blob: 4ea27c379cfdc42d781ee36fd9cbd7d44448fc5d (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
//(14.5) Carbon dioxide at 25C, 1 atm enters a reactor operating at steady state and dissociates, giving an equilibrium mixture of CO2, CO, and O2 that exits at 3200 K, 1 atm. Determine the heat transfer to the reactor, in kJ per kmol of CO2 entering. The effectsof kinetic and potential energy can be ignored and Wcvdot = 0
//solution
//Applying the conservation of mass principle, the overall dissociation reaction is described by
//CO2 ----> zCO2 + (1-z)CO + ((1-z)/2)O2
p = 1 //in atm
pref = 1 //in atm
//At 3200 K, Table A-27 gives
log10k = -.189
k = 10^log10k
//solving k = ((1-z)/2)*((1-z)/(3-z))^.5 gives
z = .422
//from tables A-25 and A-23
hfbarCO2 = -393520 //in kj/kmol
deltahbarCO2 = 174695-9364 //in kj/kmol
hfbarCO = -110530 //in kj/kmol
deltahbarCO = 109667-8669 //in kj/kmol
hfbarO2 = 0 //in kj/kmol
deltahbarO2 = 114809-8682 //in kj/kmol
hfbarCO2r = -393520 //in kj/kmol
deltahbarCO2r = 0 //in kj/kmol
Qcvdot = .422*(hfbarCO2 + deltahbarCO2) + .578*(hfbarCO + deltahbarCO) + .289*(hfbarO2 + deltahbarO2)- (hfbarCO2r + deltahbarCO2r)
printf('the heat transfer to the reactor, in kJ per kmol of CO2 entering is: %f',Qcvdot)
|