blob: 6c3fb77efc16e2b980b342b30101db04a1a57d99 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 8.6 Page 516 \n'); //Example 8.6
// Heat Loss from the Duct over the Length L, q
// Heat flux and suface temperature at x=L
//Operating Conditions
m = .05; //[kg/s] mass flow rate of water
Ti = 103+273; //[K] Inlet temp
To = 77+273; //[K] Outlet temperature
D = .15; //[m] Diameter
L = 5; //[m] length
ho = 6; //[W/m^2.K] Heat transfer convective coefficient
Tsurr = 0+273; //[K] Temperature of surrounding
//Table A.4 Air Properties T = 363 K
cp = 1010; //[J/kg.K] specific heat
//Table A.4 Air Properties T = 350 K
k = .030; //[W/m] Thermal Conductivity
u = 20.82*10^-6; //[N.s/m^2] Viscosity
Pr = .7; //Prandtl Number
q = m*cp*(To-Ti);
Re = m*4/(%pi*D*u);
printf("\n As Reynolds Number is %i. The flow is Turbulent.",Re);
//Equation 8.6
n = 0.3;
Nu = .023*Re^.8*Pr^.3;
h = Nu*k/D;
q2 = (To-Tsurr)/[1/h + 1/ho];
Ts = -q2/h+To;
printf("\n\n Heat Loss from the Duct over the Length L, q = %i W \n Heat flux and suface temperature at x=L is %.1f W/m^2 & %.1f degC respectively",q,q2,Ts-273);
//END
|