//(14.5) Carbon dioxide at 25C, 1 atm enters a reactor operating at steady state and dissociates, giving an equilibrium mixture of CO2, CO, and O2 that exits at 3200 K, 1 atm. Determine the heat transfer to the reactor, in kJ per kmol of CO2 entering. The effectsof kinetic and potential energy can be ignored and Wcvdot = 0 //solution //Applying the conservation of mass principle, the overall dissociation reaction is described by //CO2 ----> zCO2 + (1-z)CO + ((1-z)/2)O2 p = 1 //in atm pref = 1 //in atm //At 3200 K, Table A-27 gives log10k = -.189 k = 10^log10k //solving k = ((1-z)/2)*((1-z)/(3-z))^.5 gives z = .422 //from tables A-25 and A-23 hfbarCO2 = -393520 //in kj/kmol deltahbarCO2 = 174695-9364 //in kj/kmol hfbarCO = -110530 //in kj/kmol deltahbarCO = 109667-8669 //in kj/kmol hfbarO2 = 0 //in kj/kmol deltahbarO2 = 114809-8682 //in kj/kmol hfbarCO2r = -393520 //in kj/kmol deltahbarCO2r = 0 //in kj/kmol Qcvdot = .422*(hfbarCO2 + deltahbarCO2) + .578*(hfbarCO + deltahbarCO) + .289*(hfbarO2 + deltahbarO2)- (hfbarCO2r + deltahbarCO2r) printf('the heat transfer to the reactor, in kJ per kmol of CO2 entering is: %f',Qcvdot)