From 6a320264c2de3d6dd8cc1d1327b3c30df4c8cb26 Mon Sep 17 00:00:00 2001 From: Siddhesh Wani Date: Mon, 25 May 2015 14:46:31 +0530 Subject: Original Version --- 2.3-1/src/fortran/lapack/dlarfg.f | 137 ++++++++++++++++++++++++++++++++++++++ 1 file changed, 137 insertions(+) create mode 100644 2.3-1/src/fortran/lapack/dlarfg.f (limited to '2.3-1/src/fortran/lapack/dlarfg.f') diff --git a/2.3-1/src/fortran/lapack/dlarfg.f b/2.3-1/src/fortran/lapack/dlarfg.f new file mode 100644 index 00000000..be981880 --- /dev/null +++ b/2.3-1/src/fortran/lapack/dlarfg.f @@ -0,0 +1,137 @@ + SUBROUTINE DLARFG( N, ALPHA, X, INCX, TAU ) +* +* -- LAPACK auxiliary routine (version 3.1) -- +* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. +* November 2006 +* +* .. Scalar Arguments .. + INTEGER INCX, N + DOUBLE PRECISION ALPHA, TAU +* .. +* .. Array Arguments .. + DOUBLE PRECISION X( * ) +* .. +* +* Purpose +* ======= +* +* DLARFG generates a real elementary reflector H of order n, such +* that +* +* H * ( alpha ) = ( beta ), H' * H = I. +* ( x ) ( 0 ) +* +* where alpha and beta are scalars, and x is an (n-1)-element real +* vector. H is represented in the form +* +* H = I - tau * ( 1 ) * ( 1 v' ) , +* ( v ) +* +* where tau is a real scalar and v is a real (n-1)-element +* vector. +* +* If the elements of x are all zero, then tau = 0 and H is taken to be +* the unit matrix. +* +* Otherwise 1 <= tau <= 2. +* +* Arguments +* ========= +* +* N (input) INTEGER +* The order of the elementary reflector. +* +* ALPHA (input/output) DOUBLE PRECISION +* On entry, the value alpha. +* On exit, it is overwritten with the value beta. +* +* X (input/output) DOUBLE PRECISION array, dimension +* (1+(N-2)*abs(INCX)) +* On entry, the vector x. +* On exit, it is overwritten with the vector v. +* +* INCX (input) INTEGER +* The increment between elements of X. INCX > 0. +* +* TAU (output) DOUBLE PRECISION +* The value tau. +* +* ===================================================================== +* +* .. Parameters .. + DOUBLE PRECISION ONE, ZERO + PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) +* .. +* .. Local Scalars .. + INTEGER J, KNT + DOUBLE PRECISION BETA, RSAFMN, SAFMIN, XNORM +* .. +* .. External Functions .. + DOUBLE PRECISION DLAMCH, DLAPY2, DNRM2 + EXTERNAL DLAMCH, DLAPY2, DNRM2 +* .. +* .. Intrinsic Functions .. + INTRINSIC ABS, SIGN +* .. +* .. External Subroutines .. + EXTERNAL DSCAL +* .. +* .. Executable Statements .. +* + IF( N.LE.1 ) THEN + TAU = ZERO + RETURN + END IF +* + XNORM = DNRM2( N-1, X, INCX ) +* + IF( XNORM.EQ.ZERO ) THEN +* +* H = I +* + TAU = ZERO + ELSE +* +* general case +* + BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) + SAFMIN = DLAMCH( 'S' ) / DLAMCH( 'E' ) + IF( ABS( BETA ).LT.SAFMIN ) THEN +* +* XNORM, BETA may be inaccurate; scale X and recompute them +* + RSAFMN = ONE / SAFMIN + KNT = 0 + 10 CONTINUE + KNT = KNT + 1 + CALL DSCAL( N-1, RSAFMN, X, INCX ) + BETA = BETA*RSAFMN + ALPHA = ALPHA*RSAFMN + IF( ABS( BETA ).LT.SAFMIN ) + $ GO TO 10 +* +* New BETA is at most 1, at least SAFMIN +* + XNORM = DNRM2( N-1, X, INCX ) + BETA = -SIGN( DLAPY2( ALPHA, XNORM ), ALPHA ) + TAU = ( BETA-ALPHA ) / BETA + CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) +* +* If ALPHA is subnormal, it may lose relative accuracy +* + ALPHA = BETA + DO 20 J = 1, KNT + ALPHA = ALPHA*SAFMIN + 20 CONTINUE + ELSE + TAU = ( BETA-ALPHA ) / BETA + CALL DSCAL( N-1, ONE / ( ALPHA-BETA ), X, INCX ) + ALPHA = BETA + END IF + END IF +* + RETURN +* +* End of DLARFG +* + END -- cgit