virtual void create( const CvMat* layerSizes, + int activateFunc=CvANN_MLP::SIGMOID_SYM, + double fparam1=0, double fparam2=0 ); + + virtual int train( const CvMat* inputs, const CvMat* outputs, + const CvMat* sampleWeights, const CvMat* sampleIdx=0, + CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), + int flags=0 ); + virtual float predict( const CvMat* inputs, CV_OUT CvMat* outputs ) const; + + CV_WRAP CvANN_MLP( const cv::Mat& layerSizes, + int activateFunc=CvANN_MLP::SIGMOID_SYM, + double fparam1=0, double fparam2=0 ); + + CV_WRAP virtual void create( const cv::Mat& layerSizes, + int activateFunc=CvANN_MLP::SIGMOID_SYM, + double fparam1=0, double fparam2=0 ); + + CV_WRAP virtual int train( const cv::Mat& inputs, const cv::Mat& outputs, + const cv::Mat& sampleWeights, const cv::Mat& sampleIdx=cv::Mat(), + CvANN_MLP_TrainParams params = CvANN_MLP_TrainParams(), + int flags=0 ); + + CV_WRAP virtual float predict( const cv::Mat& inputs, CV_OUT cv::Mat& outputs ) const; + + CV_WRAP virtual void clear(); + + // possible activation functions + enum { IDENTITY = 0, SIGMOID_SYM = 1, GAUSSIAN = 2 }; + + // available training flags + enum { UPDATE_WEIGHTS = 1, NO_INPUT_SCALE = 2, NO_OUTPUT_SCALE = 4 }; + + virtual void read( CvFileStorage* fs, CvFileNode* node ); + virtual void write( CvFileStorage* storage, const char* name ) const; + + int get_layer_count() { return layer_sizes ? layer_sizes->cols : 0; } + const CvMat* get_layer_sizes() { return layer_sizes; } + double* get_weights(int layer) + { + return layer_sizes && weights && + (unsigned)layer <= (unsigned)layer_sizes->cols ? weights[layer] : 0; + } + + virtual void calc_activ_func_deriv( CvMat* xf, CvMat* deriv, const double* bias ) const; + +protected: + + virtual bool prepare_to_train( const CvMat* _inputs, const CvMat* _outputs, + const CvMat* _sample_weights, const CvMat* sampleIdx, + CvVectors* _ivecs, CvVectors* _ovecs, double** _sw, int _flags ); + + // sequential random backpropagation + virtual int train_backprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); + + // RPROP algorithm + virtual int train_rprop( CvVectors _ivecs, CvVectors _ovecs, const double* _sw ); + + virtual void calc_activ_func( CvMat* xf, const double* bias ) const; + virtual void set_activ_func( int _activ_func=SIGMOID_SYM, + double _f_param1=0, double _f_param2=0 ); + virtual void init_weights(); + virtual void scale_input( const CvMat* _src, CvMat* _dst ) const; + virtual void scale_output( const CvMat* _src, CvMat* _dst ) const; + virtual void calc_input_scale( const CvVectors* vecs, int flags ); + virtual void calc_output_scale( const CvVectors* vecs, int flags ); + + virtual void write_params( CvFileStorage* fs ) const; + virtual void read_params( CvFileStorage* fs, CvFileNode* node ); + + CvMat* layer_sizes; + CvMat* wbuf; + CvMat* sample_weights; + double** weights; + double f_param1, f_param2; + double min_val, max_val, min_val1, max_val1; + int activ_func; + int max_count, max_buf_sz; + CvANN_MLP_TrainParams params; + cv::RNG* rng; +}; + +/****************************************************************************************\ +* Auxilary functions declarations * +\****************************************************************************************/ + +/* Generates <sample> from multivariate normal distribution, where <mean> - is an + average row vector, <cov> - symmetric covariation matrix */ +CVAPI(void) cvRandMVNormal( CvMat* mean, CvMat* cov, CvMat* sample, + CvRNG* rng CV_DEFAULT(0) ); + +/* Generates sample from gaussian mixture distribution */ +CVAPI(void) cvRandGaussMixture( CvMat* means[], + CvMat* covs[], + float weights[], + int clsnum, + CvMat* sample, + CvMat* sampClasses CV_DEFAULT(0) ); + +#define CV_TS_CONCENTRIC_SPHERES 0 + +/* creates test set */ +CVAPI(void) cvCreateTestSet( int type, CvMat** samples, + int num_samples, + int num_features, + CvMat** responses, + int num_classes, ... ); + +/****************************************************************************************\ +* Data * +\****************************************************************************************/ + +#define CV_COUNT 0 +#define CV_PORTION 1 + +struct CV_EXPORTS CvTrainTestSplit +{ + CvTrainTestSplit(); + CvTrainTestSplit( int train_sample_count, bool mix = true); + CvTrainTestSplit( float train_sample_portion, bool mix = true); + + union + { + int count; + float portion; + } train_sample_part; + int train_sample_part_mode; + + bool mix; +}; + +class CV_EXPORTS CvMLData +{ +public: + CvMLData(); + virtual ~CvMLData(); + + // returns: + // 0 - OK + // -1 - file can not be opened or is not correct + int read_csv( const char* filename ); + + const CvMat* get_values() const; + const CvMat* get_responses(); + const CvMat* get_missing() const; + + void set_response_idx( int idx ); // old response become predictors, new response_idx = idx + // if idx < 0 there will be no response + int get_response_idx() const; + + void set_train_test_split( const CvTrainTestSplit * spl ); + const CvMat* get_train_sample_idx() const; + const CvMat* get_test_sample_idx() const; + void mix_train_and_test_idx(); + + const CvMat* get_var_idx(); + void chahge_var_idx( int vi, bool state ); // misspelled (saved for back compitability), + // use change_var_idx + void change_var_idx( int vi, bool state ); // state == true to set vi-variable as predictor + + const CvMat* get_var_types(); + int get_var_type( int var_idx ) const; + // following 2 methods enable to change vars type + // use these methods to assign CV_VAR_CATEGORICAL type for categorical variable + // with numerical labels; in the other cases var types are correctly determined automatically + void set_var_types( const char* str ); // str examples: + // "ord[0-17],cat[18]", "ord[0,2,4,10-12], cat[1,3,5-9,13,14]", + // "cat", "ord" (all vars are categorical/ordered) + void change_var_type( int var_idx, int type); // type in { CV_VAR_ORDERED, CV_VAR_CATEGORICAL } + + void set_delimiter( char ch ); + char get_delimiter() const; + + void set_miss_ch( char ch ); + char get_miss_ch() const; + + const std::map<std::string, int>& get_class_labels_map() const; + +protected: + virtual void clear(); + + void str_to_flt_elem( const char* token, float& flt_elem, int& type); + void free_train_test_idx(); + + char delimiter; + char miss_ch; + //char flt_separator; + + CvMat* values; + CvMat* missing; + CvMat* var_types; + CvMat* var_idx_mask; + + CvMat* response_out; // header + CvMat* var_idx_out; // mat + CvMat* var_types_out; // mat + + int response_idx; + + int train_sample_count; + bool mix; + + int total_class_count; + std::map<std::string, int> class_map; + + CvMat* train_sample_idx; + CvMat* test_sample_idx; + int* sample_idx; // data of train_sample_idx and test_sample_idx + + cv::RNG* rng; +}; + + +namespace cv +{ + +typedef CvStatModel StatModel; +typedef CvParamGrid ParamGrid; +typedef CvNormalBayesClassifier NormalBayesClassifier; +typedef CvKNearest KNearest; +typedef CvSVMParams SVMParams; +typedef CvSVMKernel SVMKernel; +typedef CvSVMSolver SVMSolver; +typedef CvSVM SVM; +typedef CvDTreeParams DTreeParams; +typedef CvMLData TrainData; +typedef CvDTree DecisionTree; +typedef CvForestTree ForestTree; +typedef CvRTParams RandomTreeParams; +typedef CvRTrees RandomTrees; +typedef CvERTreeTrainData ERTreeTRainData; +typedef CvForestERTree ERTree; +typedef CvERTrees ERTrees; +typedef CvBoostParams BoostParams; +typedef CvBoostTree BoostTree; +typedef CvBoost Boost; +typedef CvANN_MLP_TrainParams ANN_MLP_TrainParams; +typedef CvANN_MLP NeuralNet_MLP; +typedef CvGBTreesParams GradientBoostingTreeParams; +typedef CvGBTrees GradientBoostingTrees; + +template<> CV_EXPORTS void Ptr<CvDTreeSplit>::delete_obj(); + +CV_EXPORTS bool initModule_ml(void); + +} + +#endif // __cplusplus +#endif // __OPENCV_ML_HPP__ + +/* End of file. */ |