summaryrefslogtreecommitdiff
path: root/2.3-1/src/fortran/lapack/dlarfg.f
diff options
context:
space:
mode:
authorSiddhesh Wani2015-05-25 14:46:31 +0530
committerSiddhesh Wani2015-05-25 14:46:31 +0530
commit6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 (patch)
tree1b7bd89fdcfd01715713d8a15db471dc75a96bbf /2.3-1/src/fortran/lapack/dlarfg.f
downloadScilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.gz
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.tar.bz2
Scilab2C-6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26.zip
Original Version
Diffstat (limited to '2.3-1/src/fortran/lapack/dlarfg.f')
-rw-r--r--2.3-1/src/fortran/lapack/dlarfg.f137
1 files changed, 137 insertions, 0 deletions
diff --git a/2.3-1/src/fortran/lapack/dlarfg.f b/2.3-1/src/fortran/lapack/dlarfg.f
new file mode 100644
index 00000000..be981880
--- /dev/null
+++ b/2.3-1/src/fortran/lapack/dlarfg.f
@@ -0,0 +1,137 @@
+ SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU )
+*
+* -- LAPACK auxiliary routine (version 3.1) --
+* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
+* November 2006
+*
+* .. Scalar Arguments ..
+ INTEGER INCX, N
+ DOUBLE PRECISION ALPHA, TAU
+* ..
+* .. Array Arguments ..
+ DOUBLE PRECISION X( * )
+* ..
+*
+* Purpose
+* =======
+*
+* DLARFG generates a real elementary reflector H of order n, such
+* that
+*
+* H * ( alpha ) = ( beta ), H' * H = I.
+* ( x ) ( 0 )
+*
+* where alpha and beta are scalars, and x is an (n-1)-element real
+* vector. H is represented in the form
+*
+* H = I - tau * ( 1 ) * ( 1 v' ) ,
+* ( v )
+*
+* where tau is a real scalar and v is a real (n-1)-element
+* vector.
+*
+* If the elements of x are all zero, then tau = 0 and H is taken to be
+* the unit matrix.
+*
+* Otherwise 1 <= tau <= 2.
+*
+* Arguments
+* =========
+*
+* N (input) INTEGER
+* The order of the elementary reflector.
+*
+* ALPHA (input/output) DOUBLE PRECISION
+* On entry, the value alpha.
+* On exit, it is overwritten with the value beta.
+*
+* X (input/output) DOUBLE PRECISION array, dimension
+* (1+(N-2)*abs(INCX))
+* On entry, the vector x.
+* On exit, it is overwritten with the vector v.
+*
+* INCX (input) INTEGER
+* The increment between elements of X. INCX > 0.
+*
+* TAU (output) DOUBLE PRECISION
+* The value tau.
+*
+* =====================================================================
+*
+* .. Parameters ..
+ DOUBLE PRECISION ONE, ZERO
+ PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
+* ..
+* .. Local Scalars ..
+ INTEGER J, KNT
+ DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM
+* ..
+* .. External Functions ..
+ DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2
+ EXTERNAL DLAMCH, DLAPY2, DNRM2
+* ..
+* .. Intrinsic Functions ..
+ INTRINSIC ABS, SIGN
+* ..
+* .. External Subroutines ..
+ EXTERNAL DSCAL
+* ..
+* .. Executable Statements ..
+*
+ IF( N.LE.1 ) THEN
+ TAU = ZERO
+ RETURN
+ END IF
+*
+ XNORM = DNRM2( N-1, X, INCX )
+*
+ IF( XNORM.EQ.ZERO ) THEN
+*
+* H = I
+*
+ TAU = ZERO
+ ELSE
+*
+* general case
+*
+ BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
+ SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' )
+ IF( ABS( BETA ).LT.SAFMIN ) THEN
+*
+* XNORM, BETA may be inaccurate; scale X and recompute them
+*
+ RSAFMN = ONE / SAFMIN
+ KNT = 0
+ 10 CONTINUE
+ KNT = KNT + 1
+ CALL DSCAL( N-1, RSAFMN, X, INCX )
+ BETA = BETA*RSAFMN
+ ALPHA = ALPHA*RSAFMN
+ IF( ABS( BETA ).LT.SAFMIN )
+ $ GO TO 10
+*
+* New BETA is at most 1, at least SAFMIN
+*
+ XNORM = DNRM2( N-1, X, INCX )
+ BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA )
+ TAU = ( BETA-ALPHA ) / BETA
+ CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
+*
+* If ALPHA is subnormal, it may lose relative accuracy
+*
+ ALPHA = BETA
+ DO 20 J = 1, KNT
+ ALPHA = ALPHA*SAFMIN
+ 20 CONTINUE
+ ELSE
+ TAU = ( BETA-ALPHA ) / BETA
+ CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX )
+ ALPHA = BETA
+ END IF
+ END IF
+*
+ RETURN
+*
+* End of DLARFG
+*
+ END